
A so�ware library for conducting large scale experiments on
Learning to Rank algorithms

Nicola Ferro
Dept. of Information Engineering,

University of Padua, Italy
ferro@dei.unipd.it

Paolo Picello
Dept. of Information Engineering,

University of Padua, Italy
paolopicelloit@gmail.com

Gianmaria Silvello
Dept. of Information Engineering,

University of Padua, Italy
silvello@dei.unipd.it

ABSTRACT
�is paper presents an e�cient application for driving large scale
experiments on Learning to Rank (LtR) algorithms. We designed a
so�ware library that exploits caching mechanisms and e�cient data
structures to make the execution of massime experiments on LtR
algorithms as fast as possible in order to try as many combinations
of components as possible. �is presented so�ware has been tested
on di�erent algorithms as well as on di�erent implementations of
the same algorithm in di�erent libraries. �is so�ware is highly
con�gurable and extensible in order to enable the seamless addition
of new features, algorithms, and libraries.

CCS CONCEPTS
•Information systems →Evaluation of retrieval results; Test
collections;

KEYWORDS
learning to rank; component-based evaluation; grid of points

1 INTRODUCTION
LtR is a branch of Information Retrieval (IR) that employs machine
learning techniques to improve the e�ectiveness of IR systems, by
taking as input the ranked result list generated by an IR system
and producing as output a new re-ranked list of documents [4]. LtR
techniques are extremely popular nowadays in IR and they are used
by almost all the commercial search engines.

Our long term goal is to study how LtR algorithms behave and
interact with other components typically present in an IR systems,
such as stemmers or di�erent IR models. To this end, we will rely on
and extend our methodology based on the use ofGrid of Points (GoP)
and General Linear Mixed Model (GLMM) [1, 2], where a factorial
combination of all the components under experimentation is lever-
aged to estimate the main and interaction e�ects of the di�erent
components as well as their e�ect size. �erefore, we will basically
need to test each LtR algorithm with all the combinations of the
other IR system components; if you consider that typically GoPs
just combining di�erent stop lists, stemmers and IR models consist
of thousands of IR systems [3], you can imagine the explosion in
the number of combinations to be tested when you add alternative
LtR algorithms on top of them.

Unfortunately, when it comes to test LtR algorithms, they are
usually evaluated in isolation, i.e. outside of a typical IR system
pipeline. Indeed, instead of ranked list of documents, documents

LEARNER’17, October 1, 2017, Amsterdam, The Netherlands
Copyright ©2017 for this paper by its authors. Copying permitted for private and 
academic purposes.

Figure 1: Repetition of query/document pairs within multi-
ple runs.

Figure 2: Number of repeated query/document pairs as the
number of runs increases.

features, usually in LETOR format [5], are given as input and per-
formance scores are directly produced as output.

Even when an LtR library is directly integrated in an IR system,
as it happens with JForest1 and Terrier2, they are designed to run
a single experiment at time and, if you have to run thousands of
experiments as in our case, you have to re-start from scratch each
time, while the same query/document pair is typically found by
many di�erent runs, as shown in Figure 1. As a consequence, these
approaches compute the same document and query features again
and again with a consequent waste of time and resources.

Figure 2 shows the number of already found query/document
pairs, i.e. the number of feature vectors already computed, as the
1h�ps://github.com/jeromepaul/jForest
2h�p://terrier.org/

https://github.com/jeromepaul/jForest
http://terrier.org/


LEARNER’17, , October 1, 2017, Amsterdam, The Netherlands. N. Ferro, P. Picello, and G. Silvello

number of considered runs increases. If instead of recomputing
these features each time we encounter them again, we somehow
cache and re-use them, we will obtain a signi�cant performance
improvement. For example, you can note from Figure 2 that, a�er
just 30 runs, we have already computed the features for almost all
the possible query/document pairs.

�erefore, our objective is to build an application that allows us
to evaluate LtR algorithms performance in an end-to-end pipeline,
con�guring di�erent components and evaluating the re-ranking
process as a whole, and that optimizes the costs, in terms of com-
putational load and execution times3.

�e paper is organized as follows: Section 2 describes the pro-
posed solution; Section 3 shows the performance of the proposed
solution in terms of execution costs; �nally, Section 4 wraps up the
discussion and outlooks future work.

2 PROPOSED SOLUTION
�e application we propose is modular and presents a logical sepa-
ration between two successive experimental stages:

• Features Extraction
• Learning To Rank Algorithms Execution

�e �rst module, Features Extraction, is responsible of the compu-
tation of the features for each query/document pair in the input
runs enabling fast retrieval when these features are required by the
Learning To Rank Algorithms Execution module. �is second mod-
ule is responsible for retrieving the desired features from memory,
constructing the required LETOR �les, and executing the desired
LtR algorithm.

�is division of the main tasks allows us to drop down the total
execution time and facilitate the separation of the functions in
the so�ware. Indeed, the �rst phase is time consuming because
we need to compute the features for all the considered input runs.
A�erwards we execute the second module as many times as we
want and with di�erent parameters, without re-computing the
features. �is is where we improve the e�ciency of the process.

2.1 Features Extraction
For each query/document pair we calculate the relative features
only the �rst time a pair is processed.

We employ a caching mechanism based on a features matrix al-
lowing us to store the features for the already computed query/document
pairs. In this matrix each line is a document and the columns con-
tain its features. Figure 3 shows this data structure.

We can see that when a document processed for the �rst time
is found in the input run, its features are computed and stored in
a matrix. �is structure is a <key,value> map where the key is
the document identi�er and the value is its associated vector of
features. Once a new document is found, we need to verify if its
entry is already in the table and if it is not we just go on to the next
document.

When we need to compute the features for the given docu-
ment/query pair, �rst of all we get the relevance judgment from
the pool �le and we check if it is the �rst document we consider for
the given query. �en, we compute every other required feature

3�e code is available here h�ps://bitbucket.org/tesisti-unipd/picello as open-source.

and save the computed values in a byte bu�er to avoid unnecessary
memory occupation. Once all the features have been computed we
proceed by populating the feature matrix.

2.2 Learning To Rank Algorithms Execution
For each run we have several algorithm/library con�gurations,
but for all these con�gurations we need the same LETOR �les; so,
we extract the required features from the previously generated
data structure. We parallelize the features extraction process and
the LETOR �le generation by writing one di�erent LETOR �le
for each query and then merging these �les accordingly to the
train/validation/test split speci�ed in con�guration parameters.

We realized three di�erent feature extraction alternatives: (i)
the �rst one employs no parallelism and each task is processed
sequentially; (ii) the second one employs a di�erent thread for each
di�erent task, one thread is responsible for writing train �le, one
for the validation �le and another for the test �le; and, (iii) the third
one employs a �read Pool, that works like many di�erent threads,
but minimizing the overhead due to thread creation. �is solution
requires a locking mechanism to avoid readers-writers problems
when di�erent threads access the same �le. An advantage of this
last approach is that if we change the train/validation/test split we
do not need to perform the LETOR extraction phase again, but we
only need to perform the faster merging operation.

In the Figure 4 we see the time required for the LETOR creation
by the three di�erent approaches. In this case the �read Pool
generates only 4 threads because it was limited by the computer’s
architecture used for testing. If we employ more threads the gain
will be even higher. As we can see, the�read Pool solution reduces
the time by more than 50% w.r.t. the single thread execution.

�e execution of this module is repeated for each input run. �e
steps it follows are: (i) to create the LETOR text �les according to
the desired train/validation/test split; (ii) to merge the generated
text �les; and, (iii) execute the LTR algorithms.

3 PERFORMANCE EVALUATION
We conducted the experiment by using a MacBook Air (Mid 2013)
with a 1,3 GHz Intel Core i5 3MB cache L3, Hyper-�reading (up to 4
threads) and 4 GB DDR3 a 1600 MHz. We employed Terrier v4.1 for
extracting the features and the LtR algorithms reported in Figure 5
where we also report the open-source libraries implementing these
algorithms.

As we can see, several algorithms like MART or LambdaMART
are implemented by all the considered libraries, while others as
AdaRank or LineSearch are speci�c only to a single library. We cre-
ated a single property �le where the parameters of the algorithms
are speci�ed. Since di�erent implementations of the same algo-
rithm use di�erent nomenclature, we used a map that associates a
parameter value with its corresponding parameter in a given library.
As an example, let us consider MART where all the libraries have a
di�erent parameter name to indicate the number of trees: tree for
RankLib, num-trees for �ickRank and boosting.num-trees for
JForests. We gathered all these parameters under the same entry in
our properties �le to simplify the testing phase.

All the tests have been conducted by using the TREC7 corpus
(TIPSTER disk 4 and 5 minus CR) and its 50 topics (number 351-400).

https://bitbucket.org/tesisti-unipd/picello


A so�ware library for large scale experiments on LtR algorithms LEARNER’17, , October 1, 2017, Amsterdam, The Netherlands.

Figure 3: �e data structure used to store the calculated features. We see that a new row is added every time a new document
is processed.

Figure 4: Time for generating LETOR text �les with di�er-
ent approaches.

We created a GoP of 1990 runs by using Terrier as detailed in [2];
for each run in this set we performed a re-ranking with all the
available LtR algorithms.

3.1 E�ciency
In Figure 6 we see the execution time for about 40 di�erent runs for
the same topic. As we could expect from previous considerations,
the execution time decreases as the number of processed runs
increases, saturating a�er about 30 runs. For the �rst run we have
the maximum execution time since we need to compute the features
for all the documents in the run.

In Table 1, we show the main stages involved in features com-
putation and the respective execution time. �is example is about
features computation for document FBIS4-33167 for topic 351.

Finally, in Figure 7 we see the total execution time for the Fea-
tures Extraction phase for the considered topics.

�ere is an average computation time of about 2, 000 seconds (33
minutes) for each topic. �e total execution time for this test was
about 99683 seconds (27.68 hours). We recall from above that this

Figure 5: Summary of the employed algorithms and the
tested open-source libraries implementing them.

Action Time
Time to get docid from docno 2.0 ms
Time to compute arrays term frequency 61.0 ms
Time to compute arrays TF IDF 1.0 ms
Time to compute other features 1.0 ms
Time to write whole byte array 12.3 ms
Total time for features computation 68.0 ms

Table 1: Example of execution times for features computa-
tion.

computation has to be performed only once for a given set of runs,



LEARNER’17, , October 1, 2017, Amsterdam, The Netherlands. N. Ferro, P. Picello, and G. Silvello

Figure 6: Time for extracting features and generating
LETOR �les for di�erent runs.

Topic number

Figure 7: Time for generating LETOR for di�erent topics.
On thex-axis there are topic numbers and on they-axis there
is the execution time expressed in seconds.

while the second phase where the LtR algorithms are executed is
possibly repeated many times.

For what concerns the LtR algorithms execution module, the
execution time depends by the LTR libraries. As an example, in
Table 2 we report the execution times of the LtR algorithms by
employing their default parameter se�ings.

3.2 E�ectiveness
In this subsection we give an initial glance over the e�ectiveness
performances of the tested LtR and we point out where di�erent
implementations of the same algorithm lead to di�erent perfor-
mances; we leave a deeper and extensive analysis for future works.
In Table 3 we report the MAP and precision at cuto� �ve and

Algorithm Library Time(s)
MART RankLib 10.29

�ickRank 6.32
JForests 9.54

LambdaMART RankLib 37.34
�ickRank 13.81
JForests 11.16

ListNet RankLib 67.27
RankBoost RankLib 353.79

�ickRank 208.01
Gradientboostingbinaryclassi�er JForests 10.38
RankNet RankLib 504.80
Coordinate Ascent RankLib 201.42

�ickRank 11.21
AdaRank RankLib 69.20
Random Forest RankLib 69.78
LineSearch �ickRank 12.17

Table 2: Example of execution times of the tested LtR algo-
rithms with default parameters.

ten for a given run re-ranked with di�erent LtR algorithms. �e
base run employs the DFIZ ranking model, the standard Terrier
stopword list and a 8-grams lexical unit generator. As we can see

Algorithm Library MAP P@5 P@10
Original - 0.1387 0.5167 0.4583
MART RankLib 0.1477 0.4333 0.4083

�ickRank 0.1153 0.3500 0.3333
JForests 0.1288 0.3667 0.3417

LambdaMART RankLib 0.1388 0.4167 0.3500
�ickRank 0.1323 0.4167 0.4083
JForests 0.1363 0.4500 0.3833

ListNet RankLib 0.0443 0.0833 0.1167
RankBoost RankLib 0.1299 0.4167 0.3583

�ickRank 0.1449 0.4833 0.4333
Gradient Boosting
Binary Classi�er JForests 0.1329 0.4000 0.3333
RankNet RankLib 0.0444 0.1167 0.1000
Coordinate Ascent RankLib 0.1412 0.4667 0.4083

�ickRank 0.0306 0.0167 0.0083
AdaRank RankLib 0.1564 0.5000 0.4500
Random Forest RankLib 0.1488 0.4333 0.3750
LineSearch �ickRank 0.0331 0.0167 0.0083

Table 3: MAP, P@5, P@10 and P@15 for di�erent algo-
rithms

ListNet, LineSearch, RankNet and the �ickRank implementa-
tion of Coordinate Ascent give the lowest results, suggesting that
some improves are in order or that they need a thorough param-
eter tuning phase. In this situation and with default parameters
AdaRank gives the be�er results in terms of MAP.

We analyzed the performance of the same algorithm imple-
mented by di�erent libraries in terms of DCG values, to understand
if there are di�erences between di�erent implementations. Again,
these are preliminary tests and we report the analysis for a single
topic. In particular, we present the results we get for LambdaMART,
RankBoost and Coordinate Ascent.

Figure 8 shows the DCG of the LambdaMART algorithm for topic
390.

As we can see all the implementations have similar performances.
In the case of RankLib’s implementation we have some li�le im-
provements with respect to the original run. �is behaviour is the
same for most of the topics.



A so�ware library for large scale experiments on LtR algorithms LEARNER’17, , October 1, 2017, Amsterdam, The Netherlands.

Figure 8: DCG for LambdaMART runs for topic 390.

RankBoost is implemented by both �ickRank and RankLib;
in Figure 9 we show the DCG curves for the topic 390 where we
report also the original run. We can see how �ickRank slightly

Figure 9: DCG for RankBoost runs for topic 390.

outperforms both RankLib and the original run. In Figure 10 we
analyze Coordinate Ascent, where RankLib performs similarly
to the original run, while �ickRank is slightly worse.

4 FINAL REMARKS
In this paper we described a so�ware library that enables us to
run large-scale experiments over many LtR algorithms. We have
designed a library that, separating the execution in two di�erent
modules, avoid to repeat unnecessary computations. �is allows
us to e�ciently run batch experiments for studying how di�erent
parameters a�ect the results of the models and how the results
di�er for the same algorithms implemented by di�erent libraries.

Figure 10: DCG for Coordinate Ascent runs for topic 390.

As future works, one of the �rst improvements is to employ
the Hadoop MapReduce implementation of Terrier to index large
document collections in a distributed way [6].

REFERENCES
[1] N. Ferro and D. Harman. 2010. CLEF 2009: Grid@CLEF Pilot Track Overview.

In Multilingual Information Access Evaluation Vol. I Text Retrieval Experiments –
Tenth Workshop of the Cross–Language Evaluation Forum (CLEF 2009). Revised
Selected Papers, C. Peters, G. M. Di Nunzio, M. Kurimo, T. Mandl, D. Mostefa,
A. Peñas, and G. Roda (Eds.). Lecture Notes in Computer Science (LNCS) 6241,
Springer, Heidelberg, Germany, 552–565.

[2] N. Ferro and G. Silvello. 2016. A General Linear Mixed Models Approach to
Study System Component E�ects. In Proc. 39th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2016),
R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.). ACM Press, New
York, USA, 25–34.

[3] N. Ferro and G. Silvello. 2017. Towards an Anatomy of IR System Component Per-
formances. Journal of the American Society for Information Science and Technology
(JASIST) (2017).

[4] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations
and Trends in Information Retrieval (FnTIR) 3, 3 (March 2009), 225–331. h�p:
//dx.doi.org/10.1561/1500000016

[5] T.-Y. Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. 2007. LETOR: Benchmark Dataset
for Research on Learning to Rank for Information Retrieval. In SIGIR 2007 Work-
shop on Learning to Rank for Information Retrieval, T. Joachims, H. Li, T.-Y. Liu,
and C. Zhai (Eds.).

[6] R. McCreadie, C. Macdonald, and I. Ounis. 2012. MapReduce Indexing Strategies:
Studying Scalability and E�ciency. Information Processing & Management 48, 5
(September 2012), 873–888.

http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016

	Abstract
	1 Introduction
	2 Proposed Solution
	2.1 Features Extraction
	2.2 Learning To Rank Algorithms Execution

	3 Performance Evaluation
	3.1 Efficiency
	3.2 Effectiveness

	4 Final remarks
	References

