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Abstract—Managing technical debt effectively to prevent it 

from accumulating too quickly is of great concern to software 

stakeholders. To pay off technical debt regularly, software 

developers must be conscious of the existence of technical debt 

items. The first step is to make technical debt explicit; that is the 

identification of technical debt. Although there exist many kinds 

of static source code analysis tools to identify code-level technical 

debt, identifying non-code-level technical debt is very challenging 

and needs deep exploration. This paper proposed an approach to 

identifying non-code-level technical debt through issue tracking 

data sets using natural language processing and machine learning 

techniques and validated the feasibility and performance of this 

approach using an issue tracking data set recorded in Chinese 

from a commercial software project. We found that there are 

actually some common words that can be used as indicators of 

technical debt. Based on these key words, we achieved the 

precision of 0.72 and the recall of 0.81 for identifying technical 

debt items using machine learning techniques respectively. 

Keywords—technical debt; identification; issue tracking data 

sets; natural language processing; machine learning 

I. INTRODUCTION 

Technical debt refers to delayed tasks and immature artifacts 
that constitute a “debt” because they incur extra costs in the 
future in the form of increased cost of change during evolution 
and maintenance [1]. An appropriate amount of technical debt 
would accelerate the process of software development; however, 
too much of it would impede the progress and even abort the 
project [2]. Typically, some startup software companies tend to 
incur technical debt strategically to speed up the development at 
the early stage of development process for the purpose of 
capturing the market. But with the growth of the size and 
complexity of the software, it may become increasingly more 
difficult to maintain and evolve the product due to intertwined 
dependencies between modules or components without paying 
off technical debt regularly. As a result, software stakeholders 
need to pay off technical debt regularly to prevent it from 
accumulating too quickly. Different from bugs or defects 
existing in a software system, technical debt is invisible as the 
software often works well from users’ perspective and even 
developers are often unconscious of the existence of technical 
debt. The invisibility of technical debt increases the risks of rigid 
software design and huge maintenance cost in the future 
significantly. Therefore, it is essentially critical for development 
teams to be able to identify technical debt items existing in the 
current software system at any point in time as it is the 
prerequisite to conduct other management activities of technical 
debt including measurement of technical debt, estimation of 

effort to be expended, payment of technical debt, risk evaluation, 
etc. Once technical debt can be identified systematically, 
software development teams would be able to estimate future 
budget, prioritize future tasks, allocate limited resources and 
evaluate potential risks. They could also make informed 
decisions about when technical debt should be paid off to 
maximize their profits. 

Due to the importance of identification of technical debt, a 
number of studies empirically explored various approaches to 
detecting technical debt. Some of these researches focused on 
employing source code analysis techniques to detect technical 
debt. Code smells and automatic static analysis (ASA) are two 
most-used source code analysis techniques for the identification 
of technical debt. Code smells was first introduced by Fowler et 
al. to describe the violation of object-oriented design principles 
(e.g., abstract, encapsulation and inheritance) [3], whereas ASA 
techniques aim at identifying violations of recommended 
programming practices that might degrade some of software 
quality attributes (e.g., maintainability, efficiency). 

Other studies aimed to identify technical debt of large 
granularity that’s undetectable by source code analysis 
techniques, such as architecture and requirement technical debt 
[10] [11] [12] [13]. Compared to code-level technical debt, the 
identification of non-code-level technical debt is not studied 
sufficiently and the approaches are limited. To our knowledge, 
none of existing approaches can identify all types of technical 
debt. 

As a complement to existing approaches, we try to identify 
non-code-level technical debt through issue trackers. We hope 
to acquire developers’ points of view on technical debt and 
understand how they communicate technical debt in issue 
trackers since they use issue trackers to record, track, prioritize 
various kinds of issues in software projects. Further, developers’ 
standpoints of technical debt will in turn help refine our 
understanding of technical debt and should be taken into 
consideration for an improved definition of technical debt. 

However, it is difficult and impractical to identify technical 
debt manually through issue trackers due to substantial effort 
involved, especially when a large project comprises a large 
number of issues. In this context, we exploited natural language 
processing (NLP) and machine learning techniques to automate 
the process. NLP techniques were applied to extract features 
from unstructured text data and machine learning techniques 
were used to decide whether a certain issue is an instance of 
technical debt or not. We performed an exploratory study on a 
commercial software project to validate the efficacy of our 
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approach to the identification of technical debt through issue 
trackers. Experimental results demonstrate that our approach is 
effective in identifying non-code-level technical debt, especially 
requirement debt, design debt, and UI debt, which cannot be 
detected by source code analysis techniques. 

We address the following questions through this research: 

• RQ1: How do software practitioners communicate 
technical debt issues in issue trackers? 

• RQ2: Are there text patterns that are an indication that 
technical debt exist which can be used to identify potential 
technical debt using NLP and machine learning techniques 
automatically? 

The rest of this paper is organized as follows: Section II 
discusses related work. Section III describes our approach. 
Section IV reports and analyzes experimental results of our 
exploratory study. Section V presents the threats to validity. 
Finally, we conclude our research and envision future work in 
Section VI. 

II. RELATED WORK 

A. Identification of Technical Debt 

Many researches have been done to identify code-level 
technical debt. This kind of technical debt can be detected using 
static program analysis tools based on the measurement of 
various source code metrics. Marinescu proposed metric-based 
detection strategies to help engineers directly localize classes or 
methods affected by the violation of object-oriented design 
principles and validated the approach on multiple large 
industrial case studies [4]. Munro et al. refined Marinescu’s 
detection strategies by introducing some new metrics and 
justification for choosing the metrics and evaluated the 
performance of the approach in identifying two kinds of code 
smells (lazy class and temporary field) in two case studies [5]. 
Olbrich et al. investigated the relationship between two kinds of 
code smells (god class and shotgun surgery) and maintenance 
cost by analyzing the historical data of two major open source 
projects, Apache Lucene and Apache Xerces 2 J [6]. Wong et al. 
proposed a strategy to detect modularity violations and 
evaluated the approach using Hadoop and Eclipse [7]. Besides, 
some researchers explored identifying technical debt through 
comments in source code [8] [9]. 

Other researches aimed at exploring approaches to 
identifying other types of technical debt such as architecture 
technical debt. Brondum et al. proposed a modelling approach 
to visualizing architecture technical debt based on analysis of the 
structural code [10]. Li et al. proposed to use two modularity 
metrics, Index of Package Changing Impact(ICPI) and Index of 
Package Goal Focus(IPGF), as indicators of architecture 
technical debt [11]. Further they proposed an architecture 
technical debt identification approach based on architecture 
decisions and change scenarios [12]. The work closest to ours is 
the work by Bellomo et al., where manual examination was 
conducted on 1,264 issues in four issue trackers from open 
source and government projects and 109 examples of technical 
debt were identified using a categorization method they 
developed [13]. The major difference is that we partially 
automated the process of identification while they identified 

technical debt items manually. To our knowledge, our study is 
the first one that applies NLP and machine learning techniques 
to detect technical debt through issue trackers. 

B. Mining Issue Tracking Databases 

Issue tracking systems are widely used in open source 
projects as well as in software industry to record, triage and track 
different kinds of issues occurred during the lifecycle of 
software: bugs finding, defects fixing, adding new features, 
future tasks, requirements updating, etc. They play an important 
role in facilitating software development teams to manage 
development and maintenance activities and thus promoting the 
success of software projects. Some researches have focused on 
mining issue tracking databases to retrieve valuable information 
for improved definition, development management, quality 
evaluation, predictive models, etc. 

Antoniol et al. applied NLP and machine learning techniques 
(alternating decision trees, naïve Bayes classifier, and logistic 
regression) to automate the process of distinguishing bugs from 
other kinds of issues, compared the performance of this 
approach with that of using regular expression matching and 
concluded machine learning techniques outperforms regular 
expression matching in terms of predictive accuracy [14]. 

Runeson et al. developed a prototype tool which detects 
duplicate defect reports in issue tracking systems using NLP 
techniques, evaluated the identification capabilities of this 
approach in a case study and concluded that about 2/3 of the 
duplicates can possibly be found using this approach [15]. Wang 
et al., Jalbert and Weimer, Sun et al., Sureka and Jalote 
performed similar research to address the same problem [16] 
[17] [18] [19]. 

Other work focused on concerned aspects of software quality 
attributes, say security. Cois et al. proposed an approach to 
detecting security-related text snippets in issue tracking systems 
using NLP and machine learning techniques [20]. 

III. METHOD 

For this research, we cooperated with a local software 
company to access the issue data set of a commercial software 
product which have been in development for more than two 
years rather than just using issue data sets from open source 
software projects in order to make the classifier we developed 
more adaptable to the style of issue data from commercial 
software products. The issues are recorded mainly in Mandarin 
with a few English words as the developers of this product are 
Chinese. 

A. Phase 0: Exporting issue data 

We first exported the issue data set and saved it in a 
spreadsheet which makes it easier for researchers to read the 
issues and to process the data. The fields or variables of the data 
set we used are id, type, priority, state, summary, description and 
label. We also tuned the character coding format so that Chinese 
characters can be displayed normally and removed issues with 
messy code to render the data set clean and tidy. Finally, we got 
8,149 issues in total. Figure 1 shows an overview of our 
approach. 
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Fig. 1. Approach Overview 

B. Phase 1: Tagging issues manually 

We tagged each issue or task in the issue data set as technical 
debt or not technical debt manually by reading the summary and 
description based on the following classification criteria: 

1.   Is it a request for requirement change from the client? 

If yes, we definitely tag this issue as not technical debt. 

2.    Is it a task to add new functions or introduce new features 
to the product? 

If yes, we also definitely tag this issue as not technical debt. 

3.   The description of the issue is too short or insufficient to 
decide whether the issue is a technical debt item. 

In this case, we tag this issue as not technical debt. 

4.  Is it a defect that important and critical functions or 
features are not implemented correctly? 

If yes, we tag this issue as not technical debt. 

5.  Is it a defect that is not critical from the client’s 
perspective but weakens the performance and capabilities of the 
system and will be fixed in the future? 

If yes, we tag this issue as defect debt. 

6.     Is it a task to redesign some function or feature as current 
design does not meet or meet the requirement partially? 

If yes, we tag this issue as requirement debt. 

7.    Is it a limitation of design that may pose a threat to the 
performance of the system or to the evolution and maintenance 
of the system? 

If yes, we tag this issue as design debt. 

8.    Is it an issue related to bad coding practices such as dead 
code and no proper comments? 

If yes, we tag this issue as code debt. 

9.    Is it a UI related issue such as inconsistent UI style or 
ugly UI elements that degrades user experience? 

If yes, we tag this issue as UI debt. 

10.   Is it a limitation of design in architecture level that may 
exert a negative impact on the performance of the system or on 
the evolution and maintenance of the system such as the 
violation of modularity? 

If yes, we tag this issue as architecture debt. 

The 10 cases listed above are the typical cases we 
encountered when tagging the issues but do not cover all the 

Label Subtype Description 

Not Technical 

Debt 

Requirement Change The request for requirement change from the client 

New Features Tasks to add new functions or introduce new features 

Insufficient Description The description is insufficient to make a decision 

Critical Defects Critical functions or features are not implemented correctly 

Technical Debt 

Defect Debt Temporarily tolerable defects that will be fixed in the future 

Requirement Debt Requirements are not implemented accurately or implemented partially 

Design Debt The violation of good object-oriented design principles such as god class and long method 

Code Debt Bad coding practices such as dead code or no proper comments 

UI Debt UI related issues such as inconsistent UI style or ugly UI elements 

Architecture Debt Design limitation in architecture level such as the violation of modularity 

 

Issue 

Tracking 

Database 

Export Issue 

Data 

Manual 

Analysis and 

Tagging 

Extract Key 

Words 

Naïve Bayes 

Classification 
Extract 

Features 

TABLE I.  THE CLASSIFICATION CRITERIA OF ISSUES 

TABLE I.   
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types of issues existing in the issue tracker. Actually, some 
issues can be tagged as either technical debt or not technical 
debt, which, to a large extent, depends on your personal 
understanding of technical debt. Typically, there exist wide 
discrepancies regarding whether defects should be viewed as a 
type of technical debt among researchers and developers. In this 
study, we divided defects into two categories: 1. critical defects 
that may cause fatal errors occurring when using the software; 
2. tolerable defects that may exert a marginal negative impact on 
the use of the software and are not fixed immediately after being 
detected. We tagged the first type of defects as not technical debt 
and the second type of defects as technical debt. 

After we finished tagging all the issues, we asked a known 
expert in software engineering and technical debt external to our 
research team to validate the results of our manual classification. 
The expert classified a random subset of the issues 
independently. With respect to discrepancies in the 
classification of some issues, we exchanged our respective 
points of view about why we classified a certain issue as the 
category to solve our discrepancies. If we did not achieve 
agreements in the classification of a certain issue, we discussed 
the issue with developers to gain insight into the issue itself and 
their opinions on the classification. 

Finally, we found 331 technical debt issues in total whose 
distribution is shown in Table II. Requirement debt and design 
debt are the main technical debt types, including 105 and 141 
instances respectively. 

TABLE II.  THE NUMBER OF DIFFERENT TYPES OF TECHNICAL DEBT 

ISSUES 

Technical Debt Type Number 

Requirement Debt 105 

Architecture Debt 6 

Design Debt 141 

Defect Debt 15 

UI Debt 35 

Code Debt 20 

other 9 

C. Phase 2: Extracting key words and phrases 

Different from English, Chinese is written without spaces 
between words. So before extracting key words from the 
Chinese texts, we have to convert each text to a word sequence 
using a Chinese text segmentation tool. For this research, we 
used Jieba (https://github.com/fxsjy/jieba/) [21], a popular open 
source Chinese text segmentation tool, to split Chinese texts into 
a sequence of words. 

After conducting Chinese text segmentation, we extracted 
key words using Jieba. Jieba integrated two key word extraction 
algorithms: TF-IDF and TextRank. We used both of them to 
extract key words for detecting technical debt. We took the 
union of two sets of key words extracted using these two 
different algorithms, removed the key words referring to domain 
knowledge from the union set, and finally added some key 

words based on our intuition. To make this paper more readable, 
we only list the meaning of key words instead of original 
Chinese characters in the below: 

“at present”, “now”, “current”, “previously”, “in the past”, 
“in the future”, “time”, “actually”, “in reality”, “users”, 
“clients”, “strengthen”, “change”, “modify”, “replace”, 
“update”, “delete”, “cancel”, “suggest”, “optimize”, “simplify”, 
“perfect”, “improve”, “refactor”, “decouple”, “again”, “re-”, 
“replant”, “tidy”, “integrate”, “merge”, “adjust”, “extend”, 
“expect”, “plan”, “management”, “maintenance”, “function”, 
“requirement”, “design”, “rule”, “theory”, “strategy”, 
“mechanism”, “algorithm”, “data structure”, “logic”, “code”, 
“structure”, “architecture”, “style”, “format”, “performance”, 
“efficiency”, “sufficiency”, “security”, “compatibility”, 
“scalability”, “maintainability”, “stability”, “generality”, 
“usability”, “readability”, “real-time”, “limitation”, “more 
friendly”, “more specialized”, “more accurate”, “problem”, 
“configuration”, “priority”, “inconsistent”, “unreasonable”, 
“inconvenient”, “convenient”, “not clear”, “inaccurate”, 'not 
intuitive', “not pretty”, “incongruous”, “not smooth”, 
“inconformity”, “incomplete”, “abnormity”, “defect”, “impact”, 
“experience”, “habit”, “operation”, “difficulty”, “delay”, “UI”, 
“risk”, “optimize”, “refactor”, “SonarQube” 

There are 114 key words in total, among which 104 words 
are Chinese words and 10 words are English words. As some 
words express the similar or same meaning, we merged these 
words. All these words to some extent indicate or imply the 
concept of technical debt from different perspectives. To be 
specific, 

• “at present”, “now”, “current”, “previously”, “in the 
past”, “in the future”, “time” 

These words indicating time concept may imply 
accumulation. 

• “strengthen”, “change”, “modify”, “replace”, “update”, 
“delete”, “cancel”, “optimize”, “simplify”, “perfect”, 
“improve”, “refactor”, “decouple”, “again”, “re-”, 
“replant”, “tidy”, “integrate”, “merge”, “adjust”, 
“extend” 

These words indicate the modification of code, design or 
architecture, or the enhancement of functionality, capability, 
performance, efficiency, etc. 

• “security”, “compatibility”, “scalability”, 
“maintainability”, “stability”, “generality”, “usability”, 
“readability”, “real-time”, “limitation” 

These words indicate concerned aspects of software quality 
attributes. 

•  “inconsistent”, “unreasonable”, “inconvenient”, 
“convenient”, “unclear”, “inaccurate”, 'not intuitive', 
“not pretty”, “incongruous”, “not smooth”, 
“inconformity”, “incomplete”, “abnormity”, “defect”, 
“limit”, “impact”, “experience”, “habit”, “operation”, 
“difficulty”, “delay” 

These words indicate defects or design limitation such as 
inconsistent UI style, unreasonable design, etc. 

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 62

https://github.com/fxsjy/jieba/)


D. Phase 3: Extracting features 

Once key words were extracted from the issue data set, 
features for text classification can be derived by checking the 
presence or absence of each key word in each issue text. Given 
the set of key words is [“users”, “change”, “modify”, “improve”, 
“refactor”, “decouple”, “priority”, “button”, “architecture”, 
“deploy”, “rules”], consider this issue description: “design 
change: to keep a consistent design with different pages, we are 
moving the clear-all-rules button to the front of the deploy rules 
table. (Consistent with event page)”. First, we tokenized the text 
into a sequence of words and removed stop words (words that 
are too common to indicate any semantic meaning for our 
classification). Thus, the text is converted to a string list: 
[“design”, “change”, “keep”, “consistent”, “design”, “different”, 
“pages”, “moving”, “clear-all-rules”, “button”, “front”, 
“deploy”, “rules”, “table”]. Then we could check whether this 
string list contains each of key words, i.e. [contain(“users”), 
contain(“change”), contain(“modify”), contain(“improve”), 
contain(“refactor”), contain(“decouple”), contain(“priority”), 
contain(“button”), contain(“architecture”), contain(“deploy”), 
contain(“rules”)]. This vector checking the presence or absence 
of each key word is called feature space. The dimension of 
feature space depends on the size of the set of key words. Finally, 
we got the feature vector of the issue sample based on the feature 
space: [false, true, false, false, false, false, false, true, false, true, 
true].  

The feature space actually not only includes unigram 
features that are a single word like “design”, “decouple”, but 
also has bigram and trigram features which comprised adjacent 
word pair and triplet respectively, such as “design change” and 
“improve unit test”; that is to say, the feature space in the 
previous example can be extended to [contain(“users”), 
contain(“change”), contain(“modify”), contain(“improve”), 
contain(“refactor”), contain(“decouple”), contain(“priority”), 
contain(“button”), contain(“architecture”), contain(“deploy”), 
contain(“rules”), contain(“design change”), contain(“improve 
unit test”)]. Then the feature vector is turned into [false, true, 
false, false, false, false, false, true, false, true, true, true, false]. 
Figure 2 shows the process of feature extraction. 

E. Phase 4: Creating a binary Naïve Bayes classifier 

Naïve Bayes is a simple classification algorithm that is based 
on an assumption that the features are conditionally independent 
of each other given the category. It determines the category of a 
given sample with n-dimensional features ( 𝑥1, … , 𝑥𝑛 ) by 
calculating the probability that the sample belongs to each 
category and then assigning the most probable category c to it, 
which can be described as: 

𝑐 = arg max
𝑘∈{1,…,K}

𝑝(𝑐𝑘  | 𝑥1, … , 𝑥𝑛), 

where 𝑐𝑘 is the kth category, and K is the size of the set of 
categories. Using Bayes’ theorem, the conditional probability 
𝑝(𝑐𝑘  | 𝑥1, … , 𝑥𝑛) can be decomposed as: 

𝑝(𝑐𝑘  | 𝑥1, … , 𝑥𝑛) =  
𝑝(𝑥1,…,𝑥𝑛 | 𝑐𝑘)

∑ 𝑝(𝑥1,…,𝑥𝑛 | 𝑐ℎ)𝐾
ℎ=1

 𝑝(𝑐𝑘). 

With the conditional independence assumptions, the conditional 
probability 𝑝(𝑐𝑘  | 𝑥1, … , 𝑥𝑛) can be transformed into: 

𝑝(𝑐𝑘  | 𝑥1, … , 𝑥𝑛) =  
∏ 𝑝(𝑥𝑗|𝑐𝑘)𝑛

𝑗=1

∑ ∏ 𝑝(𝑥𝑗|𝑐ℎ)𝑝(𝑐ℎ)𝑛
𝑗=1

𝐾
ℎ=1

 𝑝(𝑐𝑘). 

To perform our experiments, we used a popular natural 
language toolkit for building Python programs to process human 
language data (NLTK http://www.nltk.org) [22]. We employed 
the implementations by NLTK instead of creating a binary 
Naïve Bayes classifier from scratch. 

Fig. 2. Feature Extraction 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

Repeated random sub-sampling validation was performed to 
validate our approach to the identification of technical debt by 
repeatedly splitting the full data set into 80/20% randomly 
distributed partitions, training and testing the classifier for each 
split, and recording performance results. 

RQ1: How do software practitioners communicate 

technical debt issues in issue trackers? 

We searched for the term “technical debt” and the 
corresponding Chinese term in the issue data set and found no 
positive results. All the technical debt instances in this issue 
tracker were implicitly expressed using other technical debt 
related words such as redesign, design change, refactor, cleanup, 
decouple, etc. By means of communication with developers of 
this product, we learned that they did not have strong awareness 
of technical debt. Some of them had even never heard about the 
concept of technical debt although they recognized that they had 
much experience in incurring technical debt when we explained 
what is technical debt. To track, prioritize and pay off technical 
debt effectively, we suggested they take technical debt as an 
issue type in the issue tracker to communicate technical debt 
explicitly. 

Feature Extraction from Text Data 

 

text = “design change: to keep a consistent design with different 

pages, we are moving the clear-all-rules button to the front of the 

deploy rules table. (Consistent with event page)” 

 
t = tokenize(text) = [“design”, “change”, “keep”, “consistent”, 

“design”, “different”, “pages”, “moving”, “clear-all-rules”, “button”, 

“front”, “deploy”, “rules”, “table”] 

Feature Vector of t 

 

  V(t) = [ 

              false, 
              true, 

              false, 

                … 

              true, 

              true, 

              false 

            ] 

           Feature Space 

 

S = [ 

         contain(“users”), 
         contain(“change”), 

         contain(“modify”), 

… 

         contain(“rules”), 

         contain(“design change”), 

  contain(“improve unit          

test”) 

       ] 
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TABLE III.  20 MOST INFORMATIVE FEATURES FOR DETECTING 

TECHNICAL DEBT 

20 Most Informative Features for Detecting Technical Debt 

Features 

Likelihood Ratio 

(Technical Debt : not Technical 

Debt) 

协议识别优化(protocol 

identification optimization) = 1 
155.2 : 1.0 

增强 (strengthen) = 1 128.2 : 1.0 

不方便 (inconvenient) = 1 128.2 : 1.0 

提高 (improve) = 1 117.4 : 1.0 

优化 (optimize) = 1 90.8 : 1.0 

整改 (change or modify) = 1 87.7 : 1.0 

风格 (style) = 1 65.2 : 1.0 

体验 (experience) = 1 64.4 : 1.0 

改进 (improve) = 1 60.7 : 1.0 

不容易 (not easy) = 1 47.2 : 1.0 

改善 (improve) = 1 44.5 : 1.0 

效率 (efficiency) = 1 44.5 : 1.0 

简化(simplify) = 1 38.2 : 1.0 

解决方案(strategy) = 1 35.8 : 1.0 

困难(difficulty) = 1 33.7 : 1.0 

前期(previously) = 1 33.7 : 1.0 

不美观(not pretty) = 1 33.7 : 1.0 

risk = 1 33.7 : 1.0 

算法(algorithm) = 1 31.8 : 1.0 

习惯(habit) = 1 31.8 : 1.0 

TABLE IV.  THE RESULT FOR REPEATED RANDOM SUB-SAMPLING 

VALIDATION 

Category 
Average 

Precision 

Average 

Recall 

Average F1-

score 

Technical Debt 0.72 0.81 0.76 

 

RQ2: Are there text patterns that are an indication that 

technical debt exist which can be used to identify potential 

technical debt using NLP and machine learning techniques 

automatically? 

The experimental results demonstrate that text patterns 
indicating technical debt indeed exist and can be used to identify 
technical debt. In general, technical debt issues are characterized 
by two aspects of properties including rework whether it is code 
refactoring or feature redesign and accumulation which is 
implied by some words indicating time such as previously, at 
present, and in the future. 20 most informative features that are 
strongly correlated to technical debt are shown in Table III. Each 
of these features may contribute differently to the identification 

of different types of technical debt. Intuitively, the presence of 
“style” and “experience” may indicate UI debt while “simplify” 
and “efficiency” are more likely to be indicators of design debt. 

To evaluate the performance of our classifier, the average 
precision and recall were calculated for 10 repeated random sub-
sampling validations. Precision measures the fraction of 
technical debt instances identified by our classifier that were 
proved to be correct classification. Recall measures the fraction 
of correctly classified technical debt items out of the total 
number of technical debt issues. In our experiments, the average 
precision and recall were 72% and 81% respectively for 10 
repeated random sub-sampling validations shown in Table IV. 

V. THREATS TO VALIDITY 

There are two main threats to the validity of our study: 
threats to internal validity and threats to external validity. 
Threats to internal validity can be caused by the level of 
subjectivity in manual analysis and classification of issues as we 
definitely have personal bias in the understanding of issue 
description. To counter the threats, we had an expert external to 
our research team classify random samplings of the issues and 
solved our discrepancies by discussion. We also had discussions 
with the developers of the product to gain insight into the issues 
that we were not sure we classified correctly. Threats to external 
validity concern the generalization of our findings. We 
performed a case study on an issue data set from a commercial 
software project. The data set of issues we used may not be 
representative; that is to say, we cannot guarantee the same 
results will be obtained when our approach is applied to other 
commercial software projects. In particular, our approach may 
not be applicable to those projects for which issue trackers are 
not used to record issues.  

VI. CONCLUSION AND FUTURE WORK 

This paper presents an exploratory study of applying NLP 
and machine learning techniques to identify technical debt 
issues through issue trackers. We have demonstrated that we can 
automate the process of detecting technical debt issues through 
issue trackers and achieve an acceptable performance using NLP 
and machine learning techniques. We found that some common 
words in software engineering are directly or indirectly related 
to technical debt and these words can be used as features to 
decide whether a certain issue is technical debt or not. We 
believe the performance of our classifier will improve further 
when more sophisticated feature extraction and classification 
techniques are applied. 

This exploratory study was based on a rather limited data set 
of 8,149 issues. Our approach needs to be validated with issue 
data sets from a wider range of software projects. Furthermore, 
we will improve the performance of our classifier by exploring 
more sophisticated feature extraction techniques such as 
mapping phrases with regular expressions and extracting 
semantically meaningful information based on the context and 
applying other classification techniques such as random forest, 
SVM, and deep learning. In addition, we will also develop a 
multi-classifier to identify technical debt of a specific type. 
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