Attainable Best Guarantee for the Accuracy of k-medians Clustering in [0, $]$

Michael Khachay
Krasovsky Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russia Omsk State Technical University, Omsk, Russia
mkhachay@imm.uran.ru
Vasiliy Pankratov
Krasovsky Institute of Mathematics and Mechanics, pankratov.vs@gmail.com
Daniel Khachay
Krasovsky Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russia dmx@imm.uran.ru

Abstract

In this paper, one-dimensional k-medians clustering problem is considered in the context of zero-sum game between players choosing a sample and partitioning it into clusters, respectively. For any sample size n and $k>1$, an attainable guaranteed value of the clustering accuracy $0.5 n /(2 k-1)$ (the low value of an appropriate game) is provided for samples taken from the segment $[0,1]$.

1 Introduction

In data analysis, k-medians clustering problem is regarded as one of the famous center-based metric clustering problems, whose instance can be defined as follows. For a given number $k \geq 1$ and a finite sample $\xi=\left(x_{1}, \ldots, x_{n}\right)$ taken from a metric space (X, ρ), it is required to find a partition of $\mathbb{N}_{n}=\{1, \ldots, n\}$ onto k clusters C_{1}, \ldots, C_{k} and, for any j-th cluster, to point out an appropriate center c_{j} such that

$$
\begin{equation*}
\sum_{j=1}^{k} \sum_{i \in C_{j}} \rho\left(x_{i}, c_{j}\right)=\sum_{i=1}^{n} \min \left\{\rho\left(x_{i}, c_{1}\right), \ldots, \rho\left(x_{i}, c_{k}\right)\right\} \rightarrow \min . \tag{1}
\end{equation*}
$$

Equation (1) evidently implies that, for any j, the point $c_{j} \in \operatorname{Arg} \min \left\{\sum_{i \in C_{j}} \rho\left(x_{i}, c\right): c \in X\right\}$, i.e. c_{j} is a median of the subsample $\xi_{j}=\left(x_{i}: i \in C_{j}\right)$.

As a combinatorial optimization problem, k-medians is shown ${ }^{1}$ to be intractable [Guruswami and Indyk, 2003] even for the Euclidean metric and has no PTAS, unless $P=N P$. For d-dimensional Euclidean spaces there

[^0]are known numerous approximation results. For instance, in [Kumar et al., 2010], for any fixed k, randomized LTAS with time complexity of $O\left(2^{(k / \varepsilon)^{O(1)}} \cdot d n\right)$ is proposed. On the basis of the famous coresets technique, in [Har-Peled and Mazumdar, 2004], RPTAS with polynomially depending on the number of clusters k time complexity bound $O\left(n+\rho(k \log n)^{O(1)}\right)$, where $\rho=\exp \left(O((1-\log \varepsilon) / \varepsilon)^{d-1}\right)$ is proposed. For $d=1, k$-medians problem is polynomially (and very efficiently) solvable. To date, the most efficient exact algorithm with time complexity $O(n \log n+k n)$ is proposed in [Grønlund et al., 2017].

Among others, the setting, where it is required to obtain a guaranteed accuracy of clustering for a fixed number of clusters k and an arbitrary sample, is valuable ([Ben-David, 2015, Khachai and Neznakhina, 2017]) for applications in combinatorial optimization and data analysis. In this paper, we study such a setting for the 1 d -case of the k-medians clustering problem.

2 Problem Statement and the Main Result

We consider the following two-player zero-sum game induced by k-medians clustering. There are two players placing points in the unit segment of the real line. Strategies of the first player are samples $\xi=\left(x_{1}, \ldots, x_{n}\right)$, $x_{i} \in[0,1]$ of some given size n. Strategies of the second one are k-tuples $\sigma=\left(c_{1}, \ldots, c_{k}\right), c_{i} \in[0,1]$. The payoff function $F(\xi, \sigma)=\sum_{i=1}^{n} \min \left\{\left|x_{i}-c_{1}\right|, \ldots,\left|x_{i}-c_{k}\right|\right\}$. Goals of the first and the second players are to find the lower

$$
v_{*}(n, k)=\sup _{\xi \in[0,1]^{n}} \inf _{\sigma \in[0,1]^{k}} F(\xi, \sigma)
$$

and the higher

$$
v^{*}(n, k)=\inf _{\sigma \in[0,1]^{k}} \sup _{\xi \in[0,1]^{n}} F(\xi, \sigma)
$$

values of the game, respectively.
It is easy to verify that, for any $k>1$ and $n>0$, the game has no value, i.e. $v_{*}(n, k)<v^{*}(n, k)$. For many reasons arising from applications in data analysis, combinatorial optimization, and computational geometry, it is important to have an upper bound for $v_{*}(n)$, which means the guaranteed accuracy of k-medians clustering of an appropriate n-points sample. Although, $v^{*}(n, k)$ can obviously be taken as an upper bound, for large values of n it is imprecise and should be replaced with more accurate one.

In this paper, we propose an attainable upper bound $B(n, k)$ for $v_{*}(n, k)$. Actually, to any $n>0, k>1$, and $\xi \in[0,1]^{n}$, we show how to assign an appropriate k-tuple $\sigma_{\xi}=\left(c_{1}, \ldots, c_{k}\right)$, i.e. how to construct a clustering C_{1}, \ldots, C_{k} with medians c_{1}, \ldots, c_{k}, such that

$$
\inf _{\sigma \in[0,1]^{k}} F(\xi, \sigma) \leq F\left(\xi, \sigma_{\xi}\right) \leq B(n, k) .
$$

Theorem.

(i) For any $k>1, n>0$, and sample $\xi=\left(x_{1}, \ldots, x_{n}\right)$, $x_{i} \in[0,1], i \in \mathbb{N}_{n}$, there exists the k-tuple $\sigma_{\xi}=$ $\left(c_{1}, \ldots, c_{k}\right), c_{j} \in[0,1], j \in \mathbb{N}_{k}$, such that

$$
\begin{equation*}
F\left(\xi, \sigma_{\xi}\right) \leq \frac{n}{2(2 k-1)} \tag{2}
\end{equation*}
$$

(ii) For any $k>1$, there is $\tilde{n}=\tilde{n}(k)$ such that, for all $n>\tilde{n}$, bound (2) is attained at some sample $\xi=\xi(k, n)$.

Postponing the rigorous proof to the forthcoming paper, we restrict ourselves to some suggestive thoughts. To put it simple, we consider the case of $k=2$.

3 Proof Sketch for $k=2$

We start with the following simple upper bound

3.1 Naïve Upper Bound

It can be assumed that the second player always adheres to the following strategy. He splits the segment $[0,1]$ onto two equal parts and put c_{1} and c_{2} at the centers of each part as it is shown in Fig. 1

Obviously, in this case, for any $x \in[0,1], \min \left\{\left|x-c_{1}\right|,\left|x-c_{2}\right|\right\} \leq 1 / 4$. Therefore, regardless of the choice $\xi=\left(x_{1}, \ldots, x_{n}\right)$ of the first player, $\sum_{i=1}^{n} \min \left\{\left|x_{i}-c_{1}\right|,\left|x_{i}-c_{2}\right|\right\} \leq n / 4$, i.e. $B(n, 2) \leq n / 4$. Since, to complete the first point of the proof (for the considered case $k=2$), we need to show that $B(n, 2) \leq n / 6$, we need further improvements.

Figure 1: Simple upper bound

3.2 Reducing to Linear Program

Hereinafter, without loss of generality, we assume that any sample $\xi=\left(x_{1}, \ldots, x_{n}\right)$ contains points x_{i} in ascending order. Moreover, we assume that any cluster $C=\left\{i_{1}, \ldots, i_{m}\right\} \subset \mathbb{N}_{n}$ inherites this property, i.e. $x_{i_{1}} \leq \ldots \leq x_{i_{m}}$. Then, for the median c of the cluster C we have

$$
\begin{equation*}
\sum_{l=1}^{m}\left|x_{i_{l}}-c\right|=\sum_{l=1}^{\lfloor m / 2\rfloor}\left(c-x_{i_{l}}\right)+\sum_{l=\lceil m / 2\rceil+1}^{m}\left(x_{i_{l}}-c\right)=-\sum_{l=1}^{\lfloor m / 2\rfloor} x_{i_{l}}+\sum_{l=\lceil m / 2\rceil+1}^{m} x_{i_{l}} . \tag{3}
\end{equation*}
$$

Therefore, for a given sample $\xi, \Phi(\xi)=\inf _{\sigma=\left(c_{1}, c_{2}\right)} F(\xi, \sigma)$ depends on choice of partitions $C_{1} \cup C_{2}=\mathbb{N}_{n}$ ultimately and obeys the equation

$$
\begin{aligned}
& \Phi(\xi)=\min \left\{\sum_{i \in C_{1}}\left|x_{i}-c_{1}\right|+\sum_{i \in C_{2}}\left|x_{i}-c_{2}\right|: C_{1} \cup C_{2}=\mathbb{N}_{n}\right\} \\
&=\min \left\{-\sum_{i=1}^{\left\lfloor m_{1} / 2\right\rfloor} x_{i}+\sum_{i=\left\lceil m_{1} / 2\right\rceil+1}^{m_{1}} x_{i}-\sum_{i=1}^{\left\lfloor m_{2} / 2\right\rfloor} x_{i+m_{1}}+\sum_{i=\left\lceil m_{2} / 2\right\rceil+1}^{m_{2}} x_{i+m_{1}}: m_{1}+m_{2}=n\right\} .
\end{aligned}
$$

Thus, $v_{*}(n, 2)=\sup _{\xi \in[0,1]^{n}} \Phi(\xi)$ is an optimum value of linear program (4)

$$
\begin{align*}
& v_{*}(n, 2)=\max u \\
& \text { s.t. } \\
& -\sum_{i=1}^{\left\lfloor m_{1} / 2\right\rfloor} x_{i}+\sum_{i=\left\lceil m_{1} / 2\right\rceil+1}^{m_{1}} x_{i}-\sum_{i=1}^{\left\lfloor m_{2} / 2\right\rfloor} x_{i+m_{1}}+\sum_{i=\left\lceil m_{2} / 2\right\rceil+1}^{m_{2}} x_{i+m_{1}} \geq u, \quad\left(m_{1}+m_{2}=n\right), \\
& 0 \leq x_{1} \leq \ldots \leq x_{n} \leq 1 . \tag{4}
\end{align*}
$$

Further, guided by the symmetry argument, we can reduce the number of variables (and also, the number of constraints) in problem (4) by half. Indeed, suppose, $\xi^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is an optimal solution of (4). Then, by symmetry, $\xi^{\prime \prime}=\left(1-x_{n}^{\prime}, \ldots, 1-x_{1}^{\prime}\right)$ is an optimal solution of (4) as well. Convexity of the optimal set ${ }^{2}$ of (4) implies that $\xi=\left(\xi^{\prime}+\xi^{\prime \prime}\right) / 2$, each whose entry is defined by the formula $x_{i}=\left(1+x_{i}^{\prime}-x_{n+1-i}^{\prime}\right) / 2$ is also an optimal solution. Since $x_{i}+x_{n+1-i}=1$, hereinafter, we reduce the number of variables to $\lfloor n / 2\rfloor$. Moreover, for odd $n, x_{\lceil n / 2\rceil}=1 / 2$.

To show that $B(n, 2) \leq n / 6$, we study all cases for $(n \bmod 6)$.
Case $n=6 t$:
Consider the constraint of (4) defined by $m_{1}=2 t$ and $m_{2}=4 t$.

$$
-\sum_{i=1}^{t} x_{i}+\sum_{i=t+1}^{2 t} x_{i}-\sum_{i=2 t+1}^{3 t} x_{i}-\sum_{i=2 t+1}^{3 t}\left(1-x_{i}\right)+\sum_{i=1}^{2 t}\left(1-x_{i}\right) \geq u
$$

which is equivalent to $u+2 \sum_{i=1}^{t} x_{i} \leq t$. Since all $x_{i} \geq 0, u \leq t=n / 6$, and we are done.
Case $n=6 t+1$:
Here, we consider two constraints of (4), defined by $m_{1}=2 t, m_{2}=4 t+1$ and $m_{1}=2 t+1, m_{2}=4 t$, respectively. They are

$$
-\sum_{i=1}^{t} x_{i}+\sum_{i=t+1}^{2 t} x_{i}-\sum_{i=2 t+1}^{3 t} x_{i}-\frac{1}{2}-\sum_{i=2 t+2}^{3 t}\left(1-x_{i}\right)+\sum_{i=1}^{2 t}\left(1-x_{i}\right) \geq u
$$

[^1]and
$$
-\sum_{i=1}^{t} x_{i}+\sum_{i=t+2}^{2 t+1} x_{i}-\sum_{i=2 t+2}^{3 t} x_{i}-\frac{1}{2}-\sum_{i=2 t+1}^{3 t}\left(1-x_{i}\right)+\sum_{i=1}^{2 t}\left(1-x_{i}\right) \geq u
$$

After the equivalent transformation, we obtain the subsystem

$$
\left\{\begin{array}{l}
u+2 \sum_{i=1}^{t} x_{i}+x_{2 t+1} \leq t+\frac{1}{2} \\
u+2 \sum_{i=1}^{t} x_{i}+x_{t+1}-2 x_{2 t+1} \leq t-\frac{1}{2}
\end{array}\right.
$$

which implies

$$
3 u+6 \sum_{i=1}^{t} x_{i}+x_{t+1} \leq 3 t+1 / 2 \text { and } u \leq t+1 / 6=n / 6
$$

In case $n=6 t+2$
we take constraints defined by $m_{1}=2 t+1, m_{2}=4 t+1$ and $m_{1}=2 t, m_{2}=4 t+2$:

$$
\begin{aligned}
& -\sum_{i=1}^{t} x_{i}+\sum_{i=t+2}^{2 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+1}\left(1-x_{i}\right)+\sum_{i=1}^{2 t}\left(1-x_{i}\right) \geq u \\
& -\sum_{i=1}^{t} x_{i}+\sum_{i=t+1}^{2 t} x_{i}-\sum_{i=2 t+1}^{3 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+1}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+1}\left(1-x_{i}\right) \geq u
\end{aligned}
$$

Transformed

$$
\left\{\begin{array}{l}
u+2 \sum_{i=1}^{t} x_{i}-x_{2 t+1} \leq t \\
u+2 \sum_{i=1}^{t} x_{i}+2 x_{2 t+1} \leq t+1
\end{array}\right.
$$

they imply

$$
3 u+6 \sum_{i=1}^{t} x_{i} \leq 3 t+1 \text { i.e. } u \leq t+1 / 3=n / 6
$$

Case $n=6 t+3$
is similar to the case $n=6 t$. Here, to obtain the desired bound, it is enough to consider the single constraint defined by $m_{1}=2 t+1$ and $m_{2}=4 t+2$

$$
\begin{equation*}
-\sum_{i=1}^{t} x_{i}+\sum_{i=t+2}^{2 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+1} x_{i}-\frac{1}{2}-\sum_{i=2 t+2}^{3 t+1}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+1}\left(1-x_{i}\right) \geq u . \tag{5}
\end{equation*}
$$

Being transformed, (5) becomes

$$
u+2 \sum_{i=1}^{t} x_{i}+x_{t+1} \leq t+1 / 2
$$

which implies $u \leq t+1 / 2=n / 6$.
In case $n=6 t+4$
we convolve again two appropriate constraints defined by $m_{1}=2 t+1, m_{2}=4 t+3$ and $m_{1}=2 t+2, m_{2}=4 t+2$

$$
\begin{aligned}
& -\sum_{i=1}^{t} x_{i}+\sum_{i=t+2}^{2 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+2} x_{i}-\sum_{i=2 t+3}^{3 t+2}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+1}\left(1-x_{i}\right) \geq u \\
& -\sum_{i=1}^{t+1} x_{i}+\sum_{i=l+2}^{2 t+2} x_{i}-\sum_{i=2 t+3}^{3 t+2} x_{i}-\sum_{i=2 t+2}^{3 t+2}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+1}\left(1-x_{i}\right) \geq u
\end{aligned}
$$

which, after the equivalent transformation give the subsystem

$$
\left\{\begin{array}{l}
u+2 \sum_{i=1}^{t} x_{i}+x_{2 t+2} \leq t+1 \\
u+2 \sum_{i=1}^{t+1} x_{i}-2 x_{2 t+2} \leq t
\end{array}\right.
$$

implying

$$
3 u+6 \sum_{i=1}^{t} x_{i}+2 x_{t+1} \leq 3 t+2 \text { i.e. } u \leq t+2 / 3=n / 6
$$

Finally, in case $n=6 t+5$
transforming the constraints defined by $m_{1}=2 t+2, m_{2}=4 t+3$ and $m_{1}=2 t+1, m_{2}=4 t+4$

$$
\begin{aligned}
& -\sum_{i=1}^{t+1} x_{i}+\sum_{i=t+2}^{2 t+2} x_{i}-\sum_{i=2 t+3}^{3 t+2} x_{i}-\frac{1}{2}-\sum_{i=2 t+3}^{3 t+2}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+1}\left(1-x_{i}\right) \geq u \\
& -\sum_{i=1}^{t} x_{i}+\sum_{i=t+2}^{2 t+1} x_{i}-\sum_{i=2 t+2}^{3 t+2} x_{i}-\frac{1}{2}-\sum_{i=2 t+3}^{3 t+2}\left(1-x_{i}\right)+\sum_{i=1}^{2 t+2}\left(1-x_{i}\right) \geq u
\end{aligned}
$$

we obtain the subsystem

$$
\left\{\begin{array}{l}
u+2 \sum_{i=1}^{t+1} x_{i}-x_{2 t+2} \leq t+\frac{1}{2} \\
u+2 \sum_{i=1}^{t} x_{i}+x_{t+1}+x_{2 t+2} \leq t+\frac{3}{2}
\end{array}\right.
$$

which, being convolved, gives us

$$
3 u+6 \sum_{i=1}^{t} x_{i}+5 x_{t+1} \leq 3 t+5 / 2 \Longrightarrow u \leq t+5 / 6=n / 6
$$

Thus, we completely proved point (i) of Theorem for the case of $k=2$.

3.3 Attainability

Now, we show that for any $n \geq 12$ inequality (2) is tight. Consider the following configuration given by locations p_{1}, \ldots, p_{5}

Figure 2: The configuration
Place $n=4\left\lfloor\frac{n}{4}\right\rfloor+\left\{\frac{n}{4}\right\}$ points at the locations p_{1}, \ldots, p_{5} with multiplicities presented at Fig. 3

Figure 3: Placing the points
Since $n \geq 12$, the multiplicities of points located at p_{1}, p_{2}, p_{4}, and p_{5} are at least 3 and at most 3 points are located at p_{3}. By the symmetry of the sample obtained, there are two best options to partition it into two clusters $C_{1}=\{1, \ldots,\lfloor n / 4\rfloor\}, C_{2}=\{\lfloor n / 4\rfloor+1, \ldots, n\}$ and $C_{1}=\{1, \ldots, 2\lfloor n / 4\rfloor\}, C_{2}=\{2\lfloor n / 4\rfloor+1, \ldots, n\}$ (see Fig.4).

Figure 4: Two ways of possible clustering
Let us calculate the $\operatorname{cost} F(\xi, \sigma)$ for each option. In the first case

$$
F(\xi, \sigma)=\sum_{i \in C_{2}}\left|x_{i}-c_{2}\right|
$$

where $c_{2}=p_{4}$ (since $n>12$). Therefore,

$$
F(\xi, \sigma)=\left\lfloor\frac{n}{4}\right\rfloor \frac{1}{3}+\left\{\frac{n}{4}\right\} \frac{1}{6}+\left\lfloor\frac{n}{4}\right\rfloor \frac{1}{3}=\left\lfloor\frac{n}{4}\right\rfloor \frac{2}{3}+\left\{\frac{n}{4}\right\} \frac{1}{6}=\frac{4\left\lfloor\frac{n}{4}\right\rfloor+\left\{\frac{n}{4}\right\}}{6}=\frac{n}{6}
$$

Consider the second case. Here, again $c_{2}=p_{4}$. Therefore,

$$
F(\xi, \sigma)=\left\lfloor\frac{n}{4}\right\rfloor \frac{1}{3}+\left\{\frac{n}{4}\right\} \frac{1}{6}+\left\lfloor\frac{n}{4}\right\rfloor \frac{1}{3}=\frac{n}{6}
$$

i.e. Theorem is completely proved so as point (ii).

Acknowledgements

This research was supported by Russian Foundation for Basic Research, projects no. 16-07-00266 and no. 17-0801385.

References

[Ben-David, 2015] Ben-David, S. (2015). Computational feasibility of clustering under clusterability assumptions. CoRR, abs/1501.00437.
[Grønlund et al., 2017] Grønlund, A., Larsen, K. G., Mathiasen, A., and Nielsen, J. S. (2017). Fast exact kmeans, k-medians and bregman divergence clustering in 1d. CoRR, abs/1701.07204.
[Guruswami and Indyk, 2003] Guruswami, V. and Indyk, P. (2003). Embeddings and non-approximability of geometric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '03, pages 537-538, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.
[Har-Peled and Mazumdar, 2004] Har-Peled, S. and Mazumdar, S. (2004). On coresets for k-means and k-median clustering. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04, pages 291-300, New York, NY, USA. ACM.
[Khachai and Neznakhina, 2017] Khachai, M. and Neznakhina, E. (2017). Solvability of the Generalized Traveling Salesman Problem in the class of quasi- and pseudo-pyramidal tours (in Russian). Trudy Inst. Matematiki i Mechaniki UrO RAN, 23(3):280-291.
[Kumar et al., 2010] Kumar, A., Sabharwal, Y., and Sen, S. (2010). Linear-time approximation schemes for clustering problems in any dimensions. J. ACM, 57(2):5:1-5:32.

[^0]: Copyright © by the paper's authors. Copying permitted for private and academic purposes.
 In: Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V.U. Malkova, M.A. Posypkin (eds.): Proceedings of the OPTIMA-2017 Conference, Petrovac, Montenegro, 02-Oct-2017, published at http://ceur-ws.org
 ${ }^{1}$ If k is a part of an instance.

[^1]: ${ }^{2}$ The set of optimal solutions

