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Abstract

The problem of determining the thermal conductivity coefficient that
depends on temperature is studied. The consideration is based on the
Dirichlet boundary value problem for the two-dimensional unsteady-
state heat equation. The inverse coefficient problem is reduced to a
variation problem. The mean-root-square deviations of the tempera-
ture field from the experimental data is used as the objective functional.
An algorithm for the numerical solution of the inverse coefficient prob-
lem is proposed. It is based on the modern approach of Fast Automatic
Differentiation technique, which made it possible to solve a number of
difficult optimal control problems for dynamic systems. An expression
for the gradient of the objective functional is obtained for the discrete
optimal control problem. The examples of solving the inverse coefficient
problem confirm the efficiency of the proposed algorithm.

Introduction

In the description and mathematical modeling of many thermal processes, the classical heat equation is often
used. The density of the substance, its specific thermal capacity, and the thermal conductivity coefficient
appearing in this equation are assumed to be known functions of the coordinates and temperature. Additional
boundary conditions make it possible to determine the dynamics of the temperature field in the substance under
examination.

However, the substance properties are not always known. It often happens that the thermal conductivity
coefficient depends only on the temperature, and this dependence is not known. In this case, the problem of
determining the dependence of the thermal conductivity coefficient on the temperature based on experimental
measurements of the temperature field arises. This problem also arises when a complex thermal process should
be described by a simplified mathematical model. For example, in studying and modeling heat propagation
in complex porous composite materials, where the radiation heat transfer plays a considerable role, both the
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convective and radiative heat transfer must be taken into account. The thermal conductivity coefficients in this
case typically depend on the temperature. To estimate these coefficients, various models of the medium are
used. As a result, one has to deal with a complex nonlinear model that describes the heat propagation in the
composite material (see [Alifanov & Cherepanov, 2009]). However, another approach is possible: a simplified
model is constructed in which the radiative heat transfer is not taken into account, but its effect is modeled by
an effective thermal conductivity coefficient that is determined based on experimental data.

In [Zubov, 2016] the inverse coefficient problems are studied for the one-dimensional unsteady-state heat
equation. There was considered the case of continuous thermal conductivity coefficient. In [Albu et al., 2017]
the case of a discontinuous thermal conductivity coefficient is investigated.

In this paper we consider the problem studied in [Zubov, 2016] for the two-dimensional unsteady-state heat
equation. The inverse coefficient problem is reduced to a variation problem. The mean-root-square deviation of
the temperature field is used as the objective functional. An algorithm for the numerical solution of the inverse
coefficient problem is proposed. It is based on the using of Fast Automatic Differentiation technique.

1 Formulation of the Problem

A layer of material of length L and width R is considered. The temperature of this layer at the initial time is
given. It is also known how the temperature on the boundary of this layer changes in time. The distribution
of the temperature field at each instant of time is described by the following initial boundary value (mixed)
problem:

ρC
∂T (x, y, t)

∂t
=

∂

∂x

(
K(T )

∂T (x, y, t)

∂x

)
+

∂

∂y

(
K(T )

∂T (x, y, t)

∂y

)
,

(x, y) ∈ Q = [0, L]× [0, R], t ∈ [0,Θ],
(1)

T (x, y, 0) = w0(x, y), (x, y) ∈ Q, (2)

T (0, y, t) = w1(y, t), 0 ≤ y ≤ R, 0 ≤ t ≤ Θ, (3)

T (L, y, t) = w2(y, t), 0 ≤ y ≤ R, 0 ≤ t ≤ Θ, (4)

T (x, 0, t) = w3(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ Θ, (5)

T (x,R, t) = w4(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ Θ. (6)

Here (x, y) are the Cartesian coordinates of the point in the layer; t is the time; T (x, y, t) is the temperature of
the material at the point with the coordinates (x, y) at the time t; ρ and C are the density and the heat capacity
of the material, respectively; K(T ) is the thermal conductivity coefficient; w0(x, y) is the given temperature of
the layer at the initial time; w1(y, t) and w2(y, t) are the given temperatures for x = 0 and for x = L respectively;
w3(x, t) and w4(x, t) are the given temperatures for y = 0 and for y = R respectively.

If the dependence of the thermal conductivity coefficient K(T ) on the temperature T is known, then we can
solve the mixed problem (1)–(6) to find the temperature distribution T (x, y, t) in Q × [0,Θ]. Below, problem
(1)–(6) will be called the direct problem.

If the dependence of the thermal conductivity coefficient on the temperature is not known, it is of interest
to determine this dependence. A possible statement of this problem (it is classified as a model’s parameters
identification problem) is as follows: find the dependence K(T ) on T under which the temperature field T (x, y, t)
obtained by solving problem (1)–(6) is close to the field Y (x, y, t) obtained experimentally. The quantity

Φ(K(T )) =

Θ∫
0

L∫
0

R∫
0

[T (x, y, t)− Y (x, y, t)]
2 · µ(x, y, t)dx dy dt (7)

may be used as the measure of difference between these functions. Here µ(x, y, t) ≥ 0 is a given weighting
function.

Thus, the optimal control problem is to find the optimal control K(T ) and the corresponding optimal solution
T (x, y, t) of problem (1)–(6) that minimizes functional (7).

2 Finding the Gradient of Functional

The optimal control problem formulated above was solved numerically. The objective functional was minimized
using the gradient method. It is well known that it is very important for the gradient methods to determine
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accurate values of the gradients. For this reason, in this paper we used the efficient Fast Automatic Differentiation
technique ([Evtushenko, 1998]) to calculate the components of the functional gradient. The unknown function
K(T ) was approximated by a continuous piecewise linear function.

One of the main elements of the proposed numerical method is the solution of the mixed problem (1)–(6). To

this end, the domain [0, L] × [0, R] × [0,Θ] is decomposed by the grid lines {xn}Nn=0, {yi}
I
i=0, and

{
tj
}J
j=0

into

parallelepipeds. At each node (xn, yi, t
j) characterized by the indices (n, i, j), all the functions are determined by

their values at the point (xn, yi, t
j) (e.g., T (xn, yi, t

j) = T j
ni). In each parallelepiped, the thermal balance must

be preserved. As a result, using two-layer implicit scheme with weights we obtain the following finite difference
scheme that approximates the mixed problem (1)–(6):

Sni · ρC(T j+1
ni − T j

ni) = στ jA(T j+1) + (1− σ)τ jA(T j), (n = 1, N − 1, i = 0, I − 1, j = 1, J), (8)

T 0
ni = (w0)ni, (n = 0, N, i = 0, I), (9)

T j
0i = (w1)

j
i , (i = 0, I, j = 1, J), (10)

T j
Ni = (w2)

j
i , (i = 0, I, j = 1, J), (11)

T j
n0 = (w3)

j
n, (n = 0, N, j = 1, J), (12)

T j
nI = (w4)

j
n, (n = 0, N, j = 1, J). (13)

Here σ is the weight parameter,

A(T j) =
K(T j

n+1,i) +K(T j
ni)

2
·
T j
n+1,i − T j

ni

hxn
· (ỹi+1 − ỹi)−

K(T j
ni) +K(T j

n−1,i)

2
·
T j
ni − T j

n−1,i

hxn−1

· (ỹi+1 − ỹi) +

+
K(T j

n,i+1) +K(T j
ni)

2
·
T j
n,i+1 − T j

ni

hyi
· (x̃n+1 − x̃n)−

K(T j
ni) +K(T j

n,i−1)

2
·
T j
ni − T j

n,i−1

hyi−1

· (x̃n+1 − x̃n),

hxn = xn+1 − xn, (n = 0, N − 1), hyi = yi+1 − yi, (i = 0, I − 1),

τ j = tj − tj−1, (j = 1, J),

x̃0 = x0; x̃n = xn−1 + hxn−1/2; n = 1, N ; x̃N+1 = xN ;

ỹ0 = y0; ỹi = yi−1 + hyi−1/2; i = 1, I; ỹI+1 = yI ;

Sni = (x̃n+1 − x̃n)(ỹi+1 − ỹi).

The system of nonlinear algebraic equations (8)–(13) was solved iteratively using the method:

T
s
j+1
ni =

στ j

Sni · ρC
A

(
T

s−1
j+1

)
+

(1− σ)τ j

Sni · ρC
A
(
T j
)
+ T j

ni, where T
0
j+1
ni = T j

ni.

This approach was used in the work to solve the mixed problem (1)–(6), and the function T (x, y, t) (more
precisely, its approximation T j

ni) was found.

The temperature interval [a, b] (the interval of interest) is partitioned by the points T̃0 = a, T̃1, T̃2, . . . , T̃M = b

into M parts (they can be equal or of different lengths). Each point T̃m (m = 0, . . . ,M) is assigned a number

km = K(T̃m). The function K(T ) to be found is approximated by a continuous piecewise linear function with

the nodes at the points
{
(T̃m, km)

}M

m=0
so that

K(T ) = km−1 +
km − km−1

T̃m − T̃m−1

(T − T̃m−1) for T̃m−1 ≤ T ≤ T̃m, (m = 1, . . . ,M).

The objective functional (7) was approximated by a function F (k0, k1, . . . , kM ) of the finite number of variables
as

Φ(K(T )) ≈ F =
J∑

j=1

I−1∑
i=1

N−1∑
n=1

(
(T j

ni − Y j
ni)

2 · µj
nih

x
nh

y
i τ

j
)
.
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According to [Evtushenko, 1998], approximation (8)-(13) of the mixed problem (1)-(6) is reduced to the
canonical form

T j+1
ni = T j

ni + ajni

(
K(T j

n+1,i) +K(T j
ni)
)
·
(
T j
n+1,i − T j

ni

)
− ãjni

(
K(T j

ni) +K(T j
n−1,i)

)
·
(
T j
ni − T j

n−1,i

)
+

+ bjni

(
K(T j

ni) +K(T j
n,i+1)

)
·
(
T j
n,i+1 − T j

ni

)
− b̃jni

(
K(T j

ni) +K(T j
n,i−1)

)
·
(
T j
ni − T j

n,i−1

)
+

+ cjni

(
K(T j+1

n+1,i) +K(T j+1
ni )

)
·
(
T j+1
n+1,i − T j+1

ni

)
− c̃jni

(
K(T j+1

ni ) +K(T j+1
n−1,i)

)
·
(
T j+1
ni − T j+1

n−1,i

)
+

+ djni

(
K(T j+1

ni ) +K(T j+1
n,i+1)

)
·
(
T j+1
n,i+1 − T j+1

ni

)
− d̃jni

(
K(T j+1

ni ) +K(T j+1
n,i−1)

)
·
(
T j+1
ni − T j+1

n,i−1

)
≡ ψj

ni,

(n = 1, N − 1, i = 0, I − 1, j = 1, J),

where the notations

ajni =
(1− σ)τ j(ỹi+1 − ỹi)

2Sni · ρChxn
, ãjni =

(1− σ)τ j(ỹi+1 − ỹi)

2Sni · ρChxn−1

, bjni =
(1− σ)τ j(x̃n+1 − x̃n)

2Sni · ρChyi
,

b̃jni =
(1− σ)τ j(x̃n+1 − x̃n)

2Sni · ρChyi−1

, cjni =
στ j(ỹi+1 − ỹi)

2Sni · ρChxn
, c̃jni =

στ j(ỹi+1 − ỹi)

2Sni · ρChxn−1

,

djni =
στ j(x̃n+1 − x̃n)

2Sni · ρChyi
, d̃jni =

στ j(x̃n+1 − x̃n)

2Sni · ρChyi−1

are used.

The Fast Automatic Differentiation technique makes it possible to formally write relations determining the
adjoint problem of (8)-(13) for the conjugate variables pji , (n = 1, N − 1, i = 0, I − 1, j = 1, J):

pjni = pj+1
ni + {ajni ·X

j
ni − ãjni · Y

j
ni + bjni · U

j
ni − b̃jni · V

j
ni} · p

j+1
ni + ajn−1,i · Y

j
ni · p

j+1
n−1,i −

− ãjn+1,i ·X
j
ni · p

j+1
n+1,i + bjn,i−1 · V

j
ni · p

j+1
n,i−1 − b̃jn,i+1 · U

j
ni · p

j+1
n,i+1 +

+ {cj−1
ni ·Xj

ni − c̃j−1
ni · Y j

ni + dj−1
ni · U j

ni − d̃j−1
ni · V j

ni} · p
j
ni + cj−1

n−1,i · Y
j
ni · p

j
n−1,i −

− c̃j−1
n+1,i ·X

j
ni · p

j
n+1,i + djn,i−1 · V

j
ni · p

j
n,i−1 − d̃j−1

n,i+1 · U
j
ni · p

j
n,i+1 +

∂F

∂T j
ni

,

where

Xj
ni = K ′(T j

ni) · (T
j
n+1,i − T j

ni)−K(T j
ni)−K(T j

n+1,i),

Y j
ni = K ′(T j

ni) · (T
j
ni − T j

n−1,i) +K(T j
ni) +K(T j

n−1,i),

U j
ni = K ′(T j

ni) · (T
j
n,i+1 − T j

ni)−K(T j
ni)−K(T j

n,i+1),

V j
ni = K ′(T j

ni) · (T
j
ni − T j

n,i−1) +K(T j
ni) +K(T j

n,i−1),

K ′(T j
ni) =

∂K(T )

∂T
(T j

ni) =


km+1 − km

T̃m+1 − T̃m
, if T̃m ≤ T j

ni ≤ T̃m+1,

0, otherwise.

We assume that pJ+1
ni = 0, pj0i = pjNi = pjn0 = pjnI = 0; n = 1, N , i = 1, I, j = 1, J .

According to the Fast Automatic Differentiation technique, the components of the gradient of the objective
function are calculated by the formula:

∂F

∂km
=

J∑
g=0

I∑
r=0

N∑
l=0

 J∑
j=1

I−1∑
i=1

N−1∑
n=1

∂ψj
ni

∂K(T g
lr)

· pjni

 ·
∂K(T g

lr)

∂km
, m = 0,M. (14)

The factors
∂K(T g

lr)

∂km
that appear in (14) are calculated by the formulas

∂K(T j
ni)

∂km
=

1− T j
ni − T̃m

T̃m+1 − T̃m
, if T̃m ≤ T j

ni ≤ T̃m+1,

0, otherwise.

∂K(T j
ni)

∂km+1
=


T j
ni − T̃m

T̃m+1 − m̃n

, if T̃m ≤ T j
ni ≤ T̃m+1,

0, otherwise.
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The value of the gradient of the objective function F (k0, k1, . . . , kM ) calculated by formula (14) is exact for
the chosen approximation of the optimal control problem.

The function F (k0, k1, . . . , kM ) was minimized numerically using the gradient method.

3 Numerical Results

To illustrate the efficiency of the proposed algorithm the following variation problem was considered:

∂T (x, y, t)

∂t
=

∂

∂x

(
K(T )

∂T (x, y, t)

∂x

)
+

∂

∂y

(
K(T )

∂T (x, y, t)

∂y

)
, (x, y) ∈ Q, t > 0,

T (x, y, 0) = x2 + 7xy − y2 + sin
(π
2
x
)
· sin (2πy) , (0 ≤ x ≤ 2, 0 ≤ y ≤ 1),

T (0, y, t) = −y2, T (2, y, t) = 14y − y2 + 4, (t ≥ 0, 0 ≤ y ≤ 1),

T (x, 0, t) = x2, T (x, 1, t) = x2 + 7x− 1, (t ≥ 0, 0 ≤ x ≤ 2).

Here Q = {(0 ≤ x ≤ 2)× (0 ≤ y ≤ 1)}.
Note that the inverse problem with above-indicated data has an analytical solution; indeed, the function

Y (x, y, t) = x2 + 7xy − y2 + exp(−t) sin
(π
2
x
)
· sin (2πy) is the solution of the mixed problem (1)-(6) with the

input data indicated above for K(T ) =
4

17π2
. In this case a = −1, b = 17.

To solve the direct and inverse problems, we used the uniform grid with the parameters N = I = 150 (the
number of intervals along the axis x and y) and J = 3400 (the number of intervals along the axis t), which
ensures the sufficient accuracy of computation of the temperature field. The interval [a, b] was portioned into
nine intervals (M = 9). The parameter σ was equal to 0.6 and µ(x, y, t) ≡ 1.

The solution of the identification problem in this case is illustrated in Fig. 1. This figure shows the functions
K(T ) at different steps of the iterative process. The line marked by the number 0 corresponds to the initial
approximation to solution K(T ) ≡ 0.01. The further approximations to the solution of the identification problem
(finding function K(T )) are shown in several iterative steps and are marked by increasing numbers. Finally, the
line marked by opt is a limiting one obtained after the completion of the iterative process. The results illustrated

in Fig. 1 demonstrate the convergence of the approximate values of K(T ) to the limiting function K(T ) =
4

17π2
.

Figure 1: Different steps of the iterative process

In more details, the process of finding the thermal conductivity coefficient is as follows. If the experimental

temperature field is determined by the solution of the direct problem with the givenK(T ) =
4

17π2
, i.e., Y j

ni = T j
ni,
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then the objective functional changes from 1.53445×10−2 to 3.47387×10−30, and the maximum of the gradient’s
absolute value decreases from 9.40155 × 10−1 to 1.71804 × 10−15, while the coefficient of thermal conductivity

coincides with K(T ) =
4

17π2
accurate to the machine precision.
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