
A Framework for Trace Clustering and Concept-drift
Detection in Event Streams

Sylvio Barbon Junior1, Gabriel Marques Tavares1, Paolo Ceravolo2, and Ernesto Damiani3

1 Londrina State University
barbon@uel.br | gtavares@uel.br

2 Università degli Studi di Milano
paolo.ceravolo@unimi.it

3 Khalifa University
ernesto.damiani@kustar.ac.ae

1 Introduction
Concept-drift is a well-known problem that affects data streams where the underlying
relations between a recorded tuple x and a system response y change over time [1]. Ignoring
concept-drift can lead to a deterioration in the quality of predictive analytics and its capacity
to represent the most recent concepts. Nevertheless, implementing a concept-drift adaptation
strategy is not a trivial task due to different types of concept-drift and different adaptations
in response to them. In this work, we discuss the Concept-Drift in Event Stream Framework
(CDESF) that addresses some of these challenges for Trace Clustering (TC) [2] in data
streams. Instead of creating an additional level of complexity that isolates the final user
from the deep behaviour of the system, our goal is to offer a simple instrument to supervise
concept-drift and tracking the evolution of clusters over time.

2 Trace Clustering with Event Streams
The learning task addressed is TC in event streams to run analytics on Business Processes.
Traces represent sequences of activities or tasks executed to achieve a goal. Unlike other
stream-related problems, in TC the single tuple imputing the learning procedure is obtained
by grouping multiple events through time, with past events affecting future ones.

Model Update. Since ingestion of event data is asynchronous, we cannot rely on a training
data set. For this reason, we introduced the idea of a Grace Period (GP) where there is no
reference model and new events are used to feed the model construction. When the GP is
declared over, the model creation is triggered. Subsequently, the model is updated based
on the Nyquist sampling theorem, where the sampling frequency during data acquisition
is forced to be at least twice the highest frequency observed before an update. A Time
Horizon (TH), inputted by the user, specify how frequently the system has to check for a
model update. However, if the conditions required by the Nyquist sampling theorem are not
satisfied this TH is shifted over.

Evolution of Clusters. One of our motivating goals is to construct an human-friendly
visual and inference system. For this reason, to control and observe the system behaviour
over time, we selected two simple metrics, based on the histogram of events in a trace and
on the histogram of events’ timestamps.

153



When a new event is acquired it is attached to the respective trace that can be read as a
string and compared to the histogram strings describing clusters. The histograms of events
are compared using a Edit Weighted Distance (EWD). The histogram of timestamps is
built from the same set of tuples but with some additional steps. First, for each tuple, a
list of the differences between the events timestamps is created. Then, the list serves as
input for quartiles calculation. Ultimately, the list values are placed into the quartile bins.
Given a new event, its case timestamps are retrieved and binned. The bin is normalised and
subtracted from the (also normalised) histogram. The result is the time-weighted distance
(TWD) related to the interval between the events in a trace.

We can now use EWD and TWD, together with a global time, as parameters describing
the evolution of traces and clusters in the feature space. Concept-drift is detected in the
feature space (EWD, TWD and time) by looking at distribution sparsity. When a new
sample falls outside the boundary of any existing cluster, it is marked as an anomaly and
its density is monitored. An increase in the number of samples within the radius of an
anomalous example indicates a concept-drift.

(a) Model Update
(b) Evolution of Clusters

3 Expected Results
We have observed the ability of our framework to effectively detect the anomalies and drift
detection over the stream with different TH. Even more, an unfinished process case could
be observed closely from the beginning leading to early identification of anomalous pattern.
In this way, it is possible to mitigate a costly error, resist an attack before it reaches its goal,
halt or migrate the fraudulent execution to a honeypot.

References
1. Gama, J., Rodrigues, P.P., Spinosa, E., Carvalho, A.: Knowledge Discovery from Data Streams.

Web Intelligence and Security - Advances in Data and Text Mining Techniques for Detecting and
Preventing Terrorist Activities on the Web pp. 125–138 (2010), http://www.booksonline.
iospress.nl/Content/View.aspx?piid=18418

2. Song, M., Günther, C.W., Van der Aalst, W.M.: Trace clustering in process mining. In: International
Conference on Business Process Management. pp. 109–120. Springer (2008)

154




