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Abstract. Current ASP solvers feature diverse optimization techniques
that highly influence their performance, causing systems to outperform
each other depending on the domain at hand. We present I-DLV+MS,
a new ASP system that integrates an efficient grounder, namely I-DLV,
with an automatic solver selector: machine-learning techniques are ap-
plied to inductively choose the best solver, depending on some inherent
features of the instantiation produced by I-DLV. In particular, we define
a specific set of features, and build our classification method for select-
ing the solver that is supposed to be the “best” for each input among
the two state-of-the-art solvers clasp and wasp. Despite its prototypi-
cal stage, performance of the new system on benchmarks from the 6th
ASP Competition are encouraging both against the state-of-the-art ASP
systems and the best established multi-engine ASP system, ME-ASP.
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1 Introduction

Answer Set Programming (ASP) [3, 16] is a declarative programming paradigm
proposed in the area of non-monotonic reasoning and logic programming. The
language of ASP is based on rules, allowing (in general) for both disjunction
in rule heads and nonmonotonic negation in the body; such programs are in-
terpreted according to the answer set semantics [15, 17]. Throughout the years
the availability of reliable, high-performance implementations [7, 13] made ASP
a powerful tool for developing advanced applications in many research areas,
ranging from Artificial Intelligence to Databases and Bioinformatics, as well as
in industrial contexts [7, 19, 22, 28, 30].

Although the performance of current ASP systems can be, in general, defined
as good enough for a number of real-world applications, they feature several
different optimization techniques, thus causing systems to outperform each other
depending on the domain at hand. This is due to the different data structures,
input simplification and heuristic implemented in the ASP solvers that allow

31



suiting well depending on the characteristic of the domains, as reported in the
results of the last published ASP competition [8].

The capability to enjoy good performance over different problems domains
has already been pursued by neighbour communities, by means of proper strate-
gies of algorithm selection [29]; we cite here, for instance, what has been done for
solving propositional satisfiability (SAT) [31] and Quantified SAT (QSAT) [25].
This approach consists of building machine learning techniques to inductively
choose the “best” solver on the basis of some input program characteristics, or
features. As for what ASP is concerned, some interesting works in this respect
have already been carried out in [21]; furthermore, in [11] similar strategies have
been used in order to select the “best” configuration for the solver clasp.

In this paper we present I-DLV+MS, a new ASP system that integrates an
efficient grounder, namely I-DLV [5], with an automatic solver selector: machine-
learning techniques are applied to inductively choose the best solver, depending
on some inherent features of the instantiation produced by I-DLV.

We define a specific set of features, and then and carry out an experimental
analysis for computing them over the ground versions of all benchmarks submit-
ted to the 6th ASP Competition [12]; we build then our classification method
for selecting the solver that is supposed to be the “best” for each input among
the two state-of-the-art solvers clasp [10] and wasp [1]. Furthermore, we test
I-DLV+MS performance both against the state-of-the-art ASP systems and the
best established multi-engine ASP system ME-ASP [21], that is the winner of
the 6th ASP Competition. The tests prove that I-DLV+MS, even though still
at a prototypical stage, already shows good performance.

Notably, I-DLV+MS participated in the latest (7th) ASP competition [14],
resulting as the winner in the regular track, category SP (i.e., one processor
allowed).

In the remainder of the paper we introduce I-DLV+MS providing the reader
with an overview of the system, and we then describe the proposed classification
method along with the selected features it relies on. We discuss a thorough
experimental activity afterwards, and eventually draw our conclusions.

2 Answer Set Programming

We briefly recall here syntax and semantics of Answer Set Programming.

2.1 Syntax

A variable or a constant is a term. An atom is a(t1, . . . , tn), where a is a predicate
of arity n and t1, . . . , tn are terms. A literal is either a positive literal p or a
negative literal not p, where p is an atom. A disjunctive rule (rule, for short) r
is a formula

a1 | · · · | an :– b1, · · · , bk, not bk+1, · · · , not bm.
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where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunc-
tion a1 | · · · | an is the head of r, while the conjunction b1, ..., bk, not bk+1,
..., not bm is the body of r. A rule without head literals (i.e. n = 0) is usually
referred to as an integrity constraint. If the body is empty (i.e. k = m = 0), it is
called a fact.

H(r) denotes the set {a1, ..., an} of head atoms, and by B(r) the set {b1, ..., bk,
not bk+1, . . . , not bm} of body literals. B+(r) (resp., B−(r)) denotes the set of
atoms occurring positively (resp., negatively) in B(r). A rule r is safe if each
variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. An atom, a literal, a rule, or a
program is ground if no variables appear in it. Accordingly with the database ter-
minology, a predicate occurring only in facts is referred to as an EDB predicate,
all others as IDB predicates; the set of facts of P is denoted by EDB(P ).

2.2 Semantics

Let P be a program. The Herbrand Universe of P , denoted by UP , is the set of all
constant symbols appearing in P . The Herbrand Base of a program P , denoted
by BP , is the set of all literals that can be constructed from the predicate symbols
appearing in P and the constant symbols in UP .

Given a rule r occurring in P , a ground instance of r is a rule obtained from
r by replacing every variable X in r by σ(X), where σ is a substitution mapping
the variables occurring in r to constants in UP ; ground(P ) denotes the set of all
the ground instances of the rules occurring in P .

An interpretation for P is a set of ground atoms, that is, an interpretation
is a subset I of BP . A ground positive literal A is true (resp., false) w.r.t. I if
A ∈ I (resp., A �∈ I). A ground negative literal not A is true w.r.t. I if A is false
w.r.t. I; otherwise not A is false w.r.t. I. Let r be a ground rule in ground(P ).
The head of r is true w.r.t. I if H(r) ∩ I �= ∅. The body of r is true w.r.t. I if
all body literals of r are true w.r.t. I (i.e., B+(r) ⊆ I and B−(r) ∩ I = ∅) and
is false w.r.t. I otherwise. The rule r is satisfied (or true) w.r.t. I if its head is
true w.r.t. I or its body is false w.r.t. I. A model for P is an interpretation M
for P such that every rule r ∈ ground(P ) is true w.r.t. M . A model M for P is
minimal if no model N for P exists such that N is a proper subset of M . The
set of all minimal models for P is denoted by MM(P ).

Given a ground program P and an interpretation I, the reduct of P w.r.t.
I is the subset P I of P , which is obtained from P by deleting rules in which a
body literal is false w.r.t. I. Note that the above definition of reduct, proposed
in [9], simplifies the original definition of Gelfond-Lifschitz (GL) transform [17],
but is fully equivalent to the GL transform for the definition of answer sets [9].

Let I be an interpretation for a program P . I is an answer set (or stable
model) for P if I ∈ MM(P I) (i.e., I is a minimal model for the program P I) [24,
17]. The set of all answer sets for P is denoted by ANS(P ).
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Fig. 1. I-DLV+MS Architecture.

3 I-DLV+MS Overview

The architecture of I-DLV+MS is reported in Figure 1. The Preprocessor mod-
ule analyzes the input program P, and interacts with the I-DLV system in order to
determine if the input program is non-disjunctive and stratified, as these kinds of pro-
grams are completely evaluated by I-DLV without the need for a solver. If this is not
the case, the Grounding analyser module extracts the intended features from the
ground program produced by I-DLV and passes them to the classification module.
Then, the Solver Selector, based on proper classification algorithms, tries to fore-
see, among the available solvers, which one would perform better, and selects it. This
module is based on Decision Trees, a non-parametric supervised learning method used
for classification [26]; this classifier aims at creating a model that predicts the value
of a target variable by learning simple decision rules inferred from the data features.
We use an optimized version of tree algorithm implemented in scikit-learn library [23],
namely CART (Classification and Regression Trees) [2]. The algorithm is a variant of
C4.5 [27], and differs from it as it supports numerical target variables and does not
compute rule sets.

I-DLV+MS currently supports the two state-of-the-art ASP solvers clasp and
wasp. Nonetheless, the modular architecture of I-DLV+MS easily allows one to up-
date the solvers or even add additional ones. Clearly, such changes would require the
prediction model to be retrained with appropriate statistics on the new solvers.

I-DLV+MS is freely available at [6].

3.1 Features

As already introduced, the machine-learning technique herein employed selects the
best solver according to some specific features of the input program. In this work, we
selected several features with the aim of catching two fundamental aspects of ASP
programs:

– Atoms ratios. We considered five different ratios that represent the type of atoms
and a raw measure of their distribution in the input ground program:

(a) :
F

R
(b) :

PA

R
(c) :

NA

R
(d) :

PA

BA
(e) :

NA

BA
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where F is the total number of facts and always true atoms, R the total number
of ground rules, PA/NA the total number of positive/negative atoms and BA the
total number of atoms appearing in rule bodies.

– Rules ratios. We considered five different ratios that represent the type of rules
and a raw measure of their distribution in the input ground program, taking into
account also advanced constructs of the ASP-Core-2 standard language [4], such
as choices, aggregates, and weak constraints:

(f) :
C

R
(g) :

W

R
(h) :

SR

R
(i) :

CR

R
(j) :

WR

R

where C is the total number of strong constraints, W the total number of weak
constraints, SR the total number of standard rules, CR the total number of choice
rules and WR the total number of weight rules. Please note that with standard
rules we denote rules without aggregate or choice atoms; weight and choice rules,
instead, handle aggregate literals and choice atoms generated by the grounder.

4 Experimental Evaluation

In this section we report the results of an experimental activity performed in order to
evaluate the approach implemented into I-DLV+MS. In particular, we performed two
distinct sets of experiments, that are discussed in the following.

Experiments have been performed on a NUMA machine equipped with two 2.8GHz

AMD Opteron 6320 and 128 GiB of main memory, running Linux Ubuntu 14.04.4 .
Binaries were generated with the GNU C++ compiler 4.9.0. As for memory and time
limits, we allotted 15 GiB and 600 seconds for each system per each single run.

4.1 Efficacy of Solver Selection

With the first set of experiments, we aimed at preliminarly assessing the machine-
learning-based model for solver selection, i.e., checking the quality of the choice made
for each input. To this end, we took the benchmarks from the latest available ASP
Competition [12] and ran I-DLV+MS along with two distinct combinations of the
I-DLV grounder with the latest available versions, at the time of writing, of clasp and
wasp solvers, respectively: clasp version 3.2.1 and wasp version 2017-05-04.

Basically, this allows us to easily compare the performance of the solver chosen
by I-DLV+MS against the best one for each set of benchmarks. A system equipped
with a perfect selector would ideally match the performance of the best solver for each
benchmark, net of possible overheads.

Results are reported in Table 1: first column shows the name of the benchmark,
while the next pairs report the solved instances and average times per each tested sys-
tem (each benchmark featured 20 instances). The best performing combination among
I-DLV +clasp and I-DLV +wasp is highlighted in bold, on a benchmark basis. Results
show that I-DLV+MS performance is very close to the best solver; in particular, the
system show the same performance of the best solver in 17 domains out of 24, sug-
gesting that the defined measures, along with the chosen model, lead to good choices.
Furthermore, the total number of instances solved by I-DLV+MS is 327, while for
I-DLV +clasp and I-DLV +wasp is 292 and 256, respectively.
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Table 1. I-DLV+MS, I-DLV +clasp and I-DLV +wasp: number of solved instances
and average running times (in seconds) on benchmarks from the 6th ASP Competition
(20 instances per problem). In bold is outlined the top-performing system among I-
DLV +clasp and I-DLV +wasp.

Benchmark I-DLV+MS I-DLV +clasp I-DLV +wasp

solved time solved time solved time
AbstractDialecticalFrameworks 20 10,91 20 7,17 14 80,38
CombinedConfiguration 13 103,83 12 108,78 6 52,93
ComplexOptimizationOfAnswerSets 19 127,68 19 105,12 5 127,58
ConnectedMaximim-densityStillLife 10 86,02 5 283,53 8 120,60
CrossingMinimization 19 2,46 6 91,88 19 0,65
GracefulGraphs 9 122,36 10 59,77 5 22,12
GraphColouring 16 104,05 16 117,28 6 137,67
IncrementalScheduling 11 42,09 11 35,74 8 113,75
KnightTourWithHoles 14 29,95 14 25,87 10 34,76
Labyrinth 10 134,82 11 78,49 11 134,06
MaximalCliqueProblem 14 49,06 0 - 15 143,18
MaxSAT 19 17,55 8 47,70 20 50,91
MinimalDiagnosis 20 27,55 20 14,50 20 24,86
Nomistery 8 26,21 8 25,26 8 37,09
PartnerUnits 14 23,29 14 45,03 8 210,47
PermutationPatternMatching 20 117,40 20 16,86 20 129,84
QualitativeSpatialReasoning 20 106,06 20 113,75 12 124,32
RicochetRobots 10 95,43 12 130,96 7 166,09
Sokoban 8 343,63 9 23,71 10 153,95
StableMarriage 6 111,30 9 268,98 7 397,86
SteinerTree 8 14,60 8 84,82 4 0,15
ValvesLocationProblem 16 6,99 16 12,10 16 37,04
VideoStreaming 15 18,89 15 5,63 9 1,94
Visit-all 8 162,88 9 57,18 8 69,74
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Fig. 2. I-DLV+MS and ME-ASP comparison on benchmarks from the 6th ASP Com-
petition.

It is worth noting that, even when the choice was right, I-DLV+MS pays some
overhead. This is due to the fact that the ground program produced by I-DLV is not
directly passed to the solver; rather, it must be analyzed in order to extract the features
needed for making the choice: intuitively, huge ground programs might hence cause a
loss of performance during the features extraction.

4.2 Comparison to the State of the Art

In the second set of experiments we compared I-DLV+MS against the latest available
version of ME-ASP3), the state-of-the-art among multi-engine ASP solvers, resulted
as the winner of the 6th ASP Competition. Differently from I-DLV+MS, ME-ASP
employs machine-learning techniques to inductively choose the best ASP solver on a
per-instance basis.

Figure 2 reports the cactus plot comparing I-DLV+MS and ME-ASP. Interest-
ingly, even though I-DLV+MS is a prototypical system, on the overall, it showed
encouraging performance: indeed, it solved 327 instances, 49 more instances with re-
spect to what ME-ASP did.

The two systems are similar, yet they feature some key differences; in particular,
the main differences are due to the nature and the number of systems used. First of
all, ME-ASP computes features of the input program at hand over a ground program
produced by gringo system, while I-DLV+MS makes use of I-DLV. Furthermore, the
main interesting difference is due to the fact that ME-ASP manages five solvers, way
more than the mere two taken into account by I-DLV+MS. On the one hand, the
strategy of using a large pool of solver engines, as in the case of ME-ASP, allows to
solve a significant number of instances uniquely, i.e., instances solved by only one solver,
as the different engines use evaluation strategies that can be substantially different;
nevertheless, such differences imply that a high price is paid in case of a wrong choice.
On the other hand, when the space for choices is narrowed, the probability of picking

3 http://aspcomp2015.dibris.unige.it/participants
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the wrong solver decreases, and this might lead to a more consistent behaviour, as in
the case of I-DLV+MS.

5 Ongoing Works

Notwithstanding the good performance of I-DLV+MS, the system is still in a pro-
totype phase. As future work, we aim to test additional supervised learning method
and also several frameworks for automatic algorithm configuration, like Autofolio [20]
or Auto-WEKA [18]. We also plan to significantly extend experiments over additional
domains and analyze the possible overfitting of the model and try different splits of
the dataset for the train and test set among the available problems. Moreover, we aim
to both include additional ASP solvers with different parameterizations, and explore
more features for improving the classification capabilities and achieve better overall
performance.

In addition, we are studying the possibility of taking advantage from machine-
learning techniques for improving performance of ASP grounding engines; in particular,
we plan to develop a built-in automatic algorithm selector within the I-DLV system
(which I-DLV+MS is based on), thus opening up the possibility to dynamically adapt
all the optimization strategies to the problem at hand.

6 Conclusions

In this work, we made use of machine-learning techniques in the ASP solving scenario,
with the aim of designing and producing an efficient automatic ASP solver selector.
To this end, we first selected syntactic features that represent specific characteristics
of ground ASP programs, in order to be able to perform accurate classifications. Then,
we trained the model and performed an extensive experimental evaluation on prob-
lems from the 6th ASP Competition. Experiments are very promising, as I-DLV+MS
showed very good performance despite its prototypical nature. Indeed, our system out-
performs both its ASP component solvers and the winner of the 6th ASP Competition.
Such good performance is confirmed by the success in the latest (7th) ASP competi-
tion [14], where the system won the regular track in the SP category.
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