
3. Workshop “Automatische Bewertung von Programmieraufgaben”,
(ABP 2017), Potsdam 2017 1

An Editor for the ProFormA Format for Exchanging
Programming Exercises

Uta Priss1, Karin Borm2

Abstract: This paper describes an editor for an XML format for the creation and exchange of
automatically evaluated programming exercises. It provides a brief description of the editor, its
requirements and some of its challenges.

Keywords: automatically evaluated programming exercises, ProFormA format, teaching program-
ming, XML exchange format

1 Introduction

The ProFormA format was developed as an XML format for the exchange of programming
exercises that are automatically evaluated by computer software [St15]. In introductory
programming classes it is becoming quite common to use software that automatically
generates feedback for students. Traditionally such feedback was provided by (human)
tutors. But in any large or even just moderately-sized class, it is virtually impossible
for tutors to provide individualised and comprehensive feedback without a significant
temporal delay. Although standard software engineering tools already provide a fair amount
of feedback (for example compiler output) such feedback tends to be insufficient and
potentially incomprehensible for novice programmers. Furthermore in order to evaluate not
just syntax and run-time parameters but also whether students are learning programming
concepts, lecturers may want to design specific tests that check whether a task has been
implemented according to a specification. This can be achieved by writing unit tests which
specify test cases and produce hints or error messages in case the students’ code does not
appear to achieve the desired goals. Thus automatic assessment of student submitted code
mostly consists of compiling a set of standard software engineering tests and specifically
designed unit tests. This topic is well researched in the literature and many tools for the
purpose of automatic assessment of programming exercises already exist (cf. the review
[Ih10] and the more recent [Bo17]).

Unfortunately, creating such exercises is time consuming. We estimate that it takes at least
two hours to convert a textbook exercise into an automatically evaluated format because the

1 Ostfalia University of Applied Sciences, www.upriss.org.uk
2 Ostfalia University of Applied Sciences, k.borm@ostfalia.de

https://creativecommons.org/licenses/by-nc/3.0/
www.upriss.org.uk
k.borm@ostfalia.de


2 Uta Priss, Karin Borm

task description requires a higher precision, the unit tests need to be written and the correct
functionality of the exercise needs to be well tested. Furthermore the initial learning curve
for lecturers or tutors for how to use a software tool for creating programming exercises
can be high. Thus, being able to share exercises with colleagues and being able to reuse
exercises from a pool of exercises or repository can be an incentive to use such a system.
Because different universities employ different learning management systems (LMS) for
the delivery of exercises and LMS change over time, it is essential that exercises can be ex-
and imported from LMS and repositories. The aim of the ProFormA format is therefore to
facilitate sharing of automatically evaluated programming exercises across different tools
and settings. The ProFormA format is an XML standard provided via an XSD schema file3.
It was developed by a team of researchers and developers from several northern German
universities. Further details about the ProFormA format can be found in Strickroth et al.
([St15], [St17]) and shall not be repeated in this paper.

The ProFormA format is already in use by at least five German universities and is expected
to draw a larger user community over time [St17]. Each of the five universities is currently
employing a different LMS which each has its own built-in editing facilities. At Ostfalia
University the Praktomat software4 which is a grader for student submitted code has been
connected to the LMS LON-CAPA5 which manages course and student data and provides a
repository of exercises. Because LON-CAPA is a networked system that is used by many
universities worldwide, its code cannot be modified without obtaining approval from the
community. This can be a fairly slow process. While the connection between the Praktomat
software and LON-CAPA was feasible without LON-CAPA code modifications via a
middleware, it is currently not possible to modify the built-in editor of LON-CAPA. Thus
the need arose to build a stand-alone editor6 that requires only HTML and JavaScript and
can be incorporated into LON-CAPA but also into any other similar web-based LMS or
repository without major code modification. This editor is discussed in this paper. Section 2
provides a more detailed description of the editor and its requirements. Section 3 discusses
some challenges and observations.

2 Requirements and Description of the Editor

This section briefly describes the editor, its requirements and some of its design decisions.
Figs. 1-3 provide screenshots of the editor for a very simple “HelloWorld” Java program.
The task description in Fig. 1 is formated as HTML because LMS tend to be web-based
and require HTML task descriptions. HTML support is provided in the editor by code-
highlighting, tag-completion and HTML preview. It would be possible to add a WYSIWYG
editor to the HTML textfield if desired but the target user group (computer science lecturers)

3 https://github.com/ProFormA/taskxml
4 https://github.com/danielkleinert/Praktomat
5 http://www.lon-capa.org
6 A demo-version of the editor is available at http://media.elan-ev.de/proforma/editor/editor.html and the code is

available via http://github.com/ProFormA/formatEditor.



An Editor for the ProFormA Format 3

might prefer a source editor. Other parameters shown in Fig. 1 pertain to the title, the
language of the task description, the choice of programming language, parameters of the
LMS and of the file that is to be submitted. In this example, the editor is configured for
use at Ostfalia university where the LMS is LON-CAPA. The bottom two parts (about the
submission and LON-CAPA) might need to be modified if a different LMS was to be used.
LON-CAPA support can be included or omitted by editing the configuration file of the
editor.

Fig. 1: Task description and general parameters

Fig. 2 shows an example of a model solution and a JUnit test. Files can be added via drag
and drop, upload or copy/paste. The textareas that display the texts of the files provide some
editing support using the CodeMirror JavaScript library. It is more likely that files will
be created and tested in an IDE and just uploaded to the editor than that they are created
with the editor. But if an already existing task is edited it can be convenient to modify the
files within the editor instead of within the IDE. The attribute “class” corresponds to the
choices that are available in the ProFormA format. In this case, both files are internal and
therefore not shown to the students. Other choices are “template” for partially complete
code, “library” and “instruction” which would all be shown to the students as part of the
task description in the LMS.

Fig. 3 displays two tests for the “HelloWorld” example. Most of the parameters of the



4 Uta Priss, Karin Borm

Fig. 2: Example of a model solution and unit test



An Editor for the ProFormA Format 5

compilation test shown in this example depend on the specific grading engine that is
employed by the LMS. Because there tends to be a commonly used unit test framework
for each programming language, parameters for unit tests tend to be fairly standard across
different grading engines. The connection between the files (in Fig. 2) and the tests (in
Fig. 3) is accomplished via IDs in the ProFormA format. The editor hides these IDs and
establishes a connection via filenames instead.

Fig. 3: Tests consist of parameters and references to files

The following requirements were identified for the editor:

1. Provide a web form for data entering

2. Generate the ProFormA task.xml (as XML or zip archive) from the web form data

3. Import a previously created task.xml into the web form (including import of older
versions of the ProFormA format which are then converted to the current format)

4. Generate a file for each exercise as required by the LMS (e.g. LON-CAPA)

5. Advanced editing support (file upload, syntax highlighting of source code, auto-fill
in options, drag and drop, menus, etc)

6. Form validation (check for completeness and consistency and schema validation of
the generated task.xml)

7. Extensibility and modularity (new features, tests and programming languages should
be easy to add)



6 Uta Priss, Karin Borm

8. Adaptability (should be easy to adapt with respect to other LMS and graders)

The requirements 1, 2, 5 and 6 are met by the editor. Requirement 3 is currently met for
two versions of the format. Requirement 4 is met with respect to LON-CAPA. It is planned
to support Moodle in the near future. In particular because of requirement 8, JavaScript
is a suitable language in which to write the editor. Because LMS tend to be web-based,
JavaScript code can be incorporated into any LMS that supports the ProFormA format.
Although JavaScript is executed on the client, it requires no client-side installation and it is
straightforward to deploy updates by changing the server-side copy of the code. Because
JavaScript is a scripting language, users can fairly easily adjust the code to their own needs
as long as the code is well structured and documented. The editor uses standard libraries
(JQuery, JQuery-UI, CodeMirror, zip.js and xmllint.js). A few regression testing scripts are
supplied with the editor for testing with Python, Selenium, Chrome and Firefox.

Requirements 7 and 8 were not well met by the initial versions of the editor. Recently
the code has been modified to contain a separate configuration file. All information about
versions, XML namespaces, test attributes that do not apply to all tests and graders or LMS
specific meta-data has been gathered into this configuration file. Thus it is now much easier
to change existing tests or to add new types of tests (for example in order to add a new
programming language or framework) and to modify test parameters (for example for new
versions of component software).

3 Challenges and Observations

At first sight, writing an editor that corresponds to an XML format should be completely
straightforward. Our first attempt was actually to use a JQuery XML editor7 which automat-
ically generates a web form directly from an XML schema. Unfortunately, it appears that
the nesting, structuring and use of XML elements and attributes in the ProFormA format
does not necessarily correspond to the sequence in which lecturers create exercises. Thus
the automatically generated web form was not user friendly. A fair amount of the data in
the ProFormA format pertains to hidden background knowledge and dependencies, for
example which tests are available for which programming languages. Such background
knowledge is not encoded into the ProFormA format. Thus a file can be a valid ProFormA
XML file but nevertheless contain a combination of programming language and tests which
is not likely to be supported by any LMS or grader. For the editor we tried to assist users
by adjusting some of its menus and auto-completion features based on such background
knowledge in order to speed up the process of exercise creation and to avoid detecting errors
only after the exercises have been uploaded into the LMS. The advantages of automatically
evaluated programming exercises have to outweigh the amount of time and effort required
for creating them. Thus unless the editor makes exercise creation seamless, it will not be
used by many lecturers.

7 https://github.com/UNC-Libraries/jquery.xmleditor



An Editor for the ProFormA Format 7

Some challenges still remain, in particular with respect to testing the editor. Theoretically a
very simple test should be to import a file into the editor, save it, export it and compare it to
its original version. But even plain XML file comparison requires use of some tools because
the sequence of attributes (and potentially elements) in XML is not always determined, the
ProFormA format contains some optional elements and attributes and browsers themselves
may modify XML when they are reading and writing it. Even though some regression tests
with Selenium8 have been implemented, systematic testing of the editor still needs to be
expanded. Some of the more advanced JavaScript functions are not equally supported by
all types of browsers. For example, being able to create zip files from uploaded data is not
necessarily cross browser compatible. Automated cross browser testing is still a challenge.

Our experience with users at Ostfalia so far has been positive. Users are aware that without
the editor the exercises would need to be created manually by both configuring the grader
and the LMS. We usually provide a couple of training sessions for new users who want to
create programming exercises in order to explain all the steps that are required. There are
still a number of features that should be improved. For example, the error messages that are
displayed in the LMS in case there is a technical problem with an exercise are sometimes
not sufficiently informative. Because of the complexity of the system, run-time errors can
occur from within the LMS (for example if the file that executes an exercise contains an
incorrect path for the task.xml file), within the grader (for example, German umlauts within
source code sometimes cause problems) or potentially within the middleware (so far we
have not encountered any run-time errors arising from the middleware, but it could happen).
In any case, it can be difficult for inexperienced users to determine and fix the exact cause of
an error. It is a question as to how much of this information belongs into the editor and how
much belongs into the grader and LMS. It is best if problems within exercises are caught
as early as possible during the development process of an exercise. It can be frustrating if
errors occur only after the exercises have been implemented in the LMS because modifying
an exercise from within the LMS still involves a number of steps.

A convenient feature of the editor is that it can read task.xml files in some older versions
and convert them into the current version. Unfortunately, so far the editor has mostly been
configured for use at Ostfalia. Thus, namespaces that are required by graders at other sites
are not yet sufficiently supported. The editor will still read ProFormA files that contain
other namespaces but it will ignore any data pertaining to namespaces for which it does not
currently have a schema.

Acknowledgements

This work was partially supported by the German Federal Ministry of Education and
Research (BMBF) under Grant 01PL16066H. The sole responsibility for the content of this
paper lies with the authors.

8 http://www.seleniumhq.org



8 Uta Priss, Karin Borm

References
[Bo17] Bott, Oliver; Fricke, Peter; Priss, Uta; Striewe, Michael (eds.). Automatisierte Bewertung

in der Programmierausbildung. Digitale Medien in der Hochschullehre, ELAN e.V., Waxmann
2017.

[Ih10] Ihantola, Petri, et al. Review of recent systems for automatic assessment of programming
assignments. Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. ACM, 2010.

[St15] Strickroth, S.; Striewe, M.; Müller, O.; Priss, U.; Becker, S.; Rod, O.; Garmann, R.; Bott, O.
J.; Pinkwart, N. (2015). ProFormA: An XML-based exchange format for programming tasks.
eleed, 2015, 11.

[St17] Strickroth, S.; Müller, O.; Priss, U. (2017) Ein XML-Austauschformat für Programmierauf-
gaben. In: Bott; Fricke; Priss; Striewe (eds), Automatisierte Bewertung in der Programmieraus-
bildung, Waxmann 2017.


	Introduction
	Requirements and Description of the Editor
	Challenges and Observations

