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Abstract

In this paper, one-dimensional k-medians clustering problem is con-
sidered in the context of zero-sum game between players choosing a
sample and partitioning it into clusters, respectively. For any sample
size n and k > 1, an attainable guaranteed value of the clustering accu-
racy 0.5n/(2k − 1) (the low value of an appropriate game) is provided
for samples taken from the segment [0, 1].

1 Introduction

In data analysis, k-medians clustering problem is regarded as one of the famous center-based metric clustering
problems, whose instance can be defined as follows. For a given number k ≥ 1 and a finite sample ξ = (x1, . . . , xn)
taken from a metric space (X, ρ), it is required to find a partition of Nn = {1, . . . , n} onto k clusters C1, . . . , Ck

and, for any j-th cluster, to point out an appropriate center cj such that

k∑
j=1

∑
i∈Cj

ρ(xi, cj) =
n∑

i=1

min{ρ(xi, c1), . . . , ρ(xi, ck)} → min . (1)

Equation (1) evidently implies that, for any j, the point cj ∈ Argmin
{∑

i∈Cj
ρ(xi, c) : c ∈ X

}
, i.e. cj is a median

of the subsample ξj = (xi : i ∈ Cj).
As a combinatorial optimization problem, k-medians is shown1 to be intractable [Guruswami and Indyk, 2003]

even for the Euclidean metric and has no PTAS, unless P = NP . For d-dimensional Euclidean spaces there
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1If k is a part of an instance.
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are known numerous approximation results. For instance, in [Kumar et al., 2010], for any fixed k, randomized

LTAS with time complexity of O(2(k/ε)
O(1) · dn) is proposed. On the basis of the famous coresets technique,

in [Har-Peled and Mazumdar, 2004], RPTAS with polynomially depending on the number of clusters k time
complexity bound O(n+ ρ(k log n)O(1)), where ρ = exp(O((1− log ε)/ε)d−1) is proposed. For d = 1, k-medians
problem is polynomially (and very efficiently) solvable. To date, the most efficient exact algorithm with time
complexity O(n log n+ kn) is proposed in [Grønlund et al., 2017].

Among others, the setting, where it is required to obtain a guaranteed accuracy of clustering for a fixed
number of clusters k and an arbitrary sample, is valuable ([Ben-David, 2015, Khachai and Neznakhina, 2017])
for applications in combinatorial optimization and data analysis. In this paper, we study such a setting for the
1d-case of the k-medians clustering problem.

2 Problem Statement and the Main Result

We consider the following two-player zero-sum game induced by k-medians clustering. There are two players
placing points in the unit segment of the real line. Strategies of the first player are samples ξ = (x1, . . . , xn),
xi ∈ [0, 1] of some given size n. Strategies of the second one are k-tuples σ = (c1, . . . , ck), ci ∈ [0, 1]. The payoff
function F (ξ, σ) =

∑n
i=1 min{|xi − c1|, . . . , |xi − ck|}. Goals of the first and the second players are to find the

lower
v∗(n, k) = sup

ξ∈[0,1]n
inf

σ∈[0,1]k
F (ξ, σ)

and the higher
v∗(n, k) = inf

σ∈[0,1]k
sup

ξ∈[0,1]n
F (ξ, σ)

values of the game, respectively.
It is easy to verify that, for any k > 1 and n > 0, the game has no value, i.e. v∗(n, k) < v∗(n, k). For many

reasons arising from applications in data analysis, combinatorial optimization, and computational geometry, it
is important to have an upper bound for v∗(n), which means the guaranteed accuracy of k-medians clustering of
an appropriate n-points sample. Although, v∗(n, k) can obviously be taken as an upper bound, for large values
of n it is imprecise and should be replaced with more accurate one.

In this paper, we propose an attainable upper bound B(n, k) for v∗(n, k). Actually, to any n > 0, k > 1, and
ξ ∈ [0, 1]n, we show how to assign an appropriate k-tuple σξ = (c1, . . . , ck), i.e. how to construct a clustering
C1, . . . , Ck with medians c1, . . . , ck, such that

inf
σ∈[0,1]k

F (ξ, σ) ≤ F (ξ, σξ) ≤ B(n, k).

Theorem.

(i) For any k > 1, n > 0, and sample ξ = (x1, . . . , xn), xi ∈ [0, 1], i ∈ Nn, there exists the k-tuple σξ =
(c1, . . . , ck), cj ∈ [0, 1], j ∈ Nk, such that

F (ξ, σξ) ≤
n

2(2k − 1)
. (2)

(ii) For any k > 1, there is ñ = ñ(k) such that, for all n > ñ, bound (2) is attained at some sample ξ = ξ(k, n).

Postponing the rigorous proof to the forthcoming paper, we restrict ourselves to some suggestive thoughts.
To put it simple, we consider the case of k = 2.

3 Proof Sketch for k = 2

We start with the following simple upper bound

3.1 Näıve Upper Bound

It can be assumed that the second player always adheres to the following strategy. He splits the segment [0, 1]
onto two equal parts and put c1 and c2 at the centers of each part as it is shown in Fig. 1

Obviously, in this case, for any x ∈ [0, 1], min{|x − c1|, |x − c2|} ≤ 1/4. Therefore, regardless of the choice
ξ = (x1, . . . , xn) of the first player,

∑n
i=1 min{|xi − c1|, |xi − c2|} ≤ n/4, i.e. B(n, 2) ≤ n/4. Since, to complete

the first point of the proof (for the considered case k = 2), we need to show that B(n, 2) ≤ n/6, we need further
improvements.
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Figure 1: Simple upper bound

3.2 Reducing to Linear Program

Hereinafter, without loss of generality, we assume that any sample ξ = (x1, . . . , xn) contains points xi in ascending
order. Moreover, we assume that any cluster C = {i1, . . . , im} ⊂ Nn inherites this property, i.e. xi1 ≤ . . . ≤ xim .
Then, for the median c of the cluster C we have

m∑
l=1

|xil − c| =
⌊m/2⌋∑
l=1

(c− xil) +
m∑

l=⌈m/2⌉+1

(xil − c) = −
⌊m/2⌋∑
l=1

xil +
m∑

l=⌈m/2⌉+1

xil . (3)

Therefore, for a given sample ξ, Φ(ξ) = infσ=(c1,c2) F (ξ, σ) depends on choice of partitions C1 ∪ C2 = Nn

ultimately and obeys the equation

Φ(ξ) = min

{∑
i∈C1

|xi − c1|+
∑
i∈C2

|xi − c2| : C1 ∪ C2 = Nn

}

= min

−
⌊m1/2⌋∑
i=1

xi +

m1∑
i=⌈m1/2⌉+1

xi −
⌊m2/2⌋∑
i=1

xi+m1 +

m2∑
i=⌈m2/2⌉+1

xi+m1 : m1 +m2 = n

 .

Thus, v∗(n, 2) = supξ∈[0,1]n Φ(ξ) is an optimum value of linear program (4)

v∗(n, 2) = maxu
s.t.

−
⌊m1/2⌋∑
i=1

xi +
m1∑

i=⌈m1/2⌉+1

xi −
⌊m2/2⌋∑
i=1

xi+m1 +
m2∑

i=⌈m2/2⌉+1

xi+m1 ≥ u, (m1 +m2 = n),

0 ≤ x1 ≤ . . . ≤ xn ≤ 1.
(4)

Further, guided by the symmetry argument, we can reduce the number of variables (and also, the number of
constraints) in problem (4) by half. Indeed, suppose, ξ′ = (x′

1, . . . , x
′
n) is an optimal solution of (4). Then, by

symmetry, ξ′′ = (1 − x′
n, . . . , 1 − x′

1) is an optimal solution of (4) as well. Convexity of the optimal set2 of (4)
implies that ξ = (ξ′ + ξ′′)/2, each whose entry is defined by the formula xi = (1 + x′

i − x′
n+1−i)/2 is also an

optimal solution. Since xi + xn+1−i = 1, hereinafter, we reduce the number of variables to ⌊n/2⌋. Moreover, for
odd n, x⌈n/2⌉ = 1/2.

To show that B(n, 2) ≤ n/6, we study all cases for (n mod 6).

Case n = 6t:

Consider the constraint of (4) defined by m1 = 2t and m2 = 4t.

−
t∑

i=1

xi +
2t∑

i=t+1

xi −
3t∑

i=2t+1

xi −
3t∑

i=2t+1

(1− xi) +
2t∑
i=1

(1− xi) ≥ u,

which is equivalent to u+ 2
∑t

i=1 xi ≤ t. Since all xi ≥ 0, u ≤ t = n/6, and we are done.

Case n = 6t+ 1:

Here, we consider two constraints of (4), defined by m1 = 2t, m2 = 4t+1 and m1 = 2t+1, m2 = 4t, respectively.
They are

−
t∑

i=1

xi +
2t∑

i=t+1

xi −
3t∑

i=2t+1

xi −
1

2
−

3t∑
i=2t+2

(1− xi) +
2t∑
i=1

(1− xi) ≥ u

2The set of optimal solutions
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and

−
t∑

i=1

xi +
2t+1∑
i=t+2

xi −
3t∑

i=2t+2

xi −
1

2
−

3t∑
i=2t+1

(1− xi) +
2t∑
i=1

(1− xi) ≥ u.

After the equivalent transformation, we obtain the subsystem
u+ 2

t∑
i=1

xi + x2t+1 ≤ t+ 1
2

u+ 2
t∑

i=1

xi + xt+1 − 2x2t+1 ≤ t− 1
2 ,

which implies

3u+ 6

t∑
i=1

xi + xt+1 ≤ 3t+ 1/2 and u ≤ t+ 1/6 = n/6.

In case n = 6t+ 2

we take constraints defined by m1 = 2t+ 1,m2 = 4t+ 1 and m1 = 2t,m2 = 4t+ 2:

−
t∑

i=1

xi +

2t+1∑
i=t+2

xi −
3t+1∑

i=2t+2

xi −
3t+1∑

i=2t+2

(1− xi) +

2t∑
i=1

(1− xi) ≥ u

−
t∑

i=1

xi +

2t∑
i=t+1

xi −
3t+1∑

i=2t+1

xi −
3t+1∑

i=2t+2

(1− xi) +

2t+1∑
i=1

(1− xi) ≥ u.

Transformed 
u+ 2

t∑
i=1

xi − x2t+1 ≤ t

u+ 2
t∑

i=1

xi + 2x2t+1 ≤ t+ 1,

they imply

3u+ 6
t∑

i=1

xi ≤ 3t+ 1 i.e. u ≤ t+ 1/3 = n/6.

Case n = 6t+ 3

is similar to the case n = 6t. Here, to obtain the desired bound, it is enough to consider the single constraint
defined by m1 = 2t+ 1 and m2 = 4t+ 2

−
t∑

i=1

xi +
2t+1∑
i=t+2

xi −
3t+1∑

i=2t+2

xi −
1

2
−

3t+1∑
i=2t+2

(1− xi) +
2t+1∑
i=1

(1− xi) ≥ u. (5)

Being transformed, (5) becomes

u+ 2
t∑

i=1

xi + xt+1 ≤ t+ 1/2,

which implies u ≤ t+ 1/2 = n/6.

In case n = 6t+ 4

we convolve again two appropriate constraints defined by m1 = 2t+1,m2 = 4t+3 and m1 = 2t+2,m2 = 4t+2

−
t∑

i=1

xi +

2t+1∑
i=t+2

xi −
3t+2∑

i=2t+2

xi −
3t+2∑

i=2t+3

(1− xi) +

2t+1∑
i=1

(1− xi) ≥ u

−
t+1∑
i=1

xi +

2t+2∑
i=l+2

xi −
3t+2∑

i=2t+3

xi −
3t+2∑

i=2t+2

(1− xi) +

2t+1∑
i=1

(1− xi) ≥ u,
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which, after the equivalent transformation give the subsystem
u+ 2

t∑
i=1

xi + x2t+2 ≤ t+ 1

u+ 2
t+1∑
i=1

xi − 2x2t+2 ≤ t

implying

3u+ 6

t∑
i=1

xi + 2xt+1 ≤ 3t+ 2 i.e. u ≤ t+ 2/3 = n/6.

Finally, in case n = 6t+ 5

transforming the constraints defined by m1 = 2t+ 2,m2 = 4t+ 3 and m1 = 2t+ 1,m2 = 4t+ 4

−
t+1∑
i=1

xi +
2t+2∑
i=t+2

xi −
3t+2∑

i=2t+3

xi −
1

2
−

3t+2∑
i=2t+3

(1− xi) +
2t+1∑
i=1

(1− xi) ≥ u

−
t∑

i=1

xi +
2t+1∑
i=t+2

xi −
3t+2∑

i=2t+2

xi −
1

2
−

3t+2∑
i=2t+3

(1− xi) +
2t+2∑
i=1

(1− xi) ≥ u

we obtain the subsystem 
u+ 2

t+1∑
i=1

xi − x2t+2 ≤ t+ 1
2

u+ 2
t∑

i=1

xi + xt+1 + x2t+2 ≤ t+ 3
2 ,

which, being convolved, gives us

3u+ 6
t∑

i=1

xi + 5xt+1 ≤ 3t+ 5/2 =⇒ u ≤ t+ 5/6 = n/6.

Thus, we completely proved point (i) of Theorem for the case of k = 2.

3.3 Attainability

Now, we show that for any n ≥ 12 inequality (2) is tight. Consider the following configuration given by locations
p1, . . . , p5

Figure 2: The configuration

Place n = 4⌊n
4 ⌋+ {n

4 } points at the locations p1, . . . , p5 with multiplicities presented at Fig. 3

Figure 3: Placing the points

Since n ≥ 12, the multiplicities of points located at p1, p2, p4, and p5 are at least 3 and at most 3 points
are located at p3. By the symmetry of the sample obtained, there are two best options to partition it into two
clusters C1 = {1, . . . , ⌊n/4⌋}, C2 = {⌊n/4⌋+ 1, . . . , n} and C1 = {1, . . . , 2⌊n/4⌋}, C2 = {2⌊n/4⌋+ 1, . . . , n} (see
Fig.4).

326



Figure 4: Two ways of possible clustering

Let us calculate the cost F (ξ, σ) for each option. In the first case

F (ξ, σ) =
∑
i∈C2

|xi − c2|,

where c2 = p4 (since n > 12). Therefore,

F (ξ, σ) =
⌊n
4

⌋ 1

3
+
{n

4

} 1

6
+

⌊n
4

⌋ 1

3
=

⌊n
4

⌋ 2

3
+

{n

4

} 1

6
=

4
⌊
n
4

⌋
+
{

n
4

}
6

=
n

6
.

Consider the second case. Here, again c2 = p4. Therefore,

F (ξ, σ) =
⌊n
4

⌋ 1

3
+
{n

4

} 1

6
+

⌊n
4

⌋ 1

3
=

n

6
,

i.e. Theorem is completely proved so as point (ii).
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