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Abstract. The fundamental mechanism that humans use in argumen-
tation can be formalized in abstract argumentation frameworks. Many
semantics are associated with abstract argumentation frameworks, each
one consisting of a set of extensions, that is, a set of sets of arguments.
Some of these semantics are based on preference relations that essentially
impose to maximize or minimize some property. This paper presents
the argumentation reasoner pyglaf, which provides a uniform view of
many semantics for abstract argumentation frameworks in terms of cir-
cumscription. Specifically, several computational problems of abstract
argumentation frameworks are reduced to circumscription by means of
linear encodings, and a few others are solved by means of a sequence of
calls to an oracle for circumscription. Python is used to build the encod-
ings and to control the execution of the external circumscription solver,
which is based on the SAT solver glucose.
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1 Introduction

Abstract argumentation frameworks [21] are a declarative paradigm to represent
and reason about the fundamental mechanism humans use in argumentation.
Abstract argumentation frameworks are represented by directed graphs: nodes
represent abstract arguments, and arcs encode an attack relation between ab-
stract arguments. The term abstract refers to the fact that the content of the
arguments is not further analyzed. What is analyzed instead is the attack rela-
tion. A simple and well-known example is the Nixon diamond, whose arguments
“Nixon is anti-pacifist since he is a republican” and “Nixon is a pacifist since
he is a quaker” attack each other. Several semantics have been defined in the
literature to capture different aspects of the processed abstract argumentation
frameworks, where a semantics associates each AF with a set of extensions, and
an extension is a set of arguments satisfying an accepting condition. Prominent
examples are complete extensions and stable extensions [15].

Many semantics of abstract argumentation frameworks are based on a pref-
erence relation over the extensions characterizing other semantics. Such prefer-
ence relations essentially amount to inclusion relationships either on the set of
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accepted arguments, or on some other property of the extensions. Specifically,
grounded extensions [22] are subset-minimal with respect to the accepted ar-
guments, and conversely preferred extensions [15] and ideal extensions [22] are
subset-maximal with respect to the accepted arguments. Other semantics of this
kind are semi-stable extensions [15] and stage extensions [27], which require to
maximize the set of arguments in the range of the accepted arguments, that is,
those accepted and those attacked by some accepted argument.

Circumscription [26] is a nonmonotonic logic formalizing common sense rea-
soning by means of a second order semantics, which essentially enforces to min-
imize the extension of some predicates. In the special case of propositional the-
ories, the simplest form of circumscription essentially selects subset minimal
models, while in the form introduced by Lifschitz [25] some atoms are used to
group interpretations, and other atoms are subject to minimization. With a lit-
tle abuse on the definition of circumscription, the minimization can be imposed
on a set of literals, so that a set of negative literals can be used to encode a
maximization objective function. Therefore, circumscription is a good candidate
as target language to solve computational problems of abstract argumentation
frameworks.

This paper presents the argumentation reasoner pyglaf, which materializes
the above intuition. The reasoner is implemented in Python, and its interface is
fully compliant with the specification1 given for the Second International Com-
petition on Computational Models of Argumentation (ICCMA’17). pyglaf im-
plements linear reductions from many computational problems of abstract argu-
mentation framework to circumscription. The circumscribed theories are encoded
in the input format of circumscriptino [1], a circumscription solver extending
the SAT solver glucose [8] with the unsatisfiable core algorithm one [7] en-
hanced by reiterated progression shrinking [3, 4], native support for cardinality
constraints as in wasp [5, 6, 20], and polyspace model enumeration [2]. The in-
put format of circumscriptino is very similar to the DIMACS format, and de-
scribed on its web page (http://alviano.com/software/circumscriptino/).
The reductions are presented in Section 3, and cover all semantics mentioned in
this introduction but the ideal extension. Eventually, a linear reduction for ideal
semantics is obtained after computing the union of all admissible extensions of
the input graph; such a set is computed by means of iterative calls to the external
circumscription solver.

An additional use case is given by the Dung’s Triathlon, a special track of IC-
CMA’17 where the argumentation reasoners are asked to compute the grounded,
stable and preferred extensions of the input graph, in a single run of computation.
pyglaf addresses the triathlon by taking advantage of the following observa-
tions [21]: the grounded extension is contained in all preferred extensions, and
all stable extensions are also preferred extensions. Hence, pyglaf first computes
the grounded extension, which is then used to simplify the circumscribed theory
associated with the enumeration of preferred extensions. As soon as a preferred

1 http://www.dbai.tuwien.ac.at/iccma17/SolverRequirements.pdf
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Fig. 1. The graph used as running example.

extension is returned by circumscriptino, its stability is checked by means of
a linear time procedure implemented in Python.

The implemented prototype is tested empirically on the instances of the
First International Competition on Computational Models of Argumentation
(ICCMA’15). For the enumeration of complete, stable, grounded, and preferred
extensions, the performance of pyglaf is almost aligned with the most efficient
argumentation reasoners of ICCMA’15. Semi-stable, stage, and ideal extensions
were not part of ICCMA’15, but they are supported by the reasoner ConArg2
[12, 10, 11], which is therefore compared with pyglaf: for the enumeration of
these extensions the performance of pyglaf is superior in terms of solved in-
stances as well as average running time. Finally, concerning the triathlon, the
performance of the proposed strategy is compared with the sequential addressing
of the three subproblems, showing a minimal gain in terms of solved instances
and average execution time.

2 Background

This section introduces the required background on abstract argumentation
frameworks [21, 22, 15, 27, 19] and on circumscription [26, 25].

2.1 Abstract argumentation framework

An abstract argumentation framework (AF) is a directed graph G whose nodes
are arguments, and whose arcs represent an attack relation. Let arg(G) and
att(G) denote respectively the set of nodes and arcs in G. The size of G, denoted
|G|, is defined as the number of its nodes and arcs, that is, |G| := |arg(G)| +
|att(G)|. An extension E is a set of arguments. The range of E in G is E+

G :=
E ∪ {x | ∃yx ∈ att(G) with y ∈ E}. (When G is clear from the context, the
range of E in G is simply denoted E+.)

Example 1. Let G be the graph reported in Figure 1. Hence, arg(G) = {a, b, c, d,
e, f}, att(G) = {aa, ab, ba, cd, dc, ce, de, ef}, and |G| = 6+8 = 14. The following
are some extensions of G that will be used later in the paper: E1 = ∅, E2 = {d, f},
E3 = {b, d, f}, E4 = {b}, E5 = {b, c, f}, and E6 = {c, f}. The associated ranges
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are the following: E+
1 = ∅, E+

2 = {c, d, e, f}, E+
3 = {a, b, c, d, e, f}, E+

4 = {a, b},
E+

5 = {a, b, c, d, e, f}, and E+
6 = {c, d, e, f}. �

Let G be an AF, and E ⊆ arg(G). The following semantics are of interest for
this paper:

– E is conflict-free if there are no x, y ∈ E with xy ∈ att(G). Let CF(G)
denote the set of conflict-free extensions of G.

– E is admissible if E ∈ CF(G), and for all yx ∈ att(G) such that x ∈ E, there
is zy ∈ att(G) such that z ∈ E. Let ADM(G) denote the set of admissible
extensions of G.

– E is complete if E ∈ ADM(G), and satisfies the following property: if x ∈
arg(G) is such that for all yx ∈ att(G) there is zy ∈ att(G) with z ∈ E, then
x ∈ E. Let CO(G) denote the set of complete extensions of G.

– E is stable if E ∈ CO(G), and E+
G = arg(G). Let ST(G) denote the set of

stable extensions of G.

– E is grounded if E ∈ CO(G), and there is no E� ∈ CO(G) such that E� ⊂ E.
Let GR(G) denote the set of grounded extensions of G.

– E is preferred if E ∈ CO(G), and there is no E� ∈ CO(G) such that E� ⊃ E.
Let PR(G) denote the set of preferred extensions of G.

– E is semi-stable if E ∈ CO(G), and there is no E� ∈ CO(G) such that
E�+

G ⊃ E+
G . Let SST(G) denote the set of semi-stable extensions of G.

– E is stage if E ∈ CF(G), and there is no E� ∈ CF(G) such that E�+
G ⊃ E+

G .
Let STG(G) denote the set of stage extensions of G.

– E is ideal if E ∈ ADM(G), E ⊆ �
PR(G), and there is no E� ∈ ADM(G)

such that E� ⊆ �
PR(G) and E� ⊃ E. Let ID(G) denote the set of ideal

extensions of G.

In particular, the last seven semantics above are those considered in the Sec-
ond International Competition on Computational Models of Argumentation (IC-
CMA’17).

Example 2 (Continuing Example 1). The set of complete extensions of G is
CO(G) = {E1, . . . , E6}. E3 and E5 are also the stable extensions of G because
E+

3 = E+
5 = arg(G). These are also the preferred, semi-stable, and stage exten-

sions of G. E1 is evidently the grounded extension. Finally, the ideal extension
is {b}. �

For an argument x ∈ arg(G), and a set S of extensions, x is credulously
accepted in S, denoted S |=c x, if there is E ∈ S such that x ∈ E. Argument x
is skeptically accepted in S, denoted S |=s x, if x ∈ E for all E ∈ S.

Example 3 (Continuing Example 2). S |=s b and S |=s f holds for S being
ST(G), PR(G), SST(G), STG(G). For the same S, S |=c d and S |=c c, but
S �|=s d and S �|=s c. �
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2.2 Circumscription

Let A be a fixed, countable set of atoms including ⊥. A literal is an atom possibly
preceded by the connective ¬. For a literal �, let � denote its complementary
literal, that is, p = ¬p and ¬p = p for all p ∈ A; for a set L of literals, let L be
{� | � ∈ L}. Moreover, for a set L of literals and a set A of atoms, the restriction
of L to symbols in A is L|A := L ∩ (A ∪A).

Formulas are defined as usual by combining atoms and the connectives ¬,
∧, ∨, →, ↔. A theory is a set T of formulas including ¬⊥; the set of atoms
occurring in T is denoted by atoms(T ). The size of formulas and theories is
defined as the number of occurring literals; formally: for p ∈ A, |p| := 1; for φ
and ψ formulas, and ◦ ∈ {∧,∨,→,↔}, |¬φ| := |φ|, and |φ ◦ ψ| := |φ| + |ψ|; for
a theory T , |T | :=

�
φ∈T |φ|.

An assignment is a set A of literals such that A ∩ A = ∅. An interpretation
for a theory T is an assignment I such that (I ∪ I) ∩ A = atoms(T ). Relation
|= is defined as usual: for p ∈ A, I |= p if p ∈ I; for φ and ψ formulas, I |= ¬φ
if I �|= φ, I |= φ ∧ ψ if I |= φ and I |= ψ, I |= φ ∨ ψ if I |= φ or I |= ψ, and
I |= φ → ψ if I |= ψ whenever I |= φ; I |= φ ↔ ψ if I |= ψ whenever I |= φ, and
vice versa; for a theory T , I |= T if I |= φ for all φ ∈ T . I is a model of a theory
T if I |= T . Let models(T ) denote the set of models of T . (Models will be also
represented by the set of their atoms, as their negative literals are implicit.)

Example 4. Let T1 be the theory {¬⊥, a ∨ b, c ∨ d → ¬a ∧ b}. The size of T1 is
|T1| = 1 + 2 + 4 = 7. The models of T1 are the following: {a}, {b}, {a, b}, {b, c},
{b, d}, and {b, c, d}. �

Circumscription applies to a theory T , a set P of literals, and a set Z of
atoms; literals in P are subject to minimization, while atoms in Z are irrelevant.
Formally, relation ≤PZ is defined as follows: for I, J interpretations of T , I ≤PZ

J if both I|A\(P∪P∪Z) = J |A\(P∪P∪Z) and I ∩ P ⊆ J ∩ P . I ∈ models(T ) is a

preferred model of T with respect to ≤PZ if there is no J ∈ models(T ) such that
I �≤PZ J and J ≤PZ I. Let CIRC (T, P, Z) denote the set of preferred models of
T with respect to ≤PZ .

Example 5 (Continuing Example 4). CIRC (T1, {a, b, c, d}, ∅) contains the min-
imal models of T1: {a}, and {b}. Minimization can be restricted to few atoms:
CIRC (T1, {b}, {a, c, d}) contains only {a}. Atoms not in P nor in Z are used
to group interpretations: CIRC (T1, {b}, {c, d}) contains {a}, but also {b}, {b, c},
{b, d}, and {b, c, d}. Finally, CIRC (T1, {¬a,¬b}, {d}) contains the following mod-
els: {a, b}, {b, c}, and {b, c, d}. �

3 Linear reductions

The constructions presented in this section associate arguments of the input AF
G with atoms of a theory T , so to have a trivial one-to-one mapping between
extensions of G and models of T . In particular, a set S of extensions of G and a
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set S� of models of T are said equivalent with respect to G, denoted S ≡G S�, if
S = {I ∩ arg(G) | I ∈ S�}.

In order to maintain the theory compact, additional atoms are possibly in-
troduced. Specifically, for each argument x, an atom ax is possibly introduced
to represent that x is attacked by some argument that belongs to the computed
extension:

attacked(G) :=



ax ↔

�

yx∈att(G)

y

������
x ∈ arg(G)



 (1)

Note that if there is no yx ∈ att(G), then
�

yx∈att(G) y is essentially ⊥, that
is, atom ax is constrained to be false. Other atoms possibly introduced by our
constructions are of the form rx, to enforce that argument x belongs to the range
E+

G of the computed extension E:

range(G) :=



rx → x ∨

�

yx∈att(G)

y

������
x ∈ arg(G)



 (2)

Example 6 (Continuing Example 2). For the graph G in Figure 1, the following
formulas are possibly introduced:

S1 := {aa ↔ a ∨ b, ab ↔ a, ac ↔ d, ad ↔ c, ae ↔ c ∨ d, af ↔ e};
S2 := {ra → a ∨ b, rb → b ∨ a, rc → c ∨ d, rd → d ∨ c, re → e ∨ c ∨ d, rf → f ∨ e}.
In fact, note that S1 is attacked(G), and S2 is range(G). �

The notion of conflict-free, admissible, complete, and stable extensions are
encoded by the following sets of formulas:

conflict-free(G) := {¬⊥} ∪ {¬x ∨ ¬y | xy ∈ att(G)} (3)

admissible(G) := conflict-free(G) ∪ attacked(G) ∪ {x → ay | yx ∈ att(G)}
(4)

complete(G) := admissible(G) ∪






 �

yx∈att(G)

ay


 → x

������
x ∈ arg(G)



 (5)

stable(G) := complete(G) ∪ range(G) ∪ {rx | x ∈ arg(G)} (6)

In particular, note that in (4) truth of an argument x implies that all argu-
ments attacking x are actually attacked by some true argument. In (5), instead,
whenever all attackers of an argument x are attacked by some true argument,
argument x is forced to be true. Finally, in (6) all atoms of the form rx are
forced to be true, so that the range of the computed extension has to cover all
arguments.

Example 7 (Continuing Example 6). Consider the following sets of formulas:

S3 := {¬⊥,¬a,¬a ∨ ¬b,¬c ∨ ¬d,¬c ∨ ¬e,¬d ∨ ¬e,¬e ∨ ¬f};
S4 := {a → aa, a → ab, b → aa, c → ad, e → ac, d → ac, e → ad, f → ae};
S5 := {aa ∧ ab → a, aa → b, ad → c, ac → d, ac ∧ ad → e, ae → f}.
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Note that S3 is conflict-free(G), S3 ∪S1 ∪S4 is admissible(G), S3 ∪S1 ∪S4 ∪S5

is complete(G), and S3 ∪S1 ∪S4 ∪S5 ∪S2 ∪ {ra, rb, rc, rd, re, rf} is stable(G). �

The following circumscribed theories capture the complete, stable, grounded,
preferred, semi-stable, and stage semantics of G:

co(G) := CIRC (complete(G), ∅, Z) (7)

st(G) := CIRC (stable(G), ∅, Z) (8)

gr(G) := CIRC (complete(G), arg(G), {ax | x ∈ arg(G)}) (9)

pr(G) := CIRC (complete(G), arg(G), {ax | x ∈ arg(G)}) (10)

sst(G) := CIRC (complete(G) ∪ range(G), {¬rx | x ∈ arg(G)}, Z) (11)

stg(G) := CIRC (conflict-free(G) ∪ range(G), {¬rx | x ∈ arg(G)}, Z) (12)

where Z is arg(G) ∪ {ax | x ∈ arg(G)}. Note that the notion of complete and
stable extensions does not really involve any preference relation, and therefore
the set of literals to be minimized is empty in (7) and (8). Grounded and preferred
extensions are instead obtained by imposing complementary objective literals:
true arguments are minimized in (9) to capture grounded extensions, and false
arguments are minimized in (10) to capture preferred extensions. Finally, in (11)
and (12) false atoms in the range of the computed extensions are minimized,
where computed extensions are respectively complete extensions and conflict-
free extensions.

Example 8 (Continuing Example 7). Let Z be {a, b, c, d, e, f, aa, ab, ac, ad, ae, af}.
It can be checked that CIRC (S3 ∪ S1 ∪ S4 ∪ S5, ∅, Z) contains, for i ∈ [1..6], the
model Ei ∪ {ax | x ∈ E+

i }, and only these models. Similar for the other circum-
scribed theories resulting by applying (8)–(12) to graph G in Figure 1. �

The ideal semantics cannot be captured by reductions similar to those above.
However, every AF G is associated with a unique ideal extension, which can be
equivalently defined as follows (Proposition 3.6 by Caminada [14]): Let X be
the set of admissible extensions of G that are not attacked by any admissible
extensions, that is, X := {E ∈ ADM(G) | �E� ∈ ADM(G) such that yx ∈
att(G), x ∈ E, y ∈ E�}. E is the ideal extension of G if E ∈ X, and there is no
E� ∈ X such that E� ⊇ E. Hence, assuming that the union U of all admissible
extensions of G is provided in input, the following linear construction can be
defined:

id(G,U) := CIRC (admissible(G) ∪ arg(G) \ Y , Y , ∅) (13)

where Y is U \ {x | ∃yx ∈ att(G), y ∈ U}.

Example 9 (Continuing Example 7). The union of all admissible extensions of
graph G in Figure 1 is U = {b, c, d, f}. Hence, Y = {b, f}, and id(G,U) is
CIRC (S3 ∪ S1 ∪ S4 ∪ {¬a,¬c,¬d,¬e}, {¬b,¬f}, ∅) = {{b}}. �
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3.1 Properties

Correctness of the reductions presented in this section is a direct consequence of
the fact that equations (3)–(6) encode the definitions of conflict-free, admissible,
complete, and stable extensions in propositional logic.

Theorem 1 (Correctness). Let G be an AF. The following equivalences hold:
CO(G) ≡G co(G), ST(G) ≡G st(G), GR(G) ≡G gr(G), PR(G) ≡G pr(G),
SST(G) ≡G sst(G), STG(G) ≡G stg(G), and ID(G) ≡G id(G,

�
E∈ADM(G) E).

Compactness of the reductions follows from the fact that equations (3)–(6)
have linear size with respect to the size of G.

Theorem 2 (Compactness). Let G be an AF. The size of the theories in
(7)–(13) is linear in |G|.

Credulous acceptance can be also reduced to circumscription for complete,
stable, and preferred extensions.

Theorem 3 (Credulous). Let G be an AF, and x be an argument. The fol-
lowing properties hold:

– CO(G) |=c x iff CIRC (complete(G)∪{x}, ∅, arg(G)∪{ay | y ∈ arg(G)}) �= ∅;
– ST(G) |=c x iff CIRC (stable(G) ∪ {x}, ∅, arg(G) ∪ {ay | y ∈ arg(G)}) �= ∅;
– PR(G) |=c x iff CIRC (complete(G) ∪ {x}, arg(G), {ax | x ∈ arg(G)}) �= ∅.

Similarly, skeptical acceptance can be reduced to circumscription for com-
plete, and stable extensions.

Theorem 4 (Skeptical). Let G be an AF, and x be an argument. The following
properties hold:

– CO(G) |=s x iff CIRC (complete(G)∪{¬x}, ∅, arg(G)∪{ay | y ∈ arg(G)}) = ∅;
– ST(G) |=s x iff CIRC (stable(G) ∪ {¬x}, ∅, arg(G) ∪ {ay | y ∈ arg(G)}) = ∅.

4 Implementation

The reductions presented in the previous section have been implemented in the
reasoner pyglaf (http://alviano.com/software/pyglaf/). The underlying
programming language is Python, and the external circumscription solver is cir-
cumscriptino. The communication between pyglaf and circumscriptino is
handled in the simplest possible way, that is, via stream processing. This de-
sign choice is principally motivated by the fact that the communication is often
minimal, limited to a single invocation of the circumscription solver.

The interface of pyglaf is fully compliant with the specification given for
the Second International Competition on Computational Models of Argumenta-
tion (ICCMA’17). Abstract argumentation frameworks can be encoded in triv-
ial graph format (tgf) as well as in aspartix format (apx). The following data
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Algorithm 1: Compute the union of admissible extensions of an AF G
1 T := admissible(G); // fix the underlying theory
2 Z := arg(G) ∪ {ax | x ∈ arg(G)}; // fix the set of irrelevant atoms
3 U := ∅; // initialize the union of all admissible extensions
4 repeat

5 Compute I ∈ CIRC (T, arg(G) \ U,Z); // prefer arguments not in U
6 I := I ∩ arg(G); // restrict to arguments of G
7 U := U ∪ I; // possibly extend the union

8 until I ⊆ U ; // terminate when no argument is added to U

structures are populated during the parsing of the input graph G: a list arg

of the arguments in arg(G); a dictionary argToIdx, mapping each argument x
to its position in arg; a dictionary att, mapping each argument x to the set
{y | xy ∈ att(G)}; a dictionary attR, mapping each argument x to the set
{y | yx ∈ att(G)}. The first element of the list arg, in position 0, is not used to
simplify the alignment between arguments of G and variables of the produced
circumscribed theory. Within these data structures, the theories in (7)–(13) can
be constructed in amortized linear time. Actually, their CNF representation is
easily built without introducing any additional atom, as all formulas in the pre-
vious section are either implications of the form

�
A → �

B, or equivalences of
the form p ↔ A, where p is an atom and A,B are sets of literals.

Ideal extension. The linear reduction for the computation of the ideal extension
requires the union of all admissible extensions as an input parameter. Such a
set U is computed by means of Algorithm 1. Initially, U is empty, and cir-
cumscriptino is asked to compute a first admissible extension that maximize
the accepted arguments. The accepted arguments are then added to U , another
admissible extension is computed by circumscriptino. However, this time the
maximization only involves the arguments that do not belong to U , so to expand
U as much as possible. This process is repeated until the admissible extension
returned by circumscriptino is covered by set U , as such extension witnesses
that all admissible extensions are a subset of U .

Credulous and skeptical acceptance. Credulous acceptance is addressed according
to Theorem 3 for complete, stable, and preferred extensions. Similarly, skepti-
cal acceptance is addressed according to Theorem 4 for complete, and stable
extensions. Grounded and ideal extensions are unique, and therefore credulous
(and skeptical) acceptance are addressed by checking the presence of the query
argument in the computed extension. Actually, for the ideal extension, a neg-
ative answer is possibly produced already if the query argument is not part of
the union of all admissible extensions. The remaining acceptance problems are
addressed naively by extension enumeration.

Dung’s Triathlon. The triathlon is addressed by Algorithm 2 based on the fol-
lowing observations: the grounded extension is contained in every preferred ex-
tension (Theorem 25 by Dung [21]), and every stable extension is a preferred
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Algorithm 2: Grounded, stable and preferred extensions of G
1 Compute Igr ∈ co(G); // first of all, compute the grounded extension
2 stable := ∅; // initialize the set of stable extensions
3 preferred := ∅; // initialize the set of preferred extensions

// simplification: Igr is contained in all preferred extensions

4 T := complete(G) ∪ {x ∈ arg(G) | x ∈ Igr}; P := arg(G); Z := {ax | x ∈ arg(G)};
5 for I ∈ CIRC (T, P, Z) do // enumerate preferred extensions
6 preferred := preferred ∪ {I}; // found new preferred extension
7 if for all x ∈ arg(G) \ I there is yx ∈ att(G) such that y ∈ I then
8 stable := stable ∪ {I}; // the preferred extension is also stable

9 return (Igr, stable, preferred);

extension (Lemma 15 by Dung [21]). Accordingly, the algorithm starts by com-
puting the unique grounded extension Igr of the input graph. After that, a theory
whose models are complete extensions is built, and simplified by enforcing truth
of all arguments in Igr. The objective literals are the negation of all arguments,
so that preferred extensions will be computed by circumscriptino. Every pre-
ferred extension returned by circumscriptino is finally checked for stability
by means of a linear time Python function.

5 Experiments

In order to assess empirically the implemented reasoner, instances from the
First International Competition on Computational Models of Argumentation
(ICCMA’15) were tested on the enumeration of all extensions for several seman-
tics. The performance of pyglaf is compared with the following reasoners that
participated in the competition: ArgSemSAT (version 1.0rc3; [18]) and Lab-
SATSolver (version 0.1; [9]), based on SAT encodings of Caminada’s labeling
approach [13, 16]; aspartix-d (version ICCMA’15; [24]), based on reductions to
answer set programming; ConArg2 (version 1.0; [11]), based on reductions to
constraint satisfaction; prefMaxSAT (version 0.1rc3; [17]), based on iterative
calls to a MaxSAT solver; prefASP (version ICCMA’15; [23]), similar to pref-
MaxSAT, but based on answer set programming. The experiments were run
on an Intel Xeon 2.4 GHz with 16 GB of memory, and time and memory were
limited to 10 minutes and 15 GB, respectively.

Complete and stable extensions. For these two semantics the set of objective
literals is empty. Aggregated results are reported on Table 1. The performance
of pyglaf is essentially aligned to the performance of ArgSemSAT and Lab-
SATSolver: they run out of time on the same instance of 4 st small. All
instances are solved by aspartix-d, while ConArg2 collected several timeouts.
Similar results are obtained for the enumeration of stable extensions, which was
completed for all instances by all tested reasoners but ConArg2.

Grounded and preferred extensions. For the computation of grounded and pre-
ferred extensions the underlying propositional theory has models representing
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complete extensions of the input graph. Complementary objective literals are
used: accepted arguments are minimized to obtain the grounded extension, while
nonaccepted arguments are minimized to obtain preferred extensions. Aggre-
gated results are reported on Table 2. The grounded extension is unique, and
computed very efficiently by pyglaf, ArgSemSAT, and LabSATSolver. Sev-
eral timeouts are instead collected by aspartix-d and ConArg2. As for pre-
ferred extensions, a very good performance is exhibited by pyglaf, ArgSem-
SAT, and LabSATSolver, running out of time only on one instance (the same
instance for which they cannot enumerate all complete extensions). Preferred
extensions can be also enumerated by the reasoners prefMaxSAT and pre-
fASP. The first reasoner collected several timeouts, while prefASP resulted
very efficient and solved all testcases.

Other extensions and Dung’s Triathlon. The enumeration of semi-stable, stage
and ideal extensions is supported by ConArg2, but not by the other reasoners
(at least in the versions found on the web). Hence, for these two semantics
the comparison is restricted to pyglaf and ConArg2. Aggregated results are
reported on Table 3. The performance of pyglaf is in general better than that
of ConArg2, especially on the enumeration of semi-stable and ideal extensions.
Several timeouts are collected by pyglaf on the enumeration of stage extensions
due to their large number. It is interesting to observe that for the stage semantics
pyglaf requires around one order of magnitude less memory than ConArg2.
Concerning the triathlon, the improvement on the naive approach of executing

Table 1. Enumeration of complete and stable extensions: solved instances, average
execution time (seconds) on solved instances, and average memory consumption (MB).

complete pyglaf ConArg2 ArgSemSAT LabSATSol. aspartix-d

Benchmark # sol time mem sol time mem sol time mem sol time mem sol time mem

1 gr small 24 24 1.3 50 24 1.4 54 24 0.8 75 24 1.7 140 24 0.6 43
2 gr med. 24 24 3.6 84 24 3.8 126 24 2.5 147 24 2.2 206 24 1.4 76
3 gr large 24 24 18.4 237 24 17.1 489 24 14.5 457 24 4.0 503 24 5.2 221
4 st small 24 23 49.2 36 11 167.1 14 23 101.9 27 23 68.8 58 24 30.1 11
5 st med. 24 24 65.9 42 0 — 18 24 115.2 31 24 92.0 64 24 28.7 15

7 scc small 24 24 0.1 14 24 0.5 4 23 15.4 21 24 1.0 58 24 0.0 1
8 scc med. 24 24 0.5 25 21 23.7 76 21 1.0 38 24 1.6 95 24 0.1 15
9 scc large 24 24 2.7 32 22 9.7 290 23 7.9 57 24 2.2 113 24 0.4 26

Total 192 191 17.6 65 150 20.6 134 186 32.8 107 191 21.4 155 192 8.3 51

stable pyglaf ConArg2 ArgSemSAT LabSATSol. aspartix-d

Benchmark # sol time mem sol time mem sol time mem sol time mem sol time mem

1 gr small 24 24 1.4 51 24 0.8 35 24 0.8 76 24 1.7 140 24 0.6 42
2 gr med. 24 24 3.7 84 24 1.8 69 24 2.5 148 24 2.2 205 24 1.3 74
3 gr large 24 24 18.7 237 24 6.3 220 24 14.5 458 24 4.0 504 24 4.8 216
4 st small 24 24 35.0 31 23 163.1 7 23 42.3 21 24 41.7 57 24 14.3 11
5 st med. 24 24 22.6 34 17 301.3 9 24 41.5 25 24 31.7 62 24 11.9 13

7 scc small 24 24 0.1 14 24 0.1 1 24 0.0 1 24 0.9 56 24 0.0 0
8 scc med. 24 24 0.6 25 20 13.4 17 24 0.3 21 24 1.3 90 24 0.1 12
9 scc large 24 24 2.7 30 21 34.2 29 24 4.7 43 24 1.7 109 24 0.3 20

Total 192 192 10.6 63 177 56.9 49 191 13.2 99 192 10.6 153 192 4.2 48
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the three computational tasks sequentially is minimal: the gain is limited to one
solved instance, and few seconds of computation on average.

6 Related work

There are many argumentation reasoners; the closest to the present work are
ArgSemSAT [18] and LabSATSolver [9], which are based on iterative calls to
an external SAT solver. These two solvers encode in propositional logic the Cam-
inada’s labeling approach [13, 16], which maps each argument to a label among
in, out, and undec. A similar strategy is implemented by prefMaxSAT [17]
and prefASP [23], which encode Caminada’s labeling respectively in MaxSAT
and answer set programming. pyglaf instead encodes the several semantics
of abstract argumentation framework in the language of circumscription. Actu-
ally, equations (3)–(6) can be seen as linear representations of the propositional
theories introduced by Wallner et al. [28].

The definition of circumscription given in this paper is slightly different from
the one originally introduced by Mc Carthy [26] and by Lifschitz [25], since
minimization is enforced on a set of literals instead of a set of atoms. Actually,
it is not difficult to transform the reductions presented in this paper to the
original formalism of circumscription: replace each negative literal ¬p in P with
a fresh atom fp, and add to the theory the formula fp ↔ ¬p. However, it
is remarked here that circumscriptino can handle negative objective literals
without introducing any additional atom.

Table 2. Enumeration of grounded and preferred extensions: solved instances, average
execution time (seconds) on solved instances, and average memory consumption (MB).

grounded pyglaf ConArg2 ArgSemSAT LabSATSol. aspartix-d

Benchmark # sol time mem sol time mem sol time mem sol time mem sol time mem

1 gr small 24 24 1.3 51 24 1.4 54 24 0.8 75 24 1.4 128 24 118.7 802
2 gr med. 24 24 3.6 85 24 3.8 126 24 2.5 147 24 1.7 187 15 159.3 1660
3 gr large 24 24 18.4 237 24 17.1 490 24 14.5 456 24 3.0 431 0 — 4506
4 st small 24 24 0.1 17 11 166.6 16 24 5.8 14 24 0.6 50 24 0.9 49
5 st med. 24 24 0.1 20 0 — 21 24 8.9 19 24 0.8 55 24 1.5 71

7 scc small 24 24 0.1 15 24 0.5 3 24 0.0 2 24 0.7 51 8 0.7 59
8 scc med. 24 24 0.5 25 22 13.1 75 24 0.3 25 24 1.0 79 2 0.8 213
9 scc large 24 24 2.3 30 22 9.5 294 24 1.5 41 24 1.0 92 7 0.9 397

Total 192 192 3.3 60 151 19.1 135 192 4.3 97 192 1.3 134 104 51.1 970

preferred pyglaf ConArg2 ArgSemSAT LabSATSol. aspartix-d prefASP prefMaxSAT

Bench. # sol timemem sol timemem sol timemem sol timemem sol timemem sol timemem sol timemem

1 gr s. 24 24 1.3 51 24 1.4 54 24 0.9 86 24 1.7 141 18 149.3 1157 24 3.1 43 24 6.6 77
2 gr m. 24 24 3.7 85 24 3.8 126 24 2.8 170 24 2.2 209 10 173.3 2287 24 6.9 72 24 21.6 175
3 gr l. 24 24 18.6 238 24 17.1 490 24 15.3 535 24 4.2 515 0 — 4885 24 23.8 192 24 117.9 717
4 st s. 24 23 72.6 36 11 178.8 11 23 95.1 27 23 117.6 60 24 56.7 59 24 51.2 14 14 99.9 57

5 st m. 24 24 102.6 45 0 — 14 24 120.4 32 24 178.0 66 24 56.9 86 24 39.6 15 4 185.2 77
7 scc s. 24 24 0.1 16 24 0.8 3 24 0.1 9 24 1.1 58 24 1.8 76 24 0.1 12 24 0.1 12

8 scc m. 24 24 0.6 26 21 32.1 39 24 0.6 30 24 1.9 94 24 17.9 302 24 1.7 19 24 1.5 53
9 scc l. 24 24 2.8 33 22 13.0 110 24 5.1 51 24 3.6 115 22 60.2 575 24 9.6 30 24 5.9 131

Total 192 191 25.0 66 150 23.2 106 191 29.7 117 191 38.4 157 146 61.3 1179 192 17.0 50 162 36.0 162
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7 Conclusion

Many semantics of abstract argumentation frameworks are naturally encoded
in the language of circumscription. Based on the comparison with some of the
best performant reasoners of ICCMA’15, the linear encodings implemented in
pyglaf appear to be a reasonable solution to the enumeration problems of ab-
stract argumentation frameworks. Clearly, this is subject to the availability of
an efficient solver for circumscription. Currently, circumscriptino is used, but
pyglaf can easily accommodate different solvers. Some of the acceptance prob-
lems are currently handled naively. This condition can be significantly improved
by extending circumscriptino with native support for query answering, which
we plan to address in the near future.

References

1. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable
core analysis. TPLP 17, 1–18 (2017)

2. Alviano, M., Dodaro, C.: Answer set enumeration via assumption literals. In:
Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016, Genova, Italy,
November 29 - December 1, 2016, Proceedings. LNCS, vol. 10037, pp. 149–163.
Springer (2016), https://doi.org/10.1007/978-3-319-49130-1_12

Table 3. Enumeration of other extensions and Dung’s Triathlon: solved instances,
average execution time (seconds) on solved instances, and memory consumption (MB).

semi-stable stage

pyglaf ConArg2 pyglaf ConArg2

Benchmark # sol time mem sol time mem sol time mem sol time mem

1 gr small 24 24 1.3 50 24 1.5 55 24 0.6 42 24 26.2 970
2 gr med. 24 24 3.6 84 24 3.9 128 24 1.8 69 24 113.2 3527
3 gr large 24 24 18.3 238 24 17.5 496 24 10.0 189 23 111.6 8743
4 st small 24 22 103.8 56 11 128.3 35 17 78.8 72 17 173.0 19
5 st med. 24 21 75.9 66 3 483.9 51 20 44.8 81 15 269.6 33

7 scc small 24 24 0.1 8 17 38.5 23 1 510.2 114 0 — 56
8 scc med. 24 24 0.8 25 7 29.3 364 3 19.9 117 2 2.0 83
9 scc large 24 24 6.8 36 10 6.5 1469 7 0.0 117 6 2.1 169

Total 192 187 24.7 70 120 36.1 328 120 25.9 100 111 116.3 1133

ideal dung’s triathlon

pyglaf ConArg2 pyglaf pyglaf naive

Benchmark # sol time mem sol time mem sol time mem sol time mem

1 gr small 24 24 3.1 52 24 2.5 88 24 2.5 50 24 3.9 52
2 gr med. 24 24 9.2 85 24 6.6 210 24 7.0 84 24 10.8 86
3 gr large 24 24 50.0 238 24 29.9 832 40 21.7 142 40 33.3 149
4 st small 24 22 74.6 37 6 65.7 15 23 72.2 36 22 69.1 39
5 st med. 24 24 148.7 42 0 — 18 24 103.6 44 24 127.4 46

7 scc small 24 24 0.1 20 24 0.5 5 24 0.1 16 24 0.2 18
8 scc med. 24 24 0.7 27 21 11.0 69 24 0.9 25 24 1.7 28
9 scc large 24 24 2.2 34 22 12.6 303 8 0.3 21 8 0.4 21

Total 192 190 35.7 67 145 12.8 193 191 27.6 62 190 33.2 65

M. Alviano The ingredients of the argumentation reasoner pyglaf

13



3. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core
shrinking. TPLP 16(5-6), 533–551 (2016)

4. Alviano, M., Dodaro, C.: Unsatisfiable core shrinking for anytime answer set op-
timization. In: Sierra, C. (ed.) IJCAI 2017, Melbourne, Australia, August 19-25,
2017. pp. 4781–4785. ijcai.org (2017)

5. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013,
Corunna, Spain, September 15-19, 2013. Proceedings. LNCS, vol. 8148, pp. 54–66.
Springer (2013)

6. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F.,
Ianni, G., Truszczynski, M. (eds.) Logic Programming and Nonmonotonic Reason-
ing - 13th International Conference, LPNMR 2015, Lexington, KY, USA, Septem-
ber 27-30, 2015. Proceedings. LNCS, vol. 9345, pp. 40–54. Springer (2015)

7. Alviano, M., Dodaro, C., Ricca, F.: A maxsat algorithm using cardinality con-
straints of bounded size. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015. pp. 2677–2683. AAAI Press (2015)

8. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Pasadena, California, USA, July 11-17, 2009.
pp. 399–404 (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

9. Beierle, C., Brons, F., Potyka, N.: A software system using a SAT solver for reason-
ing under complete, stable, preferred, and grounded argumentation semantics. In:
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