
Flexible Data Acquisition
in Object-aware Process Management

Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{sebastian.steinau,kevin.andrews,manfred.reichert}@uni-ulm.de

Abstract. Data-centric approaches to business process management, in
general, no longer require specific activities to be executed in a certain
order, but instead data values must be present in business objects for
a successful completion. While this holds the promise of more flexible
processes, the addition of the data perspective results in increased com-
plexity. Therefore, data-centric approaches must be able to cope with the
increased complexity, while still fulfilling the promise of more flexible pro-
cesses. Object-aware process management specifies business processes in
terms of objects as well as their lifecycle processes. Lifecycle processes
determine how an object acquires all necessary data values. As data val-
ues are not always available in the order the lifecycle process of an object
requires, the lifecycle process must be able to flexibly handle these devia-
tions. Object-aware process management provides operational semantics
with flexible data acquisition built into it, instead of tasking the process
modeler with pre-specifying a flexible process. At the technical level, the
flexible data acquisition is accomplished with process rules.

1 Introduction

Data-centric modeling paradigms part with the activity-centric paradigm and
instead base process modeling and enactment on the acquisition and manip-
ulation of business data. In general, a data-centric process no longer requires
certain activities to be executed in a specific order for successful completion;
instead certain data values must be present, regardless of the order in which
they are acquired. Activities and decisions consequently rely on data conditions
for enactment, e.g., an activity becomes executable once required data values
are present. While this holds the promise of vastly more flexible processes in
theory, it is no sure-fire success. The increased complexity from considering the
data perspective in addition to the control-flow perspective requires a thoughtful
design of any approach for modeling and enacting data-centric processes. This
design must enable the flexibility of data-centric processes, while still being able
to manage the increased complexity.

Object-aware process management [11] is a data-centric approach that aims
to address this challenge. In the object-aware approach, business data is held in
attributes. Attributes are grouped into objects, which represent logical entities in
real-world business processes, e.g., a loan application or a job offer. Each object

113

has an associated lifecycle process that describes which attribute values need
to be present for successfully processing the object. Lifecycle processes adopt
a modeling concept that resembles an imperative style, i.e., the model specifies
the default order in which attribute values are required. Studies have indicated
that imperative models posses advantages in understandability when compared
to declarative models, which are known for flexibility [14]. While the imperative
style allows for an easy modeling of lifecycle processes, it seemingly subverts
the flexibility promises of the data-centric paradigms, as imperative models are
rather rigid. However, in object-aware process management, the operational se-
mantics of lifecycle processes allow for data to be entered at any point in time,
while ensuring correct process execution. The imperative model provides only
the basic structure. This has the advantage that modelers need not concern
themselves with modeling flexible processes, instead the flexibility is built into
the operational semantics of lifecycle processes.

The functional specifications of the operational semantics of lifecycle pro-
cesses have partially been presented in previous work [10]. This paper expands
upon this work and contributes extended functionality and the technical im-
plementation of the operational semantics, provided in the PHILharmonicFlows
prototype. This technical implementation is based on the process rule frame-
work, a lightweight, custom process rule engine. The framework is based on
event-condition-action (ECA) rules, which enable reacting to every contingency
the functional specification of the operational semantics allows for, i.e., correct
lifecycle process execution is ensured. The process rule framework will further
provide the foundation for implementing the execution semantics of semantic re-
lationships and coordination processes, the object-aware concept for coordinating
objects and their lifecycle processes [16]. With the transition of PHILharmon-
icFlows to a hyperscale architecture [2], the process rule framework is fully com-
patible with the use of microservices, enabling a highly concurrent execution of
lifecycle processes with large numbers of user interactions.

The remainder of the paper is organized as follows. Section 2 provides the
fundamentals of object-aware process management. In Section 3, the extended
operational semantics are presented. The process rule framework at the core
of the operational semantics implementation is discussed in Section 4. Finally,
Section 5 elaborates on related work, whereas Section 6 concludes the paper with
a summary and an outlook.

2 Fundamentals

Object-aware process management organizes business data in form of objects,
which comprise attributes and a lifecycle process describing object behavior.
PHILharmonicFlows is the implementation of the object-aware concept to busi-
ness process management. Object-aware process management distinguishes design-
time entities, denoted as types (formally T), and run-time entities, denoted as
instances (formally I). Collectively, they are referred to as entities. At run-time,
types can be instantiated to create one or more corresponding instances. For

114

the purpose of this paper, object instance (cf. Definition 1) and lifecycle process
instance (cf. Definition 2) definitions are required. The corresponding type defi-
nitions can be found in [11]. The “dot” notation is used to describe paths, e.g.,
for accessing the name of a particular object instance. ⊥ describes the undefined
value.

Definition 1. An object instance ωIhas the form (ωT , n, ΦI , θI) where the
following definitions hold:

– ωT refers to the object type from which this object instance has been gener-
ated.

– n is the name of the object instance.
– ΦI is a set of attribute instances φI , where φI = (n, κ, vκ), with n as the

attribute instance name, κ as the data type (e.g., string, bool, integer), and
vκ as the value of the attribute instance.

– θI is the lifecycle process (cf. Definition 2) describing object behavior.

An object’s lifecycle process (cf. Definition 2) is responsible for acquiring
data values for the attributes of the object.

Definition 2. A lifecycle process instance θI has the form (ωI , ΣI , Γ I , T I ,
Ψ I , Eθ, µθ) where the following definitions hold:

– ωI refers to the object instance to which this lifecycle process belongs.
– ΣI is a set of state instances σI , with σI = (n, Γ Iσ , T Iσ , Ψ Iσ , µσ) where
• n is the state name.
• Γ Iσ ⊂ Γ I is subset of steps γI .
• T Iσ ⊂ T I is a subset of transitions τ I.
• Ψ Iσ ⊂ Ψ I is a subset of backwards transitions ψI .
• µσ is the state marking.

– Γ I is a set of step instances γI , with γI = (φI , σI , T Iin, T
I
out, P

I , λ, µγ , dγ)
where
• φI ∈ ωI .ΦI is an optional reference to an attribute instance φI from ΦI

of object instance ωI . Default is ⊥.
If φI = ⊥, the step is denoted as an empty step instance.
• σI ∈ ΣI is the state instance to which this step instance γI belongs.
• T Iin ⊂ T Iσ is the set of incoming transition instances τ Iin.
• T Iout ⊂ T Iσ is the set of outgoing transition instances τ Iout.
• P I is a set of predicate step instances ρI , P I may be empty, with
ρI = (γI , λ) where
∗ γI is a step instance.
∗ λ is an expression representing a decision option.

If P I 6= ∅, the step instance γI is called a decision step instance.
• λ is an optional expression representing a computation.
If λ 6= ⊥ , the step instance γI is called a computation step instance.
• µγ is the step marking, indicating the execution status of γI .
• dγ is the step data marking, indicating the status of φI .

115

– T I is a set of transition instances τ I , with τ I = (γIsource , γ
I
target , ext , p, µτ)

where
• γIsource ∈ Γ is the source step instance.
• γItarget ∈ Γ is the target step instance.
• ext := γIsource .σ

I = γItarget .σ
I is a computed property, denoting the tran-

sition as external, i.e., it connects steps in different states.
• p is an integer signifying the priority of the transition.
• µτ is the transition marking.

– Ψ I is a set of backwards transition instances ψI , Ψ I may be empty, with
ψI = (σIsource , σ

I
target , µψ) where

• σIsource ∈ ΣI is the source state instance.
• σItarget ∈ ΣI is the target state instance, σItarget ∈ Predecessors(σI

source).
• µψ is the backwards transition marking.

– Eθ is the event storage for θI , storing execution events εE.
– µθ is the lifecycle process marking.

All sets are finite and must not be empty unless specified otherwise. The function
Predecessors: σI → ΣI determines a set of states from which σI is reachable.
The function Successors is defined analogously.

Note that for the sake of brevity the value of a step γI refers to the value of
the corresponding attribute γI .φI . Furthermore, correctness criteria have been
omitted from Definitions 1 and 2. For the sake of clarity, a lifecycle process is
described by a directed acyclic graph with one start state and at least one end
state. Figure 1 shows object instance Bank Transfer with attributes and the
lifecycle process. The object instance represents a simplified transfer of money
from one account to another. For this purpose, the states and the steps of a
lifecycle process can be used to automatically generate forms. When executing
a process, the auto-generated forms are filled in by authorized users. The PHIL-
harmonicFlows authorization system and its connection to form auto-generation
has been discussed in [1].

As depicted in Figure 1, the state σIInitialized contains steps γIAmount and
γIDate, signifying that values for attributes φ

I
Amount and φ

I
Date are required during

process execution. For the sake of brevity, the properties of an entity (e.g., the
name of a step γ) may be written as a subscript, e.g., γAmount for the first
step in Figure 1. The form corresponding to σIInitialized contains input fields for
steps γIAmount and γ

I
Date. This means a state represents a form, whereas the steps

represent form fields. The φIComment field is an optional field visible to a user due
to the authorization system of PHILharmonicFlows. In state σIDecision, a decision
step γIApproval represents the approval of the bank for the money transfer. The
automatically generated form displays γIApproval as a drop-down field. End states
σIApproved and σ

I
Rejected display an empty form, as the contained steps are empty

(cf. Definition 2). Transitions determine at run-time which attribute value is
required next, an external transition also determines the next state. Backwards
transitions allow returning to a previous state, e.g., to correct a data value.

116

Bank Transfer - Decision

Bank Transfer - Initialized

Transfer

Initialized

AmountAmount DateDate

Decision

ApprovalApproval

$Approval == true

$Approval == false

Approved

Rejected

Amount : IntegerAmount : IntegerAmount : Integer

Date : DateDate : DateDate : Date

Approval : BoolApproval : BoolApproval : Bool

Comment : StringComment : StringComment : String

ObjectObject

AttributesAttributes

Lifecycle
Process
Lifecycle
Process

StateState

StepStep

Predicate StepPredicate Step

Backwards TransitionBackwards Transition

TransitionTransition

Amount

Date

Submit

Comment Approved

generates generates

Submit

FormForm Form FieldForm Field

External TransitionExternal Transition

Fig. 1. Example object and lifecycle process of a transfer

3 Lifecycle Process Operational Semantics

Data acquisition in PHILharmonicFlows is achieved through forms, which can
be auto-generated from lifecycle process models θI . A form itself is mapped
to a state σI of the lifecycle process θI , form fields are mapped to steps γI .
As a consequence, the operational semantics emulate the behavior of electronic
and paper-based forms, following a “best of both worlds”-approach. Paper-based
forms provide a great overview over the form fields, i.e., every form field may
be viewed at any point in time. Furthermore, they provide a reasonable default
structure, but allow filling form fields at any point in time and in any order,
e.g., starting to fill in form fields in the middle of the form is possible. In turn,
electronic forms usually provide less overview, i.e., viewing subsequent forms is
not possible before having filled out all mandatory fields in the current form. In
contrast to paper-based forms, however, electronic forms are able to only dis-
play relevant fields, especially in context of decision branching. For example, an
electronic anamnesis form at a physician’s office may skip the questions related
to pregnancy entirely if the patient is male. Additionally, electronic forms allow
for data values to be easily changed as well as input verification, e.g., ensur-
ing that a date has the correct format or all mandatory form fields possess a
value. PHILharmonicFlows combines the advantages of both paper-based and
electronic forms, providing flexibility in entering data while ensuring a correct
lifecycle process execution.

3.1 Lifecycle Process Execution

For realizing the combined benefits, the progress of a lifecycle process θI is
determined by its active state σIA , i.e., marking σI .µσ = Activated . Only one
state σI may be active at any point in time. Per default, the form of the active

117

state is displayed to a user when executing a lifecycle process θI . However, the
user may choose to display forms of other states. When processing θI , the active
state changes, depending on data availability and decision results. For example,
in regard to Figure 1, starting the execution of the lifecycle process activates
σIInitialized. If values for steps γ

I
Amount and γ

I
Date are available (cf. Section 3.2),

σIInitialized may be marked as µσ = Confirmed , and the next state σIDecision
may become active, i.e., σIDecision.µσ = Activated . Depending on the value of
γIApproval, either σ

I
Approved or σIRejected becomes active. As both states are end

states, the execution of θI terminates. The active state possesses a crucial role in
the execution of θI , as consequences from data acquisition or decisions are only
evaluated for the active state. For example, providing value true to γIApproval
does not trigger the decision, if σIInitialized is the currently active state. This
is to avoid inconsistent processing states, e.g., because a previous decision may
make filling out a state σI obsolete due to dead-path elimination [11].

For states Successors(σI
A), data values may be entered, but processing only

occurs once a state becomes active. All successor states possess marking µσ =
Waiting . If a user enters values for steps γI , these values will be stored and
taken into account if the corresponding state γI .σI becomes active. To indicate
the status of the corresponding attribute value, steps possess a data marking dγ .
When setting data value for a step γIhasV alue, where the state instance σI has
µσ = Waiting , the data marking of γIhasV alue is set to dγ = Preallocated . Should
σI become active during process execution, dγ = Preallocated will indicate that
a value is present and will not be required anymore (cf. Section 3.2).

States that have already been processed, i.e., Predecessors(σIA), will either
have µσ = Confirmed or µσ = Skipped . States with marking µσ = Confirmed
have previously been active, whereas skipped states have undergone a dead-path
elimination. For reasons of data integrity, the values of steps in skipped or con-
firmed states must not be altered at any point in time. If allowed, inconsistencies
and unpredictable execution behavior may occur. For example, changing values
of decisions steps in an uncontrolled way might activate currently eliminated
states, whereas currently active states become eliminated. However, it must be
possible to correct mistakes for previously entered and accidentally confirmed
data. Therefore, backwards transitions (cf. Definition 2) allow for the reactiva-
tion of confirmed states in a controlled way, where the data may be altered in
a consistent and safe way and subsequent changes in decisions can be handled
properly.

3.2 State Execution

While PHILharmonicFlows is capable of generating forms from states and steps,
these forms are static. However, there are dynamic aspects to a form, e.g., the
indication which value is required next or which external transition or backwards
transition may be committed. For this purpose, a lifecycle process θI provides
execution events εE and an event storage Eθ. Execution events are dynamically
created when processing a lifecycle process θI . When auto-generating a form,

118

the static form is enriched with dynamic information from Eθ and displayed
to the user. Execution events have different subtypes, namely request events,
completion events, and invalidation events. When request events are created,
they are stored in Eθ and are then used to enrich the form. Completion and
invalidation events remove request events from Eθ, when a request event are
either fulfilled or no longer valid, respectively. The usage of the event storage Eθ
in conjunction with the generated static forms allows multiple users access to
the same form, due to the centralized storage of the dynamic form data. Using
Eθ further allows preserving dynamic data over multiple sessions, i.e., a user
may partially fill out a form, close it and do something else, and later return
and continue where the user previously stopped. It is also possible that another
user finishes filling out the form. In general, storing execution events εE ensures
consistency regardless of any user interaction with the forms.

Bank Transfer - Initialized

Amount*

Date

Submit

Comment

Fig. 2. Form enriched with execu-
tion events

The creation and removal of execution
events is primarily determined by the respec-
tive marking µ of states, steps, transitions,
and backwards transitions. For steps with
an attribute (i.e., γI .φI 6= ⊥), data mark-
ing dγ is also taken into account. For exam-
ple, if step γIAmount of Figure 1 has marking
µγ = Enabled , but γIAmount.dγ = Unassigned
holds, an attribute value request event is cre-
ated and stored in Eθ after some intermediate
processing steps. If a user access the form for
σIInitialized, form field for γIAmount is tagged
with an asterisk, indicating that a value is
mandatory (cf. Figure 2). As soon as the user provides a value for the γIAmount
form field , the data marking for γIAmount is updated to dγ = Assigned. This
indicates that a value has been successfully provided for γIAmount. As a conse-
quence, the attribute value request event in Eθ is no longer necessary. Therefore,
setting dγ = Assigned triggers a completion event removing the attribute value
request event from Eθ. After the completion event has occurred, more markings
change in a cascading fashion, until the next step γIData receives µγ = Enabled.
The data marking γIDate.dγ = Unassigned triggers the same chain of events and
marking changes as with γIAmount.

To illustrate the automatic handling of preallocated data values, it is as-
sumed that another user has already provided value false for γIApproval in state
σIDecision, i.e., γ

I
Approval.dγ = Preallocated holds. As σIDecision is not currently the

active state (i.e., µσ = Waiting), decision step γIApproval is not evaluated. When
reaching γIApproval from γIDate after a state change and is marked with µγ =
Enabled , no attribute value request event is created due to dγ = Preallocated .
Instead, the data marking is immediately changed to dγ = Assigned. Conse-
quently, the completion event for providing a value is omitted. As γIApproval is a
decision step, value false subsequently leads to the activation of state σIRejected
(cf. Figure 1), in which θI terminates. Note that the end state remains active

119

despite the termination of the lifecycle process instance. In general, the oper-
ational semantics of lifecycle processes ensure that a previously provided value
requires no further user interaction by default. However, a user may still change
the value afterwards should he wish to do so. Overall, the user may flexibly enter
and alter data and the operational semantics ensures data integrity.

Continuing the example, where currently the lifecycle process has termi-
nated and σIRejected is the active state, a user decides he wants to revise his
decision for approval and thus change the value of γIApproval from false to
true. After σIRejected had become active, two backwards transition instances
ψIToInit and ψIToDec became confirmable, i.e., their marking changed to µψ =
Confirmable. As a consequence, two backwards transition confirm request events
are first created, one for each backwards transition, and then stored in Eθ.

Rejected

To State Initialized To State Decision

Fig. 3. Backwards transitions

This allows going back to state
σIInitialized, using ψ

I
ToInit, or go back

to σIDecision, using ψ
I
ToDec. However,

only one state may be active at once.
Therefore, only one backwards tran-
sition may be taken. To revise the
value of γIApproval, ψ

I
ToDec must be

confirmed. Confirming ψIToDec causes
its marking to change to µψ = Ready .
Analogously to a step, a completion
event is created, which removes the
corresponding backwards transition
confirm request event from Eθ. Subse-
quently, σIRejected is marked as µσ =

Waiting and σIDecision is marked as
µσ = Activated, which allows altering the value of γIApproval to true. As σ

I
Rejected

is no longer active, ψIToInit and ψ
I
ToDec become marked as µψ = Waiting . Re-

setting the markings of both ψIToInit, ψ
I
ToDec, and σ

I
Rejected to Waiting enables

their reuse, e.g., if the value of γIApproval remains unchanged and the same path
is taken again.

With state σIDecision becoming active again, it is possible to change the value
of σIApproval. However, the backwards transition confirm request event belonging
to ψIToInit is still stored in Eθ, despite ψIToInit having been marked with µψ =
Waiting , i.e., confirming ψIToInit is no longer possible. Obviously, this constitutes
an inconsistency between the forms and the lifecycle process. The form displays a
button with the option that ψIToInit can be confirmed, but on pressing the button
the PHILharmonicFlows system produces an error and other, possibly worse,
side effects. A a consequence, the operational semantics include invalidation
events, with the purpose to remove invalid or obsolete execution events from
event storage Eθ. An invalidation event occurs when entities with a request
event, e.g., backwards transitions, are not successfully completed, but become

120

changed due to other circumstances, e.g., the confirmation of another backwards
transition.

Request events, completion events, and invalidation events are used in many
other situations than discussed above. The principles, however, are the same,
and, embedded in the overall operational semantics, provide a robust, but flexible
way to acquire data values for lifecycle processes. The imperative-style modeling
of lifecycle processes, from which forms can be auto-generated directly, signifi-
cantly reduces modeling time and efforts. The operational semantics provide the
necessary flexibility to users interacting with the forms. Furthermore, the use of
forms and the emulation of standard form behavior simplifies the usage of the
PHILharmonicFlows system for non-expert users.

Overall, this section described the functional aspects of the operational se-
mantics of lifecycle processes. The technical implementation of these operational
semantics with the Process Rule Framework is presented in Section 4.

4 The Process Rule Framework

In the description of the operational semantics of lifecycle processes, at the low-
est level, progress is driven by the change of markings. Marking changes elicit
the creation of execution events, which, in turn, results in user actions, e.g., the
provision of a data value for an attribute. This user interaction is reflected in
the lifecycle process by setting new markings. This may be viewed as a chain
of events, and, consequently, event-condition-action rules are used as the basis
for the technical implementation of the operational semantics. In PHILharmon-
icFlows, a specialized variant of ECA rules, denoted as process rules, is employed.
Process rules and the means to specify them constitute one part of the process
rule framework. To create an execution sequence such as the one described in
Section 3.2, process rules need to form process rule cascades, i.e., a rule triggers
an event, which may trigger another rule, which again triggers an event. Further-
more, process rules are uniquely suited to deal with the different eventualities
emerging during the execution of lifecycle processes. For example, a state σI
may become active in context of normal process execution progress or due to
the use of a backwards transition ψI . Subsequently, different follow-up measures
may be required, e.g., the resetting of markings for steps γI ∈ σI .Γ I in case the
backwards transition became activated.

The basic definition of a process rule is shown in Definition 3. In order to
distinguish the symbols from symbols used in the definition object instances,
superscript R is used.

Definition 3. A process rule pRhas the form (ε, eT , CR, AR) where the following
definitions hold:

– ε is an event triggering the evaluation of the rule.
– e is an entity type, e.g., a step type γT .
– CR is a set of preconditions in regard to eT .
– AR is a set of effects.

121

Process rules pR may be evaluated, i.e., their preconditions CR are checked
and, if all are fulfilled, the effects are applied. An evaluation is triggered when
the event ε occurs. Events ε are always raised by a particular entity instance
eI , e.g., a step γI or an transition τ I . eT is an entity type that provides the
context for defining conditions and effects. Furthermore, it provides an implicit
precondition, meaning a rule is not evaluated if the entity instance eI raising
ε was not created from eT . Preconditions CR check different properties of an
entity, e.g., whether the entity has a specific marking. Effects AR apply different
effects to an entity, e.g., setting the marking of an entity. Note that preconditions
and effects are not limited to properties belonging to instances of eT . They may
also access or set properties of neighbor entities. For example, a rule defined
for a step γT may have effects that set markings for its outgoing transitions
τ Iout ∈ γI .T Iout.

Fig. 4. Fluent interface definition of a marking rule in code

In the PHILharmonicFlows implementation, process rules are created in code.
Figure 4 shows an example of how a process rule is represented in code. Process
rules are often subject to change, as new features for PHILharmonicFlows are
added or errors in lifecycle process execution are resolved. In order to be able
to quickly adapt, the process rule framework uses a fluent interface for process
rule specification. This allows for a high readability and maintainability.

The operational semantics introduced in Section 3 allow identifying different
use cases for process rules. For example, one type of process rule raises execution
events based on specific markings, while another type reacts to user input and
sets appropriate markings. Consequently, process rules are subdivided based on
their purpose. The type determines the general type of preconditions and effects,
e.g., preconditions of marking rules check predominantly for specific markings.
The different types of process rules are summarized in Table 1. Request rule,
completion rule, and invalidation rule are subsumed with the term execution
rule (ER).

122

Rule Abbreviation Event Preconditions Effects

Marking Rule MR Marking Event Markings Markings

Request Rule QR Marking Event Markings Request Event

Completion Rule CR Marking Event Markings Completion Event

Invalidation Rule IR Marking Event Markings Invalidation Event

Reaction Rule RR User Input Event User Input Markings

Table 1. Overview over the types of process rules

The most common event that is raised during the execution of a lifecycle
process instance is amarking event. An entity instance eI raises a marking events
whenever its marking eI .µ is changed. In order to determine which process rule
needs to be applied, the event is gathered by the process rule manager (PRM)
of the lifecycle process. The process rule manager is a small and lightweight
execution engine for process rules and constitutes the other part of the process
rule framework. Figure 5 shows a schematic view of the process rule manager
and its interactions with the lifecycle process and the (auto-generated) forms.

State State State

StepStep StepStep StepStep StepStep StepStep

AttributeValueRequestEvent

AttributeValueRequestEvent

AttributeValueRequestEvent

TransitionConfirmRequestEvent

Object

Execution Event
Storage Eθ

Process Rule Manager

Forms

Static form data
and execution events

User input events
Marking events

Reaction rule application
Marking rule applicationCascading rule application

Request events

Completion/invalidation events

Data (Attribute Values, Transition Cobfirmations,..)

1

2 3

4

5

Fig. 5. Process rule manager and schematic process rule application

Starting at 1© in Figure 5, data has been entered into a form field. The data
is then passed onto the lifecycle process θI and the corresponding step γI . As γI
has received a value, the step raises a user input event 2©. The event is passed
on to the process rule manager, which receives all events from its corresponding

123

lifecycle process θI and evaluates appropriate rules, i.e., process rules pR with
pR.eT = σT are not evaluated if the entity creating the event has type γT .
The implicit precondition significantly reduces the search space for process rule
application and must not be specified by a programmer. Once the PRM has
identified all currently applicable rules, the effects of each rule are applied. In
the example, the PRM identifies a reaction rule and applies its effects to the
appropriate entities in the lifecycle process 3©.

Applying the effects from the reaction rule application raises marking events,
which trigger a completion rule and a marking rule in the PRM. The completion
rule raises a completion event 4©, removing the request event for the mandatory
form field from event storage Eθ of θI . In parallel, the marking rule sets markings
for the outgoing transitions T I of step γI . This again creates marking events,
resulting in a cascade of marking rules, i.e., the PRM alternates between 2©
and 3© in Figure 5. The process rule cascade stops when the next step becomes
marked with µγ = Enabled. This raises a request event, which is deposited in
event storage Eθ 4©. When a user views a form, the updated event storage Eθ
and the static form data is combined into a new form 5©. When the user enters
data for the next form field, the cycle starts again at 1©.

When a user fills out a form, the form is expected to tell the user immedi-
ately which form field is required next after providing data for a form field. Long
processing times are prohibitive for the usability of the PHILharmonicFlows sys-
tem. In order to have full control over processing times and the tight connection
of process rules with lifecycle process entities, it was decided to implement the
PRM as a custom, lightweight rule engine. A custom PRM implementation offers
a fine-grained control over process rule application. By default, the PRM handles
events in the order in which they arrive (FIFO principle). However, in several
cases, the handling of specific events needed to be delayed or accelerated in order
to ensure a form processing in compliance with the operational semantics. For
example, an event eτ triggering the transition τ I from a source state σIsource
to a target state σItarget is, under certain circumstances, raised before all steps
γI ∈ σIsource.Γ

I have been processed. This results in errors in the application
of the process rules, as the target state σItarget already received µσ = Activated

when events from γI ∈ σIsource.Γ I arrive at the PRM. To prevent such errors,
the handling of the state transition event eτ must be delayed until all steps γI
in the source state σIsource have finished processing. As a consequence, the PRM
was extended with a priority queue that retains the FIFO principle, but allows
assigning different priorities to events, accelerating or delaying them as needed.

Besides the advantages for the application of process rules, the lightweight
nature of the PRM also proves beneficial for the transition of PHILharmon-
icFlows to a microservice-based architecture. The PRM was initially conceived
as a monolithic rule engine, i.e., all lifecycle processes use the same instance of
the PRM. Currently, PHILharmonicFlows is moving towards a hyperscale archi-
tecture [2], based on a microservice framework. A microservice is a lightweight
and independent service that performs single functions and interacts with other
microservices in order to realize a software application. In this new hyperscale

124

architecture, an object and its lifecycle process are implemented as a single
microservice. A continued use of a single PRM instance generates a significant
performance overhead due to the necessary message exchanges between the PRM
and the microservices. The single PRM instance is a bottleneck and puts a limit
on the scalability of the microservice-based architecture, i.e., it would no longer
be warranted to designate the PHILharmonicFlows system as hyperscale. Fur-
thermore, the communication overhead and the delays of process rule application
in the PRM, due to the high number of events simultaneously created by the
object instance microservices, would negatively affect the performance of the
auto-generated forms.

Fortunately, the lightweight nature of the PRM offers a satisfactory solution.
By integrating an instance of the PRM into the microservice of each object in-
stance, no message exchanges between PRM and lifecycle process are required.
Furthermore, a PRM instance is only responsible for exactly one lifecycle process
instance. This eliminates the delays in rule application due to the processing
of other lifecycle processes. This solution offers sufficient performance for dis-
playing dynamic forms while retaining the hyperscale property of the PHILhar-
monicFlows microservice-based architecture. The approach to integrate a PRM
instance into a microservice will also be used with the implementation of coor-
dination processes, where it will provide the same benefits.

5 Related Work

Opus [5,7] is a data-centric process management system that bases its processes
on Petri nets. Petri nets are a popular and well-established formalism for model-
ing business processes. Additionally, Petri nets provide several verification tech-
niques, e.g., soundness checks or deadlock detection, which may also be applied
to verify process model correctness. In Opus, the Petri net formalism is extended
with structured data tuples, which substitute the places of a standard Petri net.
The transitions of this extended Petri net provide operations on the data, e.g.,
operations derived from operations of relational algebra. The Opus approach
does not support automatically generating forms from process models. Further-
more, Petri nets are inherently more rigid in their execution and do provide the
same built-in flexibility as PHILharmonicFlows and the operational semantics
of lifecycle processes. However, Opus is capable to explicitly model the different
execution paths to provide flexible process execution. Opus provides an imple-
mented prototype [6].

Case Handling [15,17] defines a case in terms of activities and data objects.
Activities are ordered in an acyclic graph in which edges represent precedence
relations. To execute an activity, all precedence relations before the activity
must be fulfilled. Furthermore, the execution of an activity is restricted by data
bindings. A data binding represents a condition so that a data object must have
a specific value at run-time. The values of the data objects are acquired by
forms, which are associated with activities. While case handling possesses forms,
it is unclear whether these can be auto-generated from the activities or must

125

be created manually. While both case handling and PHILharmonicFlows use
an acyclic graph to represent processes, the operational semantics for lifecycle
processes in PHILharmonicFlows allows for data to be acquired at any point in
time. A case acquires data by activities and that activities have a precedence
relation, the same flexibility in regard to data acquisition is not possible.

The Guard-Stage-Milestone (GSM) meta-model [9] is a declarative notation
for specifying artifact-centric processes [3,8,12]. An artifact consists of an infor-
mation model, i.e., attributes and a lifecycle model. The lifecycle model is spec-
ified using GSM. Its operational semantics are based on Precedent-Antecedent-
Consequent rules and possess different, equivalent formulations [4]. In GSM,
tasks provide the means to write attributes and acquire data. As a declarative
language, guards, stages and milestones may be used in such a way that flex-
ible data acquisition, within certain constraints, becomes possible. Tasks may
be defined so that attributes may be written at any point in time and may be
restricted, if necessary. Lifecycle processes defined in GSM are able to react to
the newly acquired data and may be more flexible than lifecycle processes in
PHILharmonicFlows. However, as a drawback much of this flexibility in data
acquisition must be implemented by the process modeler. Furthermore, the is no
auto-generation of forms from GSM-specified lifecycle models within the artifact-
centric approach.

6 Summary and Outlook

The technical implementation of the operational semantics of object-aware pro-
cess management is achieved by process rules, which govern the changing of
markings and the creation of execution events. Therefore, Section 4 presents the
process rule framework, which is important for two aspects. First, the process
rule framework makes sure lifecycle processes execute correctly and also provides
the technical basis for the operational semantics of coordination processes in
PHILharmonicFlows. Coordination processes, as the name suggests, coordinate
lifecycle processes of object, so that complex business processes can be realized.
Its operational semantics will also be based on the process rule framework. Sec-
ond, a performant, efficient and lightweight technical basis for enacting lifecycle
processes and coordination processes is crucial for the transition of PHILhar-
monicFlows to a hyperscale architecture. The operational semantics of lifecycle
processes provide a flexible acquisition of data, while modeling efforts are mini-
mal due to an modeling style that is akin to an imperative style. The flexibility
is not provided by the lifecycle process model, but by the operational seman-
tics. The model of the lifecycle process and the operational semantics together
provide the means to auto-generate dynamic forms.

References

1. Andrews, K., Steinau, S., Reichert, M.: Enabling Fine-grained Access Control in
Flexible Distributed Object-aware Process Management Systems. In: 21st IEEE
Int’l Conf. on Enterprise Distributed Object Computing (EDOC) (2017)

126

2. Andrews, K., Steinau, S., Reichert, M.: Towards Hyperscale Process Management.
In: 8th Int’l Workshop on Enterprise Modeling and Information Systems Architec-
tures (EMISA). pp. 148–152. CEUR Workshop Proceedings, CEUR-WS.org (2017)

3. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Busi-
ness Operations and Processes. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 32(3), 3–9 (2009)

4. Damaggio, E., Hull, R., Vaculín, R.: On the Equivalence of Incremental and Fix-
point Semantics for Business Artifacts with Guard–Stage–Milestone Lifecycles. In-
formation Systems 38(4), 561–584 (2013)

5. Haddar, N., Tmar, M., Gargouri, F.: A Framework for Data-Driven Workflow Man-
agement: Modeling, Verification and Execution. In: 24th Int’l Conf. on Database
and Expert Systems Applications (DEXA). vol. 8055, pp. 239–253. Springer (2013)

6. Haddar, N., Tmar, M., Gargouri, F.: Opus framework: A Proof-of-Concept Imple-
mentation. In: IEEE/ACIS 14th Int’l Conf. on Computer and Information Science
(ICIS). pp. 639–641 (2015)

7. Haddar, N., Tmar, M., Gargouri, F.: A Data-centric Approach to Manage Business
Processes. Computing 98(4), 375–406 (2016)

8. Hull, R., Damaggio, E., de Masellis, R., Fournier, F., Gupta, M., Heath,III, Fenno
Terry, Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vac-
ulín, R.: Business Artifacts with Guard-Stage-Milestone Lifecycles: Managing Ar-
tifact Interactions with Conditions and Events. In: 5th ACM Int’l Conf. on Dis-
tributed Event-based System (DEBS), 2011. pp. 51–62. ACM (2011)

9. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath,III, Fenno Terry, Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculín, R.: Introduc-
ing the Guard-Stage-Milestone Approach for Specifying Business Entity Lifecycles.
In: 7th Int’l Workshop on Web Services and Formal Methods (WS-FM) 2010. Lec-
ture Notes in Computer Science, vol. 6551, pp. 1–24. Springer (2011)

10. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and Data
at the Micro Level. In: 12th Int’l Working Conf. on Business Process Modeling,
Development and Support (BPMDS). pp. 201–215. Lecture Notes in Business In-
formation Processing, Springer (2011)

11. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice 23(4), 205–244 (2011)

12. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Speci-
fication. IBM Systems Journal 42(3), 428–445 (2003)

13. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: 11th IEEE Int’l Conf. on Enterprise Distributed
Object Computing (EDOC). p. 287 (2007)

14. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus Declarative Process Modeling Languages: An Empirical Investigation.
In: Business Process Management Workshops: BPM 2011 Int’l Workshops, Revised
Selected Papers, Part I. pp. 383–394. Springer (2012)

15. Reijers, H.A., Rigter, J.H.M., van der Aalst, W.M.P.: The Case Handling Case.
International Journal of Cooperative Information Systems 12(03), 365–391 (2003)

16. Steinau, S., Künzle, V., Andrews, K., Reichert, M.: Coordinating Business Pro-
cesses Using Semantic Relationships. In: 19th IEEE Conf. on Business Informatics
(CBI). pp. 33–43. IEEE Computer Society Press (2017)

17. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New
Paradigm for Business Process Support. Data & Knowledge Engineering 53(2),
129–162 (2005)

127

