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Abstract—A driving factor for real estate prices is the location
quality. Models for location quality are usually built from
available price information and distinct GIS information. In
this paper, we present a first approach towards the automated
assessment of location quality from satellite images using com-
puter vision. For this purpose, we first introduce a novel dataset
generated from publicly available data sources with suitable
ground-truth annotations for location assessment. Next, we adapt
a state-of-the-art convolutional neural network (CNN) and adapt
it to predict different land covers and objects from satellite
images. Finally, we feed information derived from the recognized
land covers into a regression-based price model which acts as a
proxy for the assessment of location quality. Our results show
that (i) land cover classification can be performed with high
accuracy and demonstrates that automatic classification could
further be used in the future for the detection of mis-aligned
and erroneous GIS data; (ii) our adapted network reaches state-
of-the-art performance in much less training time compared to
our reference network; (iii) the automatically extracted visual
information improves the prediction of real estate prices and
thereby shows clear potential for the description of location
quality.

I. INTRODUCTION

One of the most important criteria for assessing real estate
is its location and its neighborhood. The by the authors of
this paper specified research objective is to assess the quality
and livability of urban geographical locations to support the
automatic assessment of real-estate objects and properties. To
realize this goal, we aim at leveraging the capabilities of
automated land cover analysis in satellite images.

Land Cover Analysis focuses on the extraction of infor-
mation from remote sensing satellite image data and GIS
data with the goal to study and monitor geological resources
and their dynamic changes [1]. In this aspect, remote sensing
has become more and more important due to the increasing
amount of available geographical data [2], provided through
satellite recordings world-wide and comprehensive descriptive
information collections from GIS. These data allow better
understanding and development of the earths global and phys-
ical processes [3] and in combination with GIS have fostered
several applications and meaningful results in the fields of
agriculture, environment, and eco-environment assessment [4],

[5], [6], [7]. Due to these comprehensive data former limita-
tions to recognize fine-grained structural patterns of objects
(e.g. buildings) and background are dissolved [8], and thereby
enable a number of novel approaches, as the one presented in
this work.

A rich literature on satellite image analysis and land cover
classification exists [9], [10] and numerous datasets have been
introduced [11], [12] for developing automatic classification
and detection algorithms. Furthermore, recently, deep learn-
ing has made a significant impact on the field, especially
Convolutional Neural Networks (CNNs) [13] have improved
classification performance of satellite imagery significantly
[9], [14], [15], [16], [17]. Although there is work on many
different tasks in the context of satellite image analysis, such
as building detection, road network analysis, terrain classifica-
tion, flood detection, and even poverty detection, the detection
of location quality has, to the knowledge of the authors, not
been investigated so far [18], [19], [20], [21], [22].

For a proper development and implementation of our re-
search objectives, we had to build our own satellite image
dataset, which suits the requirements for location quality as-
sessment. For this purpose, we used publicly available satellite
image data from the Tyrolean Tiris Database1 and the freely
available Open Government Data2 (OGD). For location quality
assessment we have defined a set of eight relevant land covers,
which reflect geological characteristics and also considerable
infrastructure in Austria. Based on this novel dataset, we
designed a CNN for location assessment and compared it to
an existing network (VGG network model) [23]. The networks
were designed (and adapted respectively) to classify the land
covers and objects in our dataset.

This work represents a first step towards our main research
objective to assess location quality by providing the necessary
basis information for this task, namely pre-classified land

1Orthofoto Tirol - data.gv.at. [Online] Available:
https://www.data.gv.at/katalog/dataset/35691b6c-9ed7-4517-b4b3-
688b0569729a. Accessed on: Aug. 30, 2017

2Datenauftritt Land Tirol — data.gv.at. [Online] Avail-
able: https://www.data.gv.at/auftritte/?organisation=land-
tirol&katFilter=geographie-und-planung#showresults. Accessed on: Aug
30, 2017
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covers, terrains and objects in RGB satellite images. The
training of regression models for location quality based on
this analysis data is currently under investigation. The hedonic
pricing method, provides the theoretical background in real
estate and is widely used in housing research and appraisals
[24]. Originally developed for automobiles by [25], hedonic
price models describe how the quantity and quality of these
characteristics determine its price in a particular market. In a
formal way, the general hedonic price function takes the form

Pi = f(Si, Li, Ni) (1)

where Pi is the log of the price or rent of house i, Si is a
vector of structural housing characteristics, Li is a vector of
location variables and Ni is the neighborhood characteristics.
In the field of hedonic pricing, only the aspects that are
available as quantifiable data, e.g. for location variables, such
as distances to schools, public transport, etc., are considered.
For instance, if one wants to evaluate sociodemographic data
within the scope of hedonic pricing on a certain geographical
level, an appropriate statement can be developed only on that
particular aggregated level. Therefore, the exact location or the
immediate neighborhood can be valuated only conditionally in
a fully automatic way. Furthermore, the demarcation of micro-
residential areas based on e.g. predefined spatial units, and
price similarity cannot always lead to an adequate qualitative
distinction. Pattern recognition from satellite images circum-
vents this problem, as the factual delineation of the macro-
location is ignored and only the features within selected micro-
location are being investigated.

II. RELATED WORK

The major objective of image analysis is to extract discrim-
inative visual features from images [26]. An early approach,
which is sometimes still applied today, is the application of
manually designed visual features based on color- and edge-
descriptors [27], [28], e.g. histograms and correlograms. Later
local features (e.g. SIFT, SURF, ORB) were introduced and
became popular within the Bag-of-Visual-Word model for
image classification [29]. During the last years, increasingly
more automated methods for feature extraction and entirely
end-to-end learned approaches based on neural networks (deep
learning, DL) have been introduced and achieved remarkable
improvements in image analysis and classification [30], [31],
[32].

In remote sensing different image types are utilized, ranging
from grayscale and RGB images, to multi-spectral images, and
Synthetic Aperture Radar (SAR) images, as well as measuring
procedures such as Light Detection and Ranging (LiDAR)
[33] enabling 3-dimensional geographical surface scanning.
RGB satellite images are the most widely distributed resources
in remote sensing, since region-wide captures are broadly
available.

In RGB satellite image analysis we can differentiate be-
tween low-level tasks and (more sophisticated) higher-lever
tasks, which often build upon low-level tasks. Low-level tasks
focus on detection of certain objects, such as buildings [34],

[35], [36], [37], road networks [38], [39], [40], and the
segmentation or classification of different land covers, such
as grassland, forest, and water [41], [42], [43], [44]. Satellite
images are usually cut into smaller patches before analysis,
in order to provide local spatial information (at a particular
location) together with its surrounding context (neighborhood)
to the subsequent analysis. Afterwards, traditionally feature
extraction is employed followed by machine learning [28].
Deep Learning, in contrast, combines feature extraction and
classification into one process, which is demonstrated by an
early work by Mnih and Hinton [45]. This work is based on a
neural network with multiple local and fully-connected layers,
designed to detect roads and road networks. In recent years
many different methods for feature learning based on neural
networks have been introduced [46], [47], [41], [31], [48].
In these methods, the extracted features (neural activations
at intermediate layers of the networks) are further processed
by other classifiers, such as Support Vector Machines (SVM)
to obtain a final classification. In other works the networks
combine feature extraction and learning into one supervised
learning process by adding a classification layer on top of the
network [45], [22], [44], [49], [50], [51], [32], [43].

Higher-level tasks often build upon a basic land cover
classification or segmentation and include, for example build-
ing type classification, i.e., the classification of residential
buildings, apartment buildings, and industrial and factory
building [52], [53] to support urban development and proper
planning. Higher-level tasks exist for different scaling levels.
An example for a very fine-grained analysis is the segmen-
tation of rooftops of buildings into areas of different angles
[35] and thereby the evaluation of the suitability of these
rooftops for photo-voltaic systems [54], [55]. Other works
focus on higher-level tasks at a much larger scale, such
as the analysis of abstract demographic and socio-economic
parameters from satellite images. An example is the work of
[56] where the authors try to derive regions of poverty through
satellite image data. They exploit the light intensity in areas
of settlement in night satellite images as an indicator. Based
on this information they apply transfer learning to identify
characteristical visual features which indicate poverty. In a
follow-up work, the authors were able to explain 75% of the
variation of economic outcomes from satellite images with a
CNN [19].

The assessment of location quality is a new high-level task
for satellite image analysis introduced in this paper, which
builds upon low-level land cover classification. To facilitate the
characterization of location quality from land covers, quality-
relevant land covers need to be selected and recognized in
the images. We have performed a survey on satellite image
datasets to identify suitable annotated data collections for
location assessment.

One of the most recent dataset is the AID dataset. It has
been introduced in early 2017 by [57] and covers 10.000 object
images divided into 30 individual categories. The set entails
high intra-class variations, since visible lighting conditions
and time or season differ from sample to sample. Also due
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to multi-resolution collections, the images range widely in
their spatial resolution of 50 cm and up to eight meters. For
our initial experiments on location assessment, we aim at a
more controlled dataset with less degrees of freedom (i.e.
different scales and different seasons) to reduce the number
of influencing factors. We consider the AID dataset as a
challenging dataset for future experiments, once a first location
assessment method has been established.

The RSSCN7 dataset, introduced by [58], contains 2800
satellite images with eight different annotated land cover
classes. With 400 images in the categories of grassland, forest,
farmland, parking lot, residential region, industrial region, and
river and lake, these classes are closely resembled to the
introduced dataset of current reading. Challenging is the fact
that the samples are captured under different seasons, weather
conditions and resolutions. The overall size, however, is much
smaller than our dataset (10k images per class vs. 400 images
per class).

The UC Merced Land Use Dataset by [59], is one of the
most utilized datasets [60], [57], [61], [62], [63] and has been
introduced in 2010. This set covers 21 object classes with 100
images each, in a spatial resolution of 30 cm. Although, this
dataset covers mostly all of the, for this research determined,
land covers and objects, the research project of this reading
requires far more image samples per category.

Due to the reasons mentioned above, we have created a new
satellite dataset from publicly available satellite and GIS data
to better address our research objectives.

III. DATASET

The satellite image dataset for our investigation has
been retrieved from the orthophoto map of the Tyrolean
Tiris Database in combination with Open Government Data
(OGD). Images together with the OGD have been loaded into
the GIS software QGIS (version 2.18.2), which enables to
align the satellite images and the vector layers of the OGD
and to process them together. The OGD covers multiple
different land cover and object categories. From the rich
available data, we have selected those categories that are
most relevant for our research purpose of location quality
assessment. A total of eight object and land cover categories
has been selected:

Residential Buildings Local Roads
Non-Residential Buildings Grassland
Highway Water
Federal Highway Forest

These eight classes are assumed to be most descriptive
and provisioning for the visual representation of local land
covers and infrastructures in Austria. Together they represent
the ground truth classes of our dataset. By using the scripting
capabilities of QGIS we have exported large-scale image tiles
from the satellite images at the highest available resolution.
The area from which tiles were extracted covers the entire
region of Tyrol in Austria. Since large areas in Tyrol are

(a) extracted satellite image with ground-truth

(b) patch to class assignment (c) sliding window ap-
proach

Fig. 1. (a) (left) extracted satellite image; (right) extracted ground truth. (b)
Patch extraction algorithm, localizing the centered object and identifying its
corresponding class. (c) Sliding window approach, visualizing the right and
downward movement by 90px.; Credit: Land Tirol - data.tirol.gv.at

hardly or non-settled (covered settlement area 11.8% of whole
Tyrol [64]) we have selected those tiles which cover settlement
areas, resulting in a total of 21,076 tiles. Each obtained
tile (4,050x4,050 px) covers 500x500 m2. The tiles have a
ground resolution of 8.1 cm2 per pixel. The vector layers were
rasterized with the same resolution as the satellite image tiles
for further processing. Figure 1(a) shows a part of an image
tile with the corresponding ground-truth. The dataset has then
been partitioned randomly into a training set (80%), including
a hold-out validation set (10%), and a test set (20%). This
initial split guarantees a clear separation of training and test
data in our experiments.

Next, every satellite image and ground truth layer has been
processed in parallel by a sliding window operation to cut
out patches from the images. The patch size is determined by
4050px/15 = 270px. A single patch thus covers 478 m2 of
landscape and thereby provides a significant amount of visual
context for the detection of land covers and objects.

For each image patch a ground-truth label has been com-
puted. The ground-truth label is derived from the center area
of a patch (90x90 px) and is specified as the label of the most
frequently occurring land cover in this area. The remaining
area of the patch is considered as contextual information and
is not used to define the class label. Figures 1(b) illustrates
the labeling process of an image patch, showing a residential
building.

The patch extraction is performed with a step size of 90 px
for the sliding window operation. In this way a dense coverage
of the input tiles is obtained, see Figure 1(c). Thereby, each
tile is cut into 1,849 patches.
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Fig. 2. The process workflow of database construction.

Fig. 3. An OGD polygon which is indicating the shape of a federal highway.;
Credit: Land Tirol - data.tirol.gv.at

During construction of the dataset it showed that the OGD
shape files (vector layers) frequently exhibit poor accuracy.
Distorted and inaccurate polygons occur frequently, which do
not match with the satellite image. Figure 3, demonstrates
an example of an inaccurate OGD polygon. The visualized
polygon should indicate the shape of a federal highway but
actually overlaps to a large degree with the nearby forest.
Similar observations have been made in all other categories.
To clean the dataset, we have manually investigated the input
tiles and the patches and removed those with inaccurate
OGD polygons. For each category 15,000 patches have been
manually investigated. The amount of patches with inaccurate
ground-truth are listed in Table I. The percentage reaches from
6% for local roads to 57% for highway. The only exception
are the two building classes with a tolerable deviation of only
1%. Since category of highway and water consisted of so many
wrong images, additional images to the previous 15,000 have
been investigated. The final training set consists of 10,000
patches per category and the test set contains another 2,000
patches per category. Thus, there are 80,000 patches in the
training set and 16,000 patches in the. The complete process
of dataset generation is summarized in Figure 2. Finally,
the training dataset is converted to HDF5 format for easier
processing.

IV. METHOD

For the classification of the different land covers and objects
in our dataset we propose - in accordance with the current
state of the art - end-to-end learning by deep convolutional

TABLE I
NUMBERS AND PERCENTAGES OF MIS-ASSIGNED PATCHES INSIDE EACH

CATEGORY DUE TO INACCURATE OGD.

Category % mis-assigned
Residential Buildings 1% (132/15,000)
Non-Residential Buildings 1% (147/15,000)
Highway 57% (8,578/15,000)
Federal Highway 20% (2,991/15,000)
Local Road 6% (913/15,000)
Grassland 22.5% (3390/15,000)
Water 35.5% (5,332/15,000)
Forest 10% (1,489/15,000)

neural networks (CNNs). As described in Section III, the
satellite images have been pre-processed, i.e. cut into patches
by applying a sliding window operation to the large-scale
image tiles. The patches are stored in a HDF5 image database
and fed into the employed networks

A. Center Patch Approach

The center patch approach is inspired by the work of [22]
and has been considered already during database construction.
The idea of this approach is that the networks should learn to
classify only the center area of a given patch and to use the
surrounding context information as additional input. For this
reason, we label each patch according to the majority class in
the center of the patch (see Section III). The visual context
is used for making more accurate decisions and is not being
directly predicted. By following this approach the networks
are tuned to classify the image center by using additional
information from the neighborhood. This is reasonable since
some objects are more frequently surrounded by certain land
covers than others, e.g. gardens around residential buildings,
woods and bushes next to highways and water. Additionally,
context information helps to disambiguate larger objects, that
cover the entire center area. For the network training this
means that the entire patch is fed in as input and the label for
the center region is learned, independent of the land covers
present in the neighborhood.

B. Network Models

For the training process, two network models have been em-
ployed for land cover classification. First, the VGG Network
[23], which acts as a baseline and second our own model,
called SatNet-8 in the following. The VGG model is used
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with its original architecture. Only minor adaptations have
been made, i.e. increase image input size to 270x270, set
number of output neurons in the last fully-connected layer
to the number of classes in our dataset and application of
the ’adam’ optimizer instead of ’RMSProp’. SatNet-8 is a
variation of VGG with the same input and output dimensions.
For training, the same parameters and number of epochs are
used to enable a fair performance comparison.

1) VGG Network: The VGG network is a CNN with 16
layers, i.e. 13 convolutional (conv) layers and three fully-
connected (fc) layers, which have been formed to logical
groups. The first group represents two conv layers and one max
pooling operation. The conv layers operate with 64 filters and
a filter size of 3 and ReLU as activation function. Max pooling
is set to a stride of 2. In the second group the number of filters
per conv layer increases to 128. The third group consists of
three conv layers with 256 filters each and one max pooling
operation. The fourth and the fifth group exhibit 512 filters for
every conv layer. After the conv layers, two fc layers follow.
These fc layers consist of 4096 neurons each and employ
again ReLU for activation. Followed by a dropout function
with a 50% dropout rate after the first and second fc layer.
Dropout helps to avoid overfitting by randomly suppressing
weight updates during learning [65]. The third and final fc
layer defines the output and has been changed to a number
of K = 8 neurons to be compatible to our dataset. This layer
uses a softmax activation function. See Table II for a overview
of the architecture. Finally a logistic regression function is
applied.

2) SatNet-8: During the development of SatNet-8 the VGG
Network has been used as a reference model. Multiple struc-
tural modifications have been made and each training session
has been investigated in relation to its previous performance
and structural design. Our basic assumption for the opti-
mization is that we assume satellite images to have a lower
overall complexity than arbitrary (object-related or scene-
related) images, which were originally used to train VGG
and similar networks. Thus, we expect that the complexity
of the network can be reduced without loosing discriminative
power. Therefore, most modifications have been made with
the goal to reduce the models complexity and to keep training
performance at a high level.

After evaluating several different modifications and strate-
gies for the reduction of complexity, we decided for the follow-
ing architecture. The SatNet-8 consists of only 10 conv layers
(instead of 13 as in VGG) and three smaller fc layers, which
have been arranged into five groups. Every group represents
two conv layers and a max pooling operation, followed by a
batch normalization (bn) layer. This layer acts as a regularizer
for the distribution of the inputs to a given layer. It normalizes
the layers input for each batch during the training process. As a
result, it allows higher learning rates and improves accuracy.
The first two groups of conv layers operate with 128 filters
with a filter size of 3 and ReLU activation. Since the first conv
layers of a network model recognize simple edge and shape
information, the number of filters has been increased because

TABLE II
COMPARISON OF ARCHITECTURE BETWEEN VGG AND SATNET-8

Layer Grp. VGG SatNet-8
Group 1 conv1 - 64 filters conv1 - 128 filters

conv2 - 64 filters conv2 - 128 filters
max pool max pool

batch normalization
Group 2 conv3 - 128 filters conv3 - 128 filters

conv4 - 128 filters conv4 - 128 filters
max pool max pool

batch normalization
Group 3 conv5 - 256 filters conv5 - 256 filters

conv6 - 256 filters conv6 - 256 filters
conv7 - 256 filters
max pool max pool

batch normalization
Group 4 conv8 - 512 filters conv7 - 256 filters

conv9 - 512 filters conv8 - 256 filters
conv10 - 512 filters
max pool max pool

batch normalization
Group 5 conv11 - 512 filters conv9 - 512 filters

conv12 - 512 filters conv10 - 512 filters
conv13 - 512 filters
max pool max pool

batch normalization
fc1 - 4096 nodes fc1 - 1024 nodes
dropout - 50% rate dropout 50% rate
fc2 - 4096 nodes fc2 - 1024 nodes
dropout - 50% rate dropout 50% rate
fc3 - 8 nodes fc3 - 8 nodes
regression function regression function
# parameters: 180.8 M # parameters: 43.8 M

many object types in our dataset are characterized by simple
shapes, such as lines (e.g. boarders of buildings and roads).
The max pooling is set to a stride of 2 and thereby always
halves the input dimension. The following two groups exhibit
256 filters, which is again doubled to a total of 512 in the fifth
group. The first and the second fc layers consist of only 1048
neurons with ReLU activation. Since, the number of classes
in our dataset is much smaller than that used for the original
VGG network, this reduction in complexity is reasonable. To
avoid overfitting dropout functions with a 50% dropout rate are
employed for the fc layers. The final output layer is similar to
VGG Networks output layer, including the logistic regression
function. The adaptations performed for the SatNet-8 network
lead to a reduction of parameters by approximately a factor of
four. Both networks are initialized with random weights and
trained from scratch in our experiments.

C. Implementation

We employ Tensorflow with GPU support by CUDA Toolkit
(version 7.5) and cuDNN (version 5.1) for training. On top
of Tensorflow, the higher-lever API TFLearn3 has been em-
ployed, which allows for rapid prototyping of experimental
setups while still retaining full access to Tensorflows capaci-
ties. The training hardware has been an Intel Core i7-7700K
with an Nvidia GeForce GTX 1080 Ti.

3A. Damien, TFLearn — TensorFlow Deep Learning Library. [Online]
Available: http://tflearn.org. Accessed on: Aug 30, 2017
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Fig. 4. Training and validation accuracy over the number of batch iterations.

V. EXPERIMENTS & RESULTS

A. Training Setup

Prior to training, the networks’ input layers have been
adjusted to an input dimension of 270x270 px (the size of
the image patches in our dataset) and three color channels.We
performed different pre-processing steps on the input images.
First, we zero-center the images to normalize them regarding
illumination and contrast variations. We zero center each im-
age by the measured mean across all three RGB color channels
only. This normalization facilitates the networks to converge
faster. Second, we apply augmentation to the training images.
Augmentation adds additional variation to the training set by
performing image transformations on the training patches. We
employ two transforms to the patches: rotations by 0, 90, 180,
and 270 degree and vertical flipping. While the training data
is loaded into the system, the methods randomly rotate every
image and subsequently perform vertical flipping.

The learning rate is a key parameter in training and in-
fluences the convergence of the training significantly. A too
high rate can lead to an unstable training while a too low rate
unnecessarily increases the required training time. We employ
stochastic gradient descent (adam optimizer) for learning with
an initial learning rate of 0.0001. This optimizer computes
adaptive learning rates for each parameter during the training
process[66] and yields good and stable results in practice. To
measure classification loss, we utilize the categorical cross-
entropy loss function.

To monitor the training process, we have employed a
validation set. This set has contained 10% of all training
samples and has been chosen randomly thereof. These samples
serve the network to validate its current performance after a
training iteration and are never used for training itself. The
training batch size has been adjusted to 32 images. A value of
32 represents a good performance trade-off for the training
hardware employed in our experiments. We train both the
networks from scratch for a number of 10 epochs.

Figure 4 visualizes the learning performance of both net-
works over the entire training. In direct comparison, both

network models reach a similar performance level after 10
epochs. Interestingly, however, SatNet-8 faster learns, espe-
cially in early epochs. The VGG takes longer and more
iterations to reach the same accuracy as the SatNet-8. Also
the SatNet-8 seems to be more robust on the validation set.
The main reason for the faster learning of SatNet-8 is the
significantly lower number of parameters. This is also reflected
by the training times. The training of the VGG network has
taken 122.6 hours, whereas the SatNet-8 finished training after
approx. 79.6 hours. As shown in Figure 4, both networks have
potentially not reached their best performance capabilities after
10 epochs as the validation accuracy continuously increases
which further shows that the network does not overfit on
the data. Anyway, due to the total amount of training time,
we stoped training after epoch 10. The final result is an
overall training accuracy of VGG of 86.55% and SatNet-8
of 84.98%. The validation accuracy of VGG is 84.51% and
that of SatNet-8 is 84.48%. There is no significant difference
between the performance measures, except for the significantly
lower training time of SatNet-8.

B. Classification Results

After both networks have been trained on our dataset, we
have evaluated them on the so far unseen test set. Therefore,
every test image patch has been passed through the network
and the most probable class from the eight possible classes
has been taken as the final prediction for the patch. To assess
the performance, we have computed the overall accuracy as
well as a confusion matrix. The confusion matrix provides
insight into the quality of classification as it displays mis-
classifications between all categories and thereby reveals the
networks weaknesses and strengths. Figure 5 and Figure 6
present the confusion matrices with the percentages of cor-
rectly and incorrectly classified test image patches. The top
row indicates the predicted categories (pc) and the left row
provides the true label (tl). The diagonal contains the achieved
classification accuracy in percent (in bold letters). The off-
diagonal values represent mis-classifications. The column
’false positive’ contains the percentage of false predictions be-
tween the two building-related categories (residental building
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Fig. 5. Confusion Matrix of the VGG Network. Values in percentage terms.
’false positive’ describes percentage of false predictions between related object
classes. ’% mis-classification is the sum of all wrongly predicted images.

Fig. 6. Confusion Matrix of the SatNet-8. Values in percentage terms. ’false
positive’ describes percentage of false predictions between related object
classes. ’% mis-classification is the sum of all wrongly predicted images.

and non-residental building, first two rows) and the percentage
of false predictions among the three street categories (highway,
federal highway, and local road, rows 3-5). Column ’% of mis-
classifications’ sums up the percentages of wrongly predicted
images per class. The VGG Network achieved its best results
on the classes grassland, water, and forest. With an accuracy
of 94.75% to 97.6%. VGG is capable of predicting 1,895 /
2,000 grassland samples, 1,918 / 2,000 water samples, and
1,952 / 2,000 forest samples correctly. When it comes to the
prediction of street types, the category of highway achieved
91.05% accuracy, where only some samples tend to be mis-
classified as federal highway. Since in some areas these two
street types look quiet similar, these errors are comprehensible.
A similar pattern are observed for federal highway and local
road. The building-related classes can be detected with a lower
accuracy of 74% and 75,4% for residential building and non-
residential building, respectively. A total amount of 1,480 /
2,000 and 1,508 / 2,000 samples have been correctly allocated
to their corresponding class. Mis-classifications of buildings,
however, mostly occur between the two building categories.
If we join both categories, an overall accuracy for building
detection of approximately 96% would be reached.

The SatNet-8 has achieved similar results to the VGG
Network with slightly different prediction accuracies. The
biggest difference is the class of federal highway, which is only
predicted correctly in 61.85% of all cases, whereas the VGG

TABLE III
PERFORMANCE COMPARISON BETWEEN VGG AND SATNET-8

VGG SatNet-8
average accuracy 84.75% 84.73%
building detection 95,85% 96,2%
building classification 74,7% 75,375%
road detection 93,08% 94,58%
road classification 80,1% 79,21%

Network achieved 73.35%. However, the SatNet-8 performs
notable better in the categories of residential building 81.7%
and local road 83.15%. The overall prediction accuracy and
predicted values of related object groups reveal that both
networks perform similar and at a very high performance level,
see Table III.

For location quality assessment the building-related cate-
gories have an especially high relevance. Thus, we want to
compare the performance level of our building type classi-
fication (see Table III) to related works. An approach for
building classification is presented in [53]. The authors classify
buildings from Light Detection and Ranging (LiDAR) data
[67] and consider three building types: single-family houses,
multiple-family houses, and non-residential buildings. A over-
all accuracy of 70% is achieved for all three classes which is
slightly lower than our accuracy of 74.7% to 75.4%. This may
on the one hand be due to the larger number of classes and
thus the more complex tasks but on the other hand LIDAR
data provides 3D information which is not available for our
method. Thus, the performance level achieved by our method
can be considered similar. Another approach for building
classification is presented in [52]. The authors investigate
the classification of buildings into three main classes: Resi-
dential/Small Buildings, Apartment Buildings, and Industrial
and Factory Building by a Random Forest (RF) classifier
and report an average F1 score of 69.56% over all three
classes. Although F1 score cannot be directly compared to
classification accuracy, it shows that the performance level is
similar.

C. Detection of Erroneous GIS Data

As mentioned already in Section III, we have observed
partly poor accuracy of the OGD polygons with the visual
content in the satellite images, which has led to some serious
complications during dataset generation. The detection of
wrong OGD polygons could be automated by applying a
reliable land cover classification or segmentation algorithm
to satellite image and by finding inconsistencies between the
prediction and the polygons. Thereby, mis-aligned polygons
of buildings, roads, rivers, lakes, forest, and other object
categories could be identified and in a further step corrected
(semi-)automatically.

Figure 7 provides an example image with the ground-truth
information derived from the available OGD polygons. It can
be observed that a number of buildings are missing in the
ground-truth which is maybe due to the fact that the polygons
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(a) original satellite image (b) original OGD GT (c) SatNet-8 predicted labels (d) color legend

Fig. 7. (a) Original satellite image from the Tiris Database; (b) Ground-truth derived from the original GIS Information (OGD polygons); (c) Predicted
patch-wise labels via SatNet-8. (d) Color legend for land cover classes. (The yellow boundaries indicate buildings and land cover objects, which have been
detected correctly by the SatNet-8, but have not been displayed accurately in the OGD GT.); Credit: Land Tirol - data.tirol.gv.at

TABLE IV
HEDONIC PRICE MODEL: FOR CONVENIENCE WE SHOW ONLY

PARAMETERS FROM THE SATNET-8 PREDICTIONS. COLUMN TWO SHOWS
THE EFFECT OF THE COEFFICIENTS ON THE LOGARITHMUS OF THE PRICE.

R2 IST THE ADJUSTED COEFFICIENT OF DETERMINATION AND RMSE
MEANS THE ROOT-MEAN-SQUARE ERROR

Hedonic Price Model
Residential Buildings 0.004∗

Non-Residential Buildings 0.005
Highway −0.012∗∗

Federal Highway −0.007∗∗

Local Road −0.001
Water 0.001
Grassland 0.002∗∗∗

Forest 0.002∗∗

Adj. R2 0.66
Num. observations 2739
RMSE 0.34
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

are rather old. In Figure 7(c) the patch-wise prediction of the
SatNet-8 is depicted. We can see that several buildings that
were not present in the ground-truth were correctly detected
(highlighted in yellow boundaries). We thus, see a great
potential for the automatic detection of inaccurate GIS data
by automated land cover classification.

D. Hedonic Pricing

Location quality and livability are usually approximated
by the price or price-level of a location. This means that
by predicting the price of a location, conclusions about the
location quality can be drawn. A popular approach for the
modeling of prices of real estate is hedonic pricing (which
we briefly described in the introduction). We evaluated the
utility of our land cover classifications for hedonic price
modeling by feeding parameters, derived from the SatNet-8
predictions, to the hedonic (regression) model as additional
inputs. Therefore, we used 2739 valuations of residential
buildings, as we focus only on the location and neighborhood
characteristics. In our model, for the location variables, we
used only the municipalities in Tyrol, Austria. Additional to
this information, we used the information from our eight land
cover clusters. Therefore, we calculated the share (in terms

of covered area) of each category within a 100 meter radius 
from each residential building. The result of the regression is 
displayed in Table IV. For convenience we cut out the location 
coefficients. A ll m unicipality d ummies a re s ignificant and 
reflect the expected magnitude, but are not in the focus of this 
paper. The categories from the SatNet-8 reflect t he expected 
magnitude and most are statistically significant. F or example 
the category grassland shows that a higher portion of grassland 
results in a higher price. On the other side, the presence 
of highway or federal highway in the near neighborhood 
indicates a negative impact which is related to a decline in 
price. This is in line with real estate theory. Our investigation 
provides first i nsights t hat c onfirm a po sitive co ntribution of 
the automatically extracted visual parameters and demonstrates 
that this novel type of modeling location quality has promising 
potential.

VI. CONCLUSION

In this paper, we presented a first a pproach t owards the 
automated assessment of location quality from satellite images. 
We adapted the SatNet-8 to predict different land covers 
and objects from our novel dataset. There out, we have fed 
information derived from the recognized land covers into a 
regression-based price model which acts as a proxy for the 
assessment of location quality. Our results show that (i) land 
cover classification can be performed with h igh accuracy and 
demonstrate that automatic classification could further be used 
in the future for the detection of mis-aligned and erroneous 
GIS data; (ii) our adapted SatNet-8 reaches state-of-the-art 
performance in much less training time compared to the ref-
erence VGG Network; (iii) the automatically extracted visual 
information improves the prediction of real estate prices and 
thereby shows clear potential for the description of location 
quality. Future work will include the extension of the proposed 
approach to larger areas including urban areas like cities and 
additional land covers.
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