
Experiences from the Implementation of a
Structured-Entity-Relationship Modeling

Method in a Student Project

Thilo Maximilian Glässner, Florian Heumann, Luca Keßler, Felix Härer,
Andreas Steffan, Hans-Georg Fill1

Information Systems - System Development and Database Application Group
An der Weberei 5, 96049 Bamberg, Germany

seda-info.wiai@uni-bamberg.de,
WWW home page: https://www.uni-bamberg.de/seda

Abstract. For attaining the vision of a wide-spread use of enterprise
modeling in everyday business practices, the underlying modeling meth-
ods need to be easily accessible. Therefore, open implementations of these
modeling methods are required that can be modified and extended as
needed. At the same time, such open implementations must provide a
sufficiently advanced level to be adequate for practical usage. In this
paper, we report on experiences gained from the implementation of the
SERM modeling approach on the ADOxx meta modeling platform in a
student project. We derive guidelines for teachers and students who want
to engage in similar projects and discuss implications for future research.

Key words: data modeling, meta modeling, modeling tool, SQL

1 Introduction

One of the foundations for establishing enterprise modeling as a common prac-
tice in organizations is the availability of modeling tools that permit the effec-
tive use of the underlying modeling methods and the exchange of model data
between different parties and systems [1, 2, 3]. Conceptual enterprise model-
ing methods are used today for many purposes and domains, ranging from the
strategic layer, over the layer of business processes and workflows to the tech-
nical and infrastructure layer [4, 5]. An important domain in enterprise mod-
eling is the modeling of data structures and their implementation in database
systems [6, 7]. Well-known examples of modeling methods belonging to this do-
main are the Entity-Relationship-Model by Chen [8] and the Unified Modeling
Language (UML). However, also several modeling methods have been concep-
tualized that target specific ways of modeling and using data structures, e.g.
the method for adaptable database design by Roussopoulos and Yeh [9] or the
higher order entity-relationship modeling (HERM) language by Thalheim [10].

A further approach that is part of the domain of data modeling is the
Structured-Entity-Relationship-Model (SERM) by Sinz [11]. SERM is specifi-
cally directed towards the structuring of large data models, the visualization of



Glässner et al.

existence dependencies, the avoidance of inconsistencies and the easy transition
to database schemata. For the details of the SERM method we refer to [11, 12].

In the past, several modeling tools have been developed for SERM. However,
these tools were either developed based on some legacy systems that are not
operational in modern IT environments any more. Or, some central aspects of
SERM such as its particular suitability for generating database schemata had not
been realized. Therefore, it was decided to realize a new and openly accessible
version of a SERM tool in a student project by reverting to the ADOxx meta
modeling platform [2]. In this way, the resulting tool should be shared via the
Open Models Initiative to provide a foundation for further developments based
on SERM [13].

In this paper we will report on the experiences gained from this project, both
from the perspective of the students as well as the teachers in the course. The
goal is to provide recommendations for similar projects, thereby contributing
to the realization of open enterprise modeling. The remainder of the paper is
structured as follows. In Section 2 we will describe the set-up of the student
project and the positioning within the curriculum. This will be followed by a
description of the project phases in Section 3. Finally, we will report on the
experiences in Section 4. The paper will conclude with an outlook on further
research in Section 5.

2 Project Set-Up and Positioning in the Curriculum

The project was set up in the course of a master seminar for students of Informa-
tion Systems at the University of Bamberg. Although the students were familiar
with various conceptual modeling methods including SERM as well as with the
implementation of software applications, none of them had previously imple-
mented a modeling tool. They neither had any knowledge about the ADOxx
meta modeling platform nor about the transformation of models into code, e.g.
by using XML and XQuery. The goal that was set for the seminar was to im-
plement a SERM modeling tool that should provide as much aid to the users
as possible in creating valid SERM models. In addition, the transformation of
the models into SQL schemata that are executable on the PostgreSQL database
server was defined as a target.

3 Project Phases

The project was structured in the following phases: preliminary phase, founda-
tions of modeling methods conceptualizations, formalization using FDMM, and
iterative design and implementation using ADOxx and XML processing. These
phases will be described in detail in the following sub sections.



Experiences from the Implementation of the SERM Modeling Method

3.1 Preliminary Phase

In the preliminary phase the seminar participants were introduced to the goals
of the project and the main properties of SERM were presented as a re-cap from
previous courses. In addition, the current knowledge level of the participants in
regard to the implementation of modeling methods in general and the familiarity
with ADOxx were assessed. This also included the provision of information re-
garding the availability of corresponding literature sources, the ADOxx platform,
and support tools that are helpful in this context, e.g. the GraphRep generator
or the syntax highlighting definitions for ADOscript in the Notepad++ editor.
With these tools, the students were walked through the design of a minimal lan-
guage. This included a meta model and a visual language consisting of simple
modeling elements similar to a ”Hello World” program in software development.

3.2 Foundations of Modeling Method Conceptualization

The theoretical underpinning of the project is based on a framework proposed
by Karagiannis and Kühn [14]. It serves as a basis to establish a common un-
derstanding regarding the components of modeling methods, especially in the
context of developing modeling tools with a meta modeling platform such as
ADOxx. According to Karagiannis and Kühn, a modeling method is comprised
of modelling technique, including a modeling language and a modeling proce-
dure, as well as mechanisms and algorithms. The modeling language is defined
through its syntax, semantics and notation. For this project, these components
were of particular interest for the implementation.

When conceptualizing a tool based modeling method, the implementation
of the components defined by Karagiannis and Kühn needs to be aligned with
three facets. Central to the conceptualization is facet a., the Domain Concept and
Grammar of the modeling method to define core syntax, semantics and notation
of the language. Facet b. is the user’s Handling and Interaction of the Domain
Concept and Grammar, e.g. through the choice of available notation elements
and their graphical representation, optimized for usability. Facet c. concerns
the modeling platform’s Management and Storage of the Domain Concept and
Grammar in data structures and algorithms, optimized for processing inside
the platform. Facets b. and c. conflict each other and need to be balanced.
For example, in a language with directed and undirected edges, it might be
algorithmically easier to process one notational element which has an attribute
to differentiate directed and undirected edges. For a user, however, two separate
notational elements available next to each other in a toolbar might be preferable.
During implementation, any technical decision has to consider b. as well as c..

The ADOxx meta modeling platform allows designing the abstract syntax
of a modeling language through the construction of a meta model as well as an
according concrete syntax for the visual notation. The ADOxx meta model [2]
complies with the approach of Karagiannis and Kühn by providing model types
with Class and Relation Class elements at its core to allow for instantiating
models with model elements and relations. Class and Relation Class may contain



Glässner et al.

multiple instances of Attribute, which may be user defined or, in case of the
notation, pre-defined as a GraphRep attribute. Through GraphRep, the notation
of Class and Relation Class elements is defined.

3.3 Formalization Using FDMM

At this point in the project the student team had a thorough understanding
of the SERM modeling method. The team also had a basic understanding of
the necessary technical steps for the conceptualization of a meta model on the
ADOxx platform (e.g. definition of model types, classes, relation classes and
their graphical representation). While SERM meta models have been published
in the past, e.g. [11], [15, p. 171], they are incomplete (e.g. missing SERM’s
generalization constructs), have author-specific notations and are not tailored
towards the development of modeling tools. Therefore, the conceptualization of
the SERM meta model in the ADOxx platform is not straightforward. However,
the conceptualization and formal description is of critical importance for all
upcoming development tasks [16].

Instead of proceeding directly with the implementation of the SERM mod-
eling method on the ADOxx platform, it was therefore decided to conduct an
additional formalization phase using the FDMM formalism [17]. FDMM allows
for a formal, yet concise, technology-independent specification of the meta model
to be implemented.

As this phase’s first step, a 45 minute introductory lecture on FDMM was
given. The lecture, including an exemplary application of FDMM on the 4R
modeling language, was based on [17]. It has to be noted that the participating
research assistants did have prior experience with the ADOxx platform, but
neither the student team, nor the research assistants had any prior experience
with FDMM.

Subsequent to the lecture, a discussion about possible design choices re-
garding the SERM meta model formalization followed. An emphasis has been
on when to use attributes and when to use modeling classes and relations of
their own for SERM elements (e.g. individual classes for (0,1)-, (0,*)- and (1,*)-
relations vs. one class with an attribute describing its complexity). Another point
which emerged during the discussion was that previously published SERM meta
models are incomplete, especially regarding SERM’s generalization. As a result,
the students has been aware of the upcoming design choices and to which extent
existing literature could be leveraged.

Next, the student team presented a first draft of their SERM formalization
using FDMM. The SERM meta model was formally described as follows. As a
starting point, single model type MTSERM is defined:

MTSERM = 〈OT
SERM , DT

SERM , ASERM 〉 (1)

Then, the set of object types OT
SERM was described, which corresponds to classes

and relationclasses in ADOxx:



Experiences from the Implementation of the SERM Modeling Method

OT
SERM = {DOT,EType,ERType,RType,DOTRelation,

Triangle,DotToTriangle, T riangleToER

RecordAttributes, RecordInherited Attributes}
(2)

The type DOT (data object type) acts as a super type for EType, ERType and
RType:

EType � DOT

ERType � DOT

RType � DOT

(3)

The types Triangle, TriangleToER and DotToTriangle were introduced for
SERM’s generalization mechanism. To represent ADOxx’s record type attributes,
i.e. table-valued attributes, the two object types RecordAttributes and RecordIn-

herited Attributes were introduced.
Relations between data object types were realized using a single type DOT -

Relation, while the relation’s cardinality was represented by an attribute. The
SERM meta model from [15, p. 171] uses individual relation types for (0,1)-,
(0,*)-, (1,1)- and (1,*)-relations, which are subtypes of a generic relation type.
However, as ADOxx does not support subtyping for relation classes, the stu-
dent team avoided using subtyping for the DOTRelation type. In doing so, the
formalization process resulted in a meta model with less model types, making
it simpler to implement in ADOxx later. Hence, in order to make an FDMM
formalization useful for the upcoming development phases, it was important to
establish a basic understanding of the functionality of the target meta modeling
platform among all developers before using FDMM. Thereby it can be made
sure that the resulting formalization can later be mapped to the target meta
modeling platform.

Due to space limitations, only an excerpt of the definition of attributes is
described in the following. But before that, the set of data types DT

SERM and
the set of attributes ASERM needed to be defined. An excerpt of the set of data
types is shown in the following:

DT
SERM = {Integer, String,EnumSQLDatatype, . . . }

EnumSQLDatatype = {smallint, int, bigint, date, . . . }
(4)

Enum data types, such as EnumSQLDatatype, are used to represent ADOxx Enu-
meration types with predefined values. The set of attributes ASERM contains
the attributes of all types. Therefore, only an excerpt can be shown here:

ASERM = {Name,Attributes,Key, Cardinality, . . . } (5)

The attributes from ASERM , with the exception of table-valued attributes,
were then attached to object types and given a value range. Using FDMM’s
card function, the number of attribute values per object was constrained. For
example, each data object type has exactly one name:



Glässner et al.

domain(Name) = {DOT}
range(Name) = {String}

card(DOT,Name) = 〈1, 1〉
(6)

Finally, ADOxx relation classes were formalized in FDMM using ”from” and
”to” attributes, e.g.:

domain(relatesFrom) = {DOTRelation}
range(relatesFrom) = {DOT}

card(DOTRelation, relatesFrom) = 〈1, 1〉

domain(relatesTo) = {DOTRelation}
range(relatesTo) = {DOT}

card(DOTRelation, relatesTo) = 〈1, 1〉

(7)

3.4 Iterative Design and Implementation

The abstract and concrete syntax of SERM was implemented in ADOxx over the
course of about ten weeks. Included in this time frame are teaching sessions as
well as result discussions, which were alternating according to the syllabus. The
iterative process covered the implementation of the abstract syntax by extend-
ing the ADOxx meta model with the already formalized SERM meta model and
the implementation of the concrete syntax by specifying a graphical representa-
tion. Beyond syntax and notation, algorithms for the inheritance of primary key
attributes among data object types and the generation of SQL code were imple-
mented using ADOxx expression attributes in conjunction with a customization
programmed in the ADOscript programming language.

Implementation of Abstract Syntax The elements of the abstract syntax of SERM
were implemented as extensions of Class and Relation Class of the ADOxx meta
model. Class was extended by the abstract Data Object Type (DOT) which was
in turn extended with Entity Type (E-Type), Entity-Relationship Type (ER-
Type), Relationship Type (R-Type), and Triangle for generalizations.

In order to allow relations between instances of Data Objects Types, a Re-
lation Class DOT-Relation having a From-Class DOT and a To-Class DOT was
specified, so that such a relation always connects two DOT instances. Cardi-
nalities between DOT instances were set as attribute values in the Cardinality
attribute of a DOT-Relation instance as an Enum value out of (0,1), (1,1), (0,*),
and (1,*). To represent key inheritance between two instances of Data Object
Types, DOT-Relation contains a Key attribute of type Enum with the pre-
defined values PK, FK and No Key, indicating that the primary key of a DOT
instance is inherited to another DOT instance as part of the primary key, foreign
key or as a non-key attribute respectively.

In contrast to relations between DOT instances, a generalization connects
one instance of DOT with one or more instances of specialized ER-Type. A



Experiences from the Implementation of the SERM Modeling Method

<<Class>>

DOT

- Attributes : DOTAttribute [0..*]
- Inherited_Attrs : DOTInherited_Attribute [0..*]
- sequency_level : Integer

<<Class>>

EType

<<Class>>

ERType

<<Class>>

RType

<<Relation Class>>

DOTRelation

- Key : Enum
- Cardinality : Enum

<<Record Class>>

DOTAttribute

- Datatype : String
- Key : Enum
- Label : String

<<Class>>

Triangle

- isDisjunct : Enum

<<Relation Class>>

DotToTriangle

- Completeness : Enum

<<Relation Class>>

TriangleToER

<<Record Class>>

DOTInherited_Attribute

- Datatype : String
- Key : Enum
- Label : String
- From_Cardinality : String
- From_DOT : String

To-Class

To-Class

From-Class

From-Class

From-Class

To-Class

Fig. 1. Meta Model for ADOxx Model Type SERM

single Relation Class is therefore not sufficient, but rather two Relation Class
DotToTriangle and TriangleToER as well a Class Triangle. Due to notation,
completeness of generalized subtypes is stored in an Enum attribute in DotTo-
Triangle, whereas disjunctive generalizations are indicated by an attribute of
Triangle.

SERM allows the specification of attributes when modeling E-, ER-, and R-
Types. For the representation of these instance-level attributes in a model, the
E-, ER- and R-Type Class feature an attribute Attributes in conjunction with
a Record Class DOTAttribute. The Record Class defines that such an instance-
level attribute has a label, a datatype from an enumeration of commonly used
SQL data types, as well as key to differentiate between primary key (PK), foreign
key (FK), PK and FK, and non-key attributes. In order to allow such attributes
to be edited by the modeler, they were added to a user accessible Notebook using
the AttrRep attribute of E-, ER-, and R-Type. Inherited instance-level attributes
were stored in a similar fashion. Additionally, the Sequency Level attribute was
provided to store an ordering property of the quasi-hierarchical graph a SERM
constitutes. It is used for ADOscript implementations of algorithms for key in-
heritance as well as to prepare the generation of SQL code through an XML
model.

Implementation of Concrete Syntax The graphical representation of a Class or
Relation Class was defined by their GraphRep attribute containing code ac-
cording to the GraphRep grammar. SERM depicts E-Types and R-Types in the
fashion of ERM. The notation of ER-Types reflects the combination of the E- and
R-Type, given a 1:1-relation between them. In addition to the respective shapes,
the GraphRep of these Classes contains scaling logic using variable-sized tables
to allow resizing. SERM itself does not define a notation for attributes; a line-
by-line attribute list below each data object type was chosen for size-efficiency.
For displaying attributes, the GraphRep implementation contains logic to ex-
tend the actual shape, read instance-level attribute values at run-time and write
them out line-by-line using token lists.

E-, ER-, and R-Types may be connected using edges for cardinality (0,1),
(1,1), (0,*), or (1,*). According to SERM notation, the lower bound is indicated
by a single (0) or double (1) line, whereas the upper bound is indicated by arrow
(*) or no arrow (1). To make changes of cardinality possible after an edge has



Glässner et al.

Fig. 2. ADOxx SERM Modeling Tool with Sample Model

been placed, the cardinality is an attribute of DOT-Relation. A consequence of
this decision was that the modeler is presented with only edge to choose from.
The GraphRep logic contains the required line and arrow notation as well a
display for key inheritance.

Realizing the graphical notation of generalizations required separate GraphRep
logic for DotToTriangle, TriangleToER and Triangle. The completeness property
in the DotToTriangle GraphRep displays single or double lines from the super-
type to the triangle, indicating given or not given completeness respectively.
Disjunct subtypes are indicated in the Triangle GraphRep using the empty set
symbol. A limitation of this implementation is the visual depiction of three sepa-
rate symbols for generalization model elements in the toolbar next to an ADOxx
SERM instance. From a usability perspective this might still be practical since all
elements fulfill different functions and are subsequently needed when modelling
a generalization.

Implementation of the Transformation to SQL With the features for creating
SERM model being ready, the next step was the development of the SQL code
generation feature. The ADOxx platform offered two alternative ways for imple-
menting a transformation from SERM to SQL code. The first alternative was
to implement the transformation only using ADOxx’s scripting facility based on
the ADOscript language. The second alternative was to use the ADOxx XML
export functionality to export a SERM model as an XML file, which can be
further processed using standard XML processing languages and tools.



Experiences from the Implementation of the SERM Modeling Method

As a pure ADOscript based solution was expected to become hard to debug
and maintain quickly, the team decided to use the XML based approach for the
transformation. It should be noted, that the student team had no prior in-depth
experience in XML processing. Therefore, some introductory learning material
on XML – covering topics such as XML basics, XSLT and XQuery – was provided
to the students. As the students were familiar with SQL, they chose XQuery for
the processing of the exported XML files, as some of the language’s elements
have more resemblance to SQL when compared to XSLT.

Evaluation Using a Test Model The syntax of SERM required the implemen-
tation of three data object type elements, four edge elements and four gener-
alization elements [15, p. 160-166]. To evaluate the implementation, a reference
model making use of at least one instance per syntax element was designed as
depicted in Figure 2. Table 1 shows the number of instances per element in the
model. Due to n > 0 for each element, completeness of the SERM syntax is
demonstrated.

Data Object Type n

E-Type 5
ER-Type 12
R-Type 1

Edge n

(0,1)-relation 1
(1,1)-relation 1
(0,*)-relation 5
(1,*)-relation 4

Generalization n

Non-Disjunctive and Incomplete 1
Disjunctive and Incomplete 1
Non-Disjunctive and Complete 1
Disjunctive and Complete 1

Table 1. Number of Instances per SERM Syntax Element

4 Experiences gained from the Project

After the description of the project phases we will now summarize our experi-
ences. This will be discussed both from the perspective of the involved students
(Thilo Maximilian Glässner, Florian Heumann, and Luca Keßler) as well as from
the perspective of the teachers (Felix Härer, Andreas Steffan, Hans-Georg Fill).

4.1 Experiences from Students

One of the major advantages from the side of the students was the familiarity
with the SERM modeling method from previous courses. This significantly low-
ered the barrier for designing and implementing an according modeling tool. On
the other hand, ADOxx was not known to the students. As ADOxx offers a large
number of functions it was first necessary to become acquainted with the plat-
form. This had to be primarily done by the students themselves as no courses
on ADOxx are currently offered at the University of Bamberg. In addition, nei-
ther the processing of XML had been taught in courses before. Therefore, the



Glässner et al.

students also had to become familiar with the corresponding technologies, in
particular the XQuery language.

The learning curve in regard to the ADOscript language and the expression
language used for programming with ADOxx was rather steep. It could not be
accomplished by the students on their own without support from the teachers.
Especially, it was unclear which functions in ADOxx have to be used for achieving
certain results and what the different options and trade-offs are. This was despite
the fact that the syntax of the used languages was rather easy to comprehend,
although it is not based on object oriented principles which the students were
already familiar with.

The scheduling of weekly meetings with the teachers was very helpful for
receiving support during the development. One aspect that proved difficult was
the distributed cooperation of the three students on the ADOxx library as the
ADOxx version used in the course did not permit multi-user distributed devel-
opment per se. It was therefore decided by the students to resolve this issue by
using a virtual machine hosted on Amazon Web Services where all students had
simultaneous access. This also permitted to use different development platforms
on the side of the students, i.e. Mac, Linux, and Windows systems.

4.2 Experiences from Teachers

From the side of the teachers it was a unique opportunity to have a very small
number of students in the course. This permitted a very close interaction with
weekly meetings and immediate feedback on the conceptualization, the formal-
ization, and the technical implementation of the modeling method. For larger
groups - which had originally been expected - it would not be possible to have
the same level of interaction.

Concerning the material required for the course it was possible to re-use ma-
terial provided by the adoxx.org and the omilab.org websites. Thereby, it proved
particularly beneficial that a large number of existing modeling tools together
with their openly available libraries in ADOxx could be used for showcasing
different scenarios and the usage of ADOxx functions. Especially, for elaborat-
ing best practices on the specification of the visual notation in the GraphRep
grammar (e.g. the rather complex ways of correctly specifying scalable graphical
objects) or the specification of expression attributes in the LEO grammar and
ADOscript algorithms it was helpful to revert to existing resources and examples.

Due to the familiarity of the students with the SERM modeling method
from previous courses, it was easy to explain to them the goals of the project. In
addition, the motivation of the students to implement their own modeling tool
including an automated SQL transformation from SERM models seemed very
high throughout the project.

In case the modeling method is not known to the students or, if a modeling
method does not yet exist and needs to be conceptualized from the beginning, it
may be more difficult to convince and motivate the students for such a project.
The challenge of the project described here lied mainly in the technical real-
ization and the automated code generation. Designing a modeling method from



Experiences from the Implementation of the SERM Modeling Method

scratch, including according abstraction could prove more challenging. This is
planned to be explored in future student projects.

4.3 Recommendations for Future Projects

In summary, we can give the following recommendations for meta modeling
projects that take a similar direction. During the definition of the project’s goals
it needs to be considered what can be expected of the intended participants
of the project. For example, if the focus of the project is to re-implement an
already existing modeling method - i.e. one that has either been implemented
as a modeling tool before or that is specified in such great detail that the meta
model can be immediately implemented without further changes - then the par-
ticipants only need to acquire additional know-how about the implementation
environment. If, however, the modeling method has not yet been implemented
or not in the way intended for the project and the participants thus have to
take decisions on the core parts of the meta model, also a high familiarity with
abstraction and design concepts is necessary.

In any case, regular interactions between the project’s participants and the
teachers / experts in meta modeling should be planned. This ensures continuous
and early feedback as practical meta modeling projects tend to be very com-
plex. This primarily stems from the many inter-linkages between the domain
representation, the processing and storage aspects, and the user interface / user
interaction design. One way to cope with this complexity is to provide examples
from other implemented modeling methods to illustrate best practices. For this
purpose, repositories such as omilab.org or adoxx.org can be consulted in the
case of ADOxx.

Finally, it needs to be ensured that the participants find a way to effectively
collaborate on the project. For example, if possible, resources for sharing docu-
ments, libraries or even virtual machines should be foreseen.

5 Conclusion and Next Steps

In this paper we have reported on the experiences from a meta modeling project
in a master seminar. Besides a detailed description of the phases and results of
the project we summarized the experiences gained both from the students and
the teachers.

The next steps will be to tackle a more complex project setting and thus
enlarge the project focus. We currently plan to redo the meta modeling project
for a modeling method that has not been implemented before and where the
students thus need to take decisions on the adequate design of the meta model
and the visual notation.



Glässner et al.

References

1. Sandkuhl, K., Fill, H.G., Hoppenbrouwers, S., Krogstie, J., Leue, A., Matthes, F.,
Opdahl, A.L., Schwabe, G., Uludag, Ö., Winter, R.: Enterprise modelling for the
masses – from elitist discipline to common practice. In: The Practice of Enterprise
Modeling PoEM 2016. Springer (2016) 225–240

2. Fill, H.G., Karagiannis, D.: On the Conceptualisation of Modelling Methods Us-
ing the ADOxx Meta Modelling Platform. Enterprise Modelling and Information
Systems Architectures 8(1) (2013) 4–25

3. Buchmann, R.: Conceptual Modeling for Mobile Maintenance: The ComVantage
Case. In: 47th International Conference on System Sciences, IEEE (2014)

4. Winter, R.: Working for e-Business – The Business Engineering Approach. Inter-
national Journal of Business Studies 9(1) (2001) 101–117

5. Demirkan, H., Kauffman, R.J., Vayghan, J.A., Fill, H.G., Karagiannis, D., Maglio,
P.: Service-oriented technology and management: Perspectives on research and
practice for the coming decade. Electronic Commerce Research and Applications
7(4) (2008) 356–376

6. Scheer, A.W.: Architektur integrierter Informationssysteme - Grundlagen der Un-
ternehmensmodellierung. Springer, Berlin (1991)

7. Fill, H.G., Karagiannis, D., Lichka, C.: Integration of Conceptual Models and Data
Services Using Metamodeling. In: IEEE SoEA4EE Workshop, IEEE (2015)

8. Chen, P.P.S.: The entity-relationship model-toward a unified view of data. ACM
Transactions on Database Systems 1(1) (1976) 9–36

9. Roussopoulos, N., Yeh, T.: An adaptable methodology for database design. IEEE
Computer (May 1984) (1984)

10. Kramer, F., Thalheim, B.: Holistic Conceptual and Logical Database Struc-
ture Modeling with ADOxx. In Karagiannis, D., Mayr, H., Mylopoulos, J., eds.:
Domain-Specific Conceptual Modeling. Springer (2016) 269–290

11. Sinz, E.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM). Bamberger Beiträge zur Wirtschaftsinformatik 10 (1992)

12. Ferstl, O.K., Sinz, E.: Grundlagen der Wirtschaftsinformatik. De Gruyter Olden-
bourg (2013)

13. Goetzinger, D., Miron, E.T., Staffel, F.: OMiLAB: An Open Collaborative Environ-
ment for Modeling Method Engineering. In Karagiannis, D., Mayr, H., Mylopoulos,
J., eds.: Domain-Specific Conceptual Modeling. Springer (2016) 55–76

14. Karagiannis, D., Kuehn, H.: Metamodeling platforms. In: EC-Web 2002 – Dexa
2002. Springer (2002) 182

15. Ferstl, O.K., Sinz, E.J.: Grundlagen der Wirtschaftsinformatik. 7. edn. Olden-
bourg, München (2013)

16. Bork, D., Fill, H.G.: Formal aspects of enterprise modeling methods: A comparison
framework. In: 47th Hawaii International Conference on System Sciences, IEEE
(2014) 3400–3409

17. Fill, H.G., Redmond, T., Karagiannis, D.: FDMM: A Formalism for Describing
ADOxx Meta Models and Models. In Maciaszek, L., Cuzzocrea, A., Cordeiro,
J., eds.: ICEIS 2012 - 14th International Conference on Enterprise Information
Systems, Portugal, SciTePress (2012)


