
Open Data Search Framework based on

Semi-structured Query Patterns

Marut Buranarach1, Chonlatan Treesirinetr2, Pattama Krataithong1

and Somchoke Ruengittinun2

1 Language and Semantic Technology Laboratory

National Electronics and Computer Technology Center (NECTEC), Thailand

{marut.bur, pattama.kra}@nectec.or.th

2 Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand

somchoke.r@gmail.com

Abstract. Open government data (OGD) is a global initiative to promote trans-

parency, service innovation and citizen participation. OGD is usually made

available in forms of datasets on OGD web portals. Searching OGD is usually

conducted using metadata search on OGD catalogs. Although searching OGD

based on metadata or full-text search is common, it cannot take full advantage

of the structured data content in the datasets. By being able to query data in the

datasets, the user can find the relevant information more effectively. This paper

proposes an open data search framework based on semi-structured query pat-

terns. The proposed semi-structured query pattern has more structured than typ-

ical keyword search which will allow for more expressive query. It is also less

rigid than structured query which reduces the user effort in forming a query.

Three query patterns are currently supported and can be converted to API re-

quests to the existing dataset APIs of Data.go.th. The query suggestion module

of the system can make suggestions for possible queries based on the user’s ini-

tial typing. A prototype system was created to demonstrate searching some da-

tasets from Data.go.th using this approach. Finally, we discuss some lessons

learned and current limitations that should be improved in future work.

Keywords: open data search, semi-structured question, dataset API

1 Introduction

Open government data (OGD) is a global initiative to promote transparency, service

innovation and citizen participation. The most common means for publishing OGD is

usually in forms of datasets made available on OGD portals such as Data.gov, Da-

ta.gov.uk and many others. Searching OGD datasets usually relies on search functions

of OGD portal software such as CKAN1 in searching their data catalogs. The search

functions are usually based on keyword-based search over metadata fields or tag-

based search. Although searching datasets based on metadata is straightforward and

1 https://ckan.org/

can help the user to find relevant datasets, the user needs to look into each dataset to

find the information he or she is looking for in each dataset. For example, if the user

is looking for a phone number of a school, the user may have to search for the da-

tasets whose metadata contains the term “school” and then looks into each returned

dataset whether it contains the telephone number information. Even when full-text

indexing and searching is applied, the user may only find the datasets containing the

search terms but not the “answer” the user is looking for. Effective mechanism that

can allow for “data-level” querying in addition to “dataset-level” querying is needed

for querying OGD datasets.

There are typically two main approaches in querying structured data: keyword-

based and structured query. Using keyword-based query, the search system searches

the data on every fields. Thus, the structure information of the data is not used in the

query. This approach has an advantage that it reduces user effort in forming a query

with a disadvantage of limited query expressiveness. Using structured query, which is

typically specified via form-based interface, the search system transforms the user

query to a structured query language expression, i.e. SQL, in searching the data. This

approach has an advantage that the user can specify expressive query with a disad-

vantage of requiring more user effort in forming query.

In this paper, we propose a semi-structured query approach based on query patterns

as an additional form of querying OGD datasets. In this approach, user can specify

search conditions in free-text from with auto-complete suggestions for the possible

query terms and conditions based on some defined query patterns. For example, the

user can define a query such as “rajini school telephone” to search for the telephone

number of the school. Currently, three query patterns are defined. The search system

utilizes dataset APIs created for some datasets on Data.go.th [1]. The APIs were pro-

vided on top of an RDF database. Specifically, the OGD datasets were converted to

the RDF data format. The query patterns were mapped with some pre-defined API

and SPARQL query templates. We developed a prototype system for searching some

OGD datasets from Data.go.th using this approach. Finally, some potentials and limi-

tations of the framework are discussed.

2 Related Work

Our approach relies on RDF data querying using SPARQL query templates. We brief-

ly review some related work on linked open data search focusing on querying inter-

face as follows. RDF Xpress [2] provides a form-based search interface for searching

linked data sources. The user can combine triple patterns with keywords to form que-

ries with auto-complete feature. This work also defines the following components for

linked data search system: RDF knowledge base, search interface, retrieval engine,

query relaxer and result diversifier. [3] discussed some unique challenges for linked

data search engine including the user interface issue. [4] investigated a natural lan-

guage query mechanism for linked data by mapping user queries into some query

graph patterns. To the best of our knowledge, our work is the first that proposes a

generic framework for querying OGD datasets based on data-level querying using

semi-structured query patterns.

3 An Open Data Search Framework based on Semi-structured

Query Patterns

3.1 Conceptual Architecture

A conceptual architecture of the open data search framework based on semi-

structured query patterns is shown in Fig. 1. The system consists of four major mod-

ules: Dataset APIs, Query Translation, Query Suggestion and Result Formatter. Each

module is briefly described as follows.

Fig. 1 A conceptual architecture of the open data search framework based on semi-structured

query patterns

Dataset APIs: Publishing RDF and data API from existing OGD datasets can fur-

ther promote application and integration of OGD. Our previous work has proposed a

semi-automatic mechanism for such a process [1]. The data publishing and querying

system was extended from the OAM framework [5]. Some datasets from Data.go.th

have been transformed and published as RDF datasets, i.e. via direct mapping, and

RESTFul APIs. The API requests were translated into SPARQL queries based on pre-

defined query patterns. The returned results were formatted to the JSON format.

Query Translation: In our framework, three semi-structured query patterns were

defined. The user can post a query in one of the patterns. The query patterns were

subsequently translated into API requests made to the available dataset APIs. If the

query is not in the defined patterns, the query is treated as typical keyword search.

Query Suggestion: In our framework, a semi-structured query pattern is defined as

a query that does not have a rigid structure but having a more controlled form than

keyword search. Thus, in order to prevent the user from forming the malformed que-

ry, a query suggestion module was developed. The module relied on a created index

of the relations between property, class and values from the data in the datasets. It

suggests possible classes, properties and values based on the user’s initial typing for

the query.

Result Formatter: The results from the dataset APIs in the JSON format were

transformed into a table format. Although the results were presented in table form, the

likely answer is also highlighted within the table cells.

3.2 Query Patterns and API Request Translation

In our framework, three semi-structured query patterns were defined. The user can

post a query in one of the following patterns in the triple format.

Pattern 1: <class> <property> <value>

Pattern 2: <property> <subject>

Pattern 3: <subject> <property>

In Pattern 1, the objective is to retrieve the instances of a class that matched with

the query condition <property> = <value>. For example, a query “income province

bangkok” will retrieve instances of the class ‘income’ whose ‘province’ property has

the value ‘bangkok’. A specified class name must be mapped with dataset tags and

resolved to some targeted datasets. Then a query is formed and run against the da-

tasets. The follows is an example API request for such a query.

query?dsname=income&path=income&property=province&operator=CONTAINS&

value =bangkok

In Pattern 2, the objective is to retrieve the value of a given property of a given in-

stance. For example, a query “telephoneNo Rajini School” will retrieve the instance

of ‘Rajini school’ and highlighted the value of the ‘telephoneNo’ property in the re-

sult. In this pattern, the instance and property terms must be checked for the datasets

that contain the terms. A query to search the data related to this instance was then run

against the datasets. The results were highlighted for the value of the given property.

The follows is an example API request for such a query.

query?dsname=school&path=school&keywords=rajini%20school

 Pattern 3 is similar to Pattern 2 except that the positions of the subject and proper-

ty terms are switched. The API translation is the same as that of Pattern 2.

3.3 Query Suggestions

The system makes suggestions to the user for possible queries given the user initial

characters for the query. In order to make suggestions, the possible classes (dataset

tags), properties and values must be collected and indexed from the text data in the

datasets. An ER diagram showing entities and relationships of terms for making query

suggestions is shown in Fig. 2. The diagram presents a ternary relationship between

dataset or class, property and value terms. Given this database design, the listing and

possible relationships between datasets, properties and value terms can be retrieved

from the database. The value terms only include string values within a given length

limit. This allows the auto-complete function to be applied when the user is typing

characters and terms. A resulted query made by the auto-complete function will result

in a valid query made to the API.

Fig. 2 An ER diagram showing entities and relationships of terms for making query suggestions

4 Case Study

Fig. 3 An example query suggestions for the query pattern 1 “income province bangkok”

A prototype system was developed using about ten datasets from Data.go.th to

demonstrate the framework. Dataset APIs were created for these datasets. The terms

in these datasets were indexed for the query suggestions module. The total number of

the indexed properties and term relations were over 160 and 25,000 entries respective-

ly. Fig. 3 shows an example query suggestions for the query pattern 1. In this exam-

ple, the user initially types “income” and the suggested terms are the list of possible

property for this class (dataset). Once a property is selected, e.g. “income province”,

the list of possible values, which are province names, in the dataset is suggested. The

user can select a value, e.g. “income province bangkok”. The system then converted

the query to an API request to query the dataset API with the given criteria. Fig 4a

and 4b shows the query result in both JSON and table formats.

a) Example query results from the income statistics dataset API in JSON format

b) Example query results of the system in table format

Fig. 4 Example result listing yearly income statistics of Bangkok in the JSON and table formats

5 Conclusion and Discussion

This paper proposes a framework for searching data in OGD datasets. The framework

allows the user to post semi-structured query patterns in querying the data in the OGD

datasets. The proposed semi-structured query pattern has more structured than typical

keyword search which will allow for more expressive query. It is also less rigid than

structured query which reduces the user effort in forming a query. The result is similar

to the result of database querying. Three query patterns are currently supported and

can be converted to API requests to the existing dataset APIs of Data.go.th. The query

suggestion module of the system can make suggestions for possible queries based on

the user’s initial typing. The module requires indexing of terms and their relationships

in the datasets in terms of classes, property and values. A preliminary prototype sys-

tem was created to demonstrate searching a small number of datasets from Data.go.th

using this approach.

Based on our prototype system, we discuss some lessons learned as follows. Alt-

hough the system can work well with a small number of datasets, it is currently not

highly scalable. With the increasing number of datasets, the number of the indexed

terms and their relations is rapidly grows. This can greatly reduce the performance of

the system in making query suggestion. In the future, the index may be created in

NoSQL database to improve its scalability. In addition, more supported query patterns

should be provided. For example, a query pattern which consists of multiple query

conditions, e.g. “income province bangkok year 2015”, should be additionally provid-

ed. Currently, the property terms relied on the terms used in the column headers.

However, some header labels in the datasets are ambiguous or not meaningful, e.g.

‘TelNo’ label to represent telephone number. This can result in some query sugges-

tions that are ambiguous or not meaningful. Future work should focus on these issues

to improve the performance and usability of the framework.

Acknowledgment

This project was partially supported by the Electronic Government Agency (EGA)

and the National Science and Technology Development Agency (NSTDA), Thailand.

References

1. Krataithong, P., Buranarach, M., Supnithi, T.: RDF Dataset Management Framework for

Data.go.th. In: Proceedings of the 10th International Conference on Knowledge,

Information and Creativity Support Systems (KICSS2015) (2015).

2. Elbassuoni, S., Ramanath, M., Weikum, G.: RDF Xpress: A Flexible Expressive RDF

Search Engine. In: Proceedings of the 35th International ACM SIGIR Conference on

Research and Development in Information Retrieval. p. 1013. ACM, New York, NY, USA

(2012).

3. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and

Browsing Linked Data with SWSE: The Semantic Web Search Engine. Web Semant. 9,

365–401 (2011).

4. Freitas, A., Oliveira, J.G., O’Riain, S., da Silva, J.C.P., Curry, E.: Querying linked data

graphs using semantic relatedness: A vocabulary independent approach. Data Knowl. Eng.

88, 126–141 (2013).

5. Buranarach, M., Supnithi, T., Thein, Y.M., Ruangrajitpakorn, T., Rattanasawad, T.,

Wongpatikaseree, K., Lim, A.O., Tan, Y., Assawamakin, A.: OAM: An Ontology

Application Management Framework for Simplifying Ontology-Based Semantic Web

Application Development. Int. J. Softw. Eng. Knowl. Eng. 26, 115–145 (2016).

