
Estimating Web Service Quality of Service
Parameters using Source Code Metrics and LSSVM

Lov Kumar
NIT Rourkela, India

lovkumar505@gmail.com

Santanu Rath
NIT Rourkela, India
skrath@nitrkl.ac.in

Ashish Sureka
Ashoka University, India

ashish.sureka@ashoka.edu.in

Abstract—We conduct an empirical analysis to investigate the
relationship between thirty seven different source code metrics
with fifteen different Web Service QoS (Quality of Service)
parameters. The source code metrics used in our experiments
consists of nineteen Object-Oriented metrics, six Baski and
Misra metrics, and twelve Harry M. Sneed metrics. We apply
Principal Component Analysis (PCA) and Rough Set Analysis for
feature extraction and selection. The different sets of metrics are
provided as input to the predictive model generated using Least
Square Support Vector Machine (LSSVM) with three different
types of kernel functions: RBF, Polynomial, and Linear. Our
experimental results reveal that the prediction model developed
using LSSVM method with RBF kernel function is more effective
and accurate for prediction of QoS parameters than the LSSVM
method with linear and polynomial kernel functions. Further-
more, we also observe that the predictive model created using
object-oriented metrics achieves better results in comparison to
other sets of source code metrics.

Index Terms—LSSVM, Machine Learning, Service Oriented
Computing, Source Code Metrics, Web Services, Quality of
Service (QoS)

I. INTRODUCTION

Service Oriented Computing and Architecture (SOA)
paradigm consists of assembling and combining loosely cou-
pled software components called as services for developing
distributed system. Prediction of Web Service QoS parameters
is important for both the developers and consumers of the
service [7]. One of the major objectives of a Web Service
provider is the ability to estimate and subsequently improve
the QoS parameters associated with the given Web Services.
One of the approaches for estimating and improving the
QoS parameters is to compute source-code metrics during
the development phase. Predicting quality of Object-Oriented
(OO) Software System using different kinds of source code
metrics is an area which has attracted several researchers’
attention in the past [2][22][11][5]. However, predicting QoS
parameters for Web Services using source code metrics is
a relatively unexplored area. In the study presented in this
paper, we conduct an experiment on fifteen different quality of
service parameters such as Availability, Best Practices, Com-
pliance, Conformity, Documentation, Interoperability, Latency,
Maintainability, Modularity, Response Time, Reusability, Reli-
ability, Successability, Throughput, and Testability, using thirty
seven different source code metrics on a dataset consisting
of two hundred real-world Web Services. We compute thirty
seven source code metrics and use them as input to develop

a model using LSSVM method with three different types of
kernel functions: linear kernel, polynomial kernel and RBF
kernel. LSSVM method is a least square version of support
vector machine (SVM) and is based on statistical learning
theory [18].

The overall effectiveness and performance of the QoS
parameter prediction models depends on the subset of source
code metrics used as input to develop the statistical models.
In our work, six different sets of source code metrics: all
metrics (AM) for source code (thirty seven metrics), Baski
and Misra Metrics suite (BMS), Harry M. Sneed Metrics suite
(HMS), Object-Oriented source code metrics (OOM), metrics
extracted using Principal Component Analysis (PCA) method
and metrics selected using Rough Set Analysis (RSA) are
considered as input to develop a QoS prediction model. The
study presented in this paper is an extension of our previous
work on predicting QoS parameters using Extreme Learning
Machines [7]. While ELM has been used in the past for QoS
parameter prediction, the application of LSSVM is novel and
unique in context to exiting work. This research contributions
of the study presented in this paper are the following:

1) Application of 37 source-code metrics for prediction
of 15 different Web Service QoS parameters by using
LSSVM machine learning classifier with three different
variants of kernel functions.

2) Application of two feature selection techniques i.e., PCA
and RSA to select suitable set of source code metrics
for building a predictive model.

II. RELATED WORK

Several researchers have investigated the impact of Object-
Oriented (OO) source code metrics on software quality and
observed that OO metrics have a strong influence on software
quality attributes. Research shows that the quality of OO
software can be estimated using several source code metrics
[5] [10] [3] [9][8]. Bingu Shim et al. have defined five dif-
ferent quality parameters i.e., effectiveness, flexibility, discov-
erability, reusability and understandability for service oriented
applications [16]. Mikhail et al. have defined SCMs in order to
measure the structural coupling & cohesion of service-oriented
systems [14][15]. Vuong Xuan Tran et al. proposed a novel
approach to design and develop QoS systems and describe
an algorithm to evaluate its ranking in order to compute the
quality of Web services [19]. Cristian Mateos et al. analyzed

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 66

the available approaches to remove undesirable anti-patterns
using code-first [12]. Ping Wang proposed another decision
model under obscure data to choose a Web Service [21].

III. RESEARCH FRAMEWORK

A. Dependent Variables- QoS Parameters

Al-Masri et al. define 9 quality of service parameters of
Web Services. They compute the QoS parameters using Web
service benchmark tools. The QoS parameters are: Availability
(AV), Best Practices (BP), Compliance (CP), Documentation
(DOC), Latency (LT), Response Time (RT), Reliability (REL),
Successability (SA), Throughput (TP), Maintainability, Modu-
larity, Reusability, Testability, Interoperability and Conformity.
These QoS parameters are the dependent variables for the
machine learning model.

B. Predictor Variables: Source Code Metrics

Three different types of metrics suite are considered as
independent or predictor variables

1) Object-Oriented Source Code Metrics: We compute
nineteen different Object-Oriented source code metrics from
the bytecode of the compiled Java files of the Web Services
in our experimental dataset using CKJM extended tool1 [5].
CKJM extended is an extended version of tool for calculating
Chidamber and Kemerer Java source code metrics and many
other metrics such as average method complexity, McCabe’s
Cyclomatic Complexity, lack of cohesion among the classes.
Java class files from the WSDL file are generated using
WSDL2Java Axis2 code generator2, which is available as an
Eclipse plug-in. We then compiled the Java files to generate
the bytecode for computing the size and structure of software
metrics using the CKJM extended tool.

2) Henry M. Sneed WSDL Metric Suite: Sneed et al.
develop a tool for measuring Web Service interfaces [17][6].
The suite primarily consists of six different source code
metrics to measure complexity of service interfaces: Data
Flow Complexity, Interface Relation Complexity, Interface
Data Complexity, Interface Structure Complexity, Interface
Format Complexity and Language Complexity. These metrics
are statically computed from a service interface in WSDL. The
metrics are based on analyzing the WSDL schema elements
[17][6].

3) Baski and Misra Metrics: Baski and Misra proposed a
tool to compute six different complexity metrics of WSDL file
[4]. These metrics are based on the analysis of the structure
of the exchanged messages described in WSDL file which
becomes the basis for computing the data complexity. These
metrics are based on analyzing the WSDL and XSD schema
elements [4].

C. Experimental Dataset

In our study, the Web Service dataset collected by Al-Masri
et al. 3 is used to measure the performance of the proposed

1http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/
2https://sourceforge.net/projects/wsdl2javawizard/
3http://www.uoguelph.ca/∼qmahmoud/qws/

LSSVM based approach. The Web Service dataset provides the
quality of service parameters values such as response time,
availability, throughput, compliance, latency for 2507 Web
Services. The QoS parameters values by the dataset provider
are computed using Web service benchmark tools [1]. In this
study, we use 200 Web Services for the analysis. The reason
for selection of 200 web-services is stated in our earlier work
[7] as the study presented in this paper is an extension of the
previous work.

D. Feature Extraction using Principal Component Analysis
(PCA)

We perform feature extraction using Principal Component
Analysis (PCA). The main motivation of using PCA is for
transforming high dimension data space into lower dimension
data space. The lower dimension data consists of the most
significant features [20]. We label the new metrics (or features)
after applying PCA as principal component domain metrics.
Figure 1 displays the steps followed by us to extract the feature
set using PCA.

Feature
normalization -
zero mean value

Eigen value and Eigen
vector computation

using MATLAB
command

(eign = eig(data))

Principal components
selection based on

eigenvalue being greater
than 1.0

Reduced set of
features (metrics)

are evaluated

Data Set

Fig. 1: Sequence of Steps for Applying PCA

We apply PCA with varimax rotation technique on all the
software metrics. Table I shows the result and outcome of PCA
with varimax rotation method. Table I reveals the relationship
between domain metrics and original software metrics. For
each principal component (PC), % variance, % cumulative and
interpreted metrics set are presented in Table I.

TABLE I: Principle Component Analysis (PCA) Results
PC Eigenvalue variance % % Cumulative Interpreted Metrics
PC1 6.40 17.30 17.30 Ce, Ca, RFC, CBO, LCO, LCOM3,

CAM, DAM
PC2 5.8 15.76 33.06 DP, FP, OP, MRS, OPS, IDFC, IRC
PC3 3.67 9.94 43.00 CE, MiRV, MDC, MeRV, DW, MR
PC4 3.39 9.16 52.17 ILC, DMR, ISC, IDC
PC5 3.34 9.03 61.2 MOA, CBM, IC
PC6 2.50 6.77 67.98 MFA, NOC, DIT, IFC
PC7 2.23 6.02 74.00 NPM, WMC
PC8 2.14 5.79 79.79 AMC, MRV
PC9 1.36 3.7 83.5 LCOM

E. Feature Selection using Rough Set Analysis (RSA)

Before the application of RSA, the input data need to
be categorized. In our study, K-means clustering approach
is applied for the purpose of data categorization. In the
approach, the data belonging to a particular cluster are grouped
under a single category or class. After the application of K-
means clustering approach, we obtain 3 clusters and the data

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 67

were categorized into three groups: High, Medium, and Low
correlation. Figure 1 shows the steps followed to identify the
best set (in-terms of relevance) of features using RSA.

Data Set

Feature
Categorization into

groups using
k-means clustering

method

Calculation of Lower
and upper

approximation of all
possible sets

Computation of
Accuracy for all

possible sets

Identification of
best set of

source-code metrics

Fig. 2: Rough Set Analysis (RSA) based Feature Selection

Table II displays the selected set of source-code metrics for
every QoS parameter. The resultant set is derived from the
original set of 37 source-code metrics using RSA approach.

TABLE II: Source Code Metrics Identified using Rough Set
Analysis (RSA)

QoS Selected Metrics
Availability MiRV, Ca, CC, CAM, IC, MFA, LC, SC, LCOM3, WMC, FC, MeRV
Response Time Ca, DMR, LC, SC, WMC, MFA, CC, IC, CAM, LCOM3
Successability CAM, LCOM3, DAM, FC, LC, DFC, MRV, ME, SC, WMC, LCO, MOA
Throughput MiRV, Ce, CC, CAM, ME, MFA, LC, SC, CBM, MRV, FC, MeRV, MOA
Compliance MiRV, NPM, CC, WMC, CAM, MOA, SC, LC, FC, DFC, ME, Ca, MRV, DAM
Reliability LCOM3, MFA, FC, LC, DFC, CAM, SC, WMC, LCO, MOA
Latency IC, FC, LC, DMR, MRV, MOA, ME, CAM, DC, DFC, NOC, LCO, NPM
Best Practices MiRV, Ca, CC, CAM, ME, MFA, LC, SC, MRV, FC, MOA, WMC, DFC, NPM
Maintainability CBM, DP, LCOM3, MFA, Ce, CAM, MOA
Documentation CC, LC, ME, IC, SC, CAM, Ca, DFC, MRV, WMC, MeRV, FC, NPM
Reusability LCOM3, FC, MDC, LCOM, DMR, SC, LC, DFC
Modularity AMC, LC, DMR, SC, Ca, IC, DFC, ME, DP, MiRV, MOA, MRV, WMC
Interoperability MiRV, CC, SC, MeRV, LC, WMC, MFA, DIT, CBO
Testability FC, CC, RFC, ME, NOC, MiRV, DIT, SC, LC
Conformity CAM, Ca, ME, DFC, FC, WMC, MRV, LC

F. Effectiveness of Metrics

Once we have the QoS data, the relationship or degree of
association between source code metrics and QoS parame-
ters can be determined. The set of source code metrics are
considered as independent variables and QoS parameters are
considered as a dependent variables. In our experiments, six
different set of source metrics (all metrics (AM), Baski and
Misra metrics suite, Henry M. Sneed WSDL metric suite,
object-oriented metrics suite, selected set of metrics princi-
pal component analysis (PCA), and selected set of metrics
using rough set analysis (RSA) are considered as input to
develop fifteen QoS parameters (Response Time Availabil-
ity, Throughput, Successability, Reliability, Compliance, Best
Practices, Latency, Documentation, Maintainability, Modular-
ity, Reusability, Testability, Interoperability, and Conformity)
prediction models. Figure 3 shows the independent and de-
pendent variables used for QoS parameter prediction model.
From Figure 3, we infer that a total of eight different sets of
independent variables are possible for each QoS parameter.

IV. PROPOSED MACHINE LEARNING BASED APPROACH

Least Square Support Vector Machines (LSSVM) are super-
vised learning methods having wide range of applications doe
classification, regression and outliers detection problems [18].
In our experiments, we use LSSVM as regression technique to

AM

BMS

HMS

OOM

PCA

RSA

Availability

Response Time

Successability

Throughput

Compliance

Reliability

Latency

Best Practices

Maintainability

Documentation

Reusability

Modularity

Interoperability

Testability

Conformity

Independent Variables

Dependent Variables

Fig. 3: Dependent and Independent Variables

generate models for predicting QoS parameters. The different
set of source code metrics are used a input of the models. We
also examine LSSVM different kernel functions to investigate
if we can achieve better result and compare the performance
of various kernel functions.

The block diagram displayed in Figure 4, illustrates the
sequence of steps used to determine the predicted quality of
service (QoS) parameters using the LSSVM method with three
different types of kernel functions. In our work, the following
steps are performed to generate quality of service prediction
models:

1) Source code metrics computation for all the Web Ser-
vices in the data-set as described in Section III-B.

2) Selection of suitable set of source code metrics using
PCA and RSA feature extraction and selection tech-
niques.

3) Predictive model generation by considering source code
metrics as input to estimate fifteen different quality of
service parameters.

4) Identification of performance measures to evaluate the
predictive ability and effectiveness of quality of service
prediction models.

5) Application of validation methods to determine the true

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 68

WSDL File

WSDL to JavaWSDL to Java

Source Code CKJM
Extended

Object-
Oriented
Metrics

Sneed Tool Henry M.
Sneed Metrics

QoS

Baski and
Misra Metric

suite

Baski and
Misra Metrics

Baski and Misra
Metrics (BMS)

Henry M. Sneed
Metrics (HMS)

Object
Oriented
metrics
(OOM)

All metrics (AM)

PCA

RSA

Set of source code metrics

Linear Kerenl

Polynomial
Kerenl

RBF Kerenl

Least Square Support Vector
Machines (LSSVM method)

Performance
Evaluation

Statistical Test

Model
comparsion

Validation of developed models

Fig. 4: Proposed Steps Used for the QoS Prediction (A Multi-Step Process)

predictive applicability of the predictive models.
6) Application of rigorous statistical significance tests to

compare the performance of one prediction technique
over other approaches and also determine the superiority
of one set of source code metrics over the other sets.

A. Computation of Source Code Metrics

During our experimental analysis, we consider 200 Web Ser-
vices as the experimental dataset (same as used by Kumar et
al. [7]). In this work, WSDL interface complexity metrics and
WSDL complexity metrics are computed using Henry Sneed
metrics tool and Baski and Misra metrics tool respectively.
Then we use the wsimport 4 tool to parse WSDL document file
of a Web Service and generate its corresponding Java class.
This involves extracting the Java source code implementing
the service. As shown in Figure 4, we compiled the Java files
to generate the bytecode for computing the size and structure
software metrics using the CKJM extended tool.

B. Feature Selection Method

In our experiments, we examine 37 different software
metrics (Chidamber and Kemerer, Harry M. Sneed, Baski
& Misra)) to predict 15 different QoS attributes. It is very
essential to remove irrelevant and unimportant source code
metrics out of these source code metrics so that only relevant
source code metrics are included in the construction of QoS
prediction models. In order to achieve the stated objective, we
consider two different features selection techniques: principal
component analysis and rough set analysis for feature selec-
tion.

C. Prediction Techniques

In this work, we have use LSSVM with three different
kernel functions to develop QoS prediction model.

4http://docs.oracle.com/javase/6/docs/technotes/
tools/share/wsimport.html

D. Performance Parameter

In order to evaluate the QoS prediction model, various
performance parameters are defined in the machine learning
literature to measure the effectiveness of the QoS prediction
models. In this work, we consider three different performance
parameters: Mean Magnitude Relative Error (MMRE), Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE)
to evaluate the QoS prediction model [13]. A lower value for
these performance parameters denotes an effective prediction
model.

E. Validation Method

The objective of the study presented in this paper is to
build and apply statistical models to predict different QoS
parameters for future releases and unseen similar natured
projects. Hence, it is necessary to validate the developed QoS
model on a different data-sets than the dataset on which the
training is done. In our experiments, we consider the standard
k-fold cross validation approach (we take k = 10) to validate
the proposed QoS model. In our analysis, we also perform
outlier detection analysis to eliminate the extreme values
which may add to the noise & bias in the model performance
and accuracy results. The outlier analysis is doen based on the
following equations:

ei =

{
if |yji − ŷj | > 3 ∗ σ for Effective outliers
if |yji − ŷj | <= 3 ∗ σ for Non Effective outliers

(1)

F. Statistical Significance Tests and Procedures

In order to bring rigour and mitigate threats to validity in
our analysis of the results, we apply pairwise t-test approach.
We conduct t-test to determine which prediction method and
feature selection techniques performs relatively better or does
the models perform equally well. We analyze all the results
based on the 0.05 significance level, i.e. two models are
significantly different (null hypothesis rejected) if the p-value

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 69

is less than 0.05 (the cut-off valie) else there is no significant
different between them (null hypothesis accepted).

BMS HMS OOM AM PCA RSA

P
e
a
rs

o
n

 r
e
s
id

u
a
l

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 5: Box-Plot Visual Analysis (Linear Kernel)

BMS HMS OOM AM PCA RSA

P
e
a
rs

o
n

 r
e
s
id

u
a
l

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 6: Box-Plot Visual Analysis (Polynomial Kernel)

BMS HMS OOM AM PCA RSA

P
e
a
rs

o
n

 r
e
s
id

u
a
l

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 7: Box-Plot Visual Analysis (RBF Kernel)

V. EXPERIMENTAL ANALYSIS

In this paper, LSSVM method with three different types of
kernel functions have been considered to develop a model to
predict fifteen different QoS parameters by considering six
different set of source code metrics as input. The detailed
descriptions of these source code metrics were already pre-
sented in section III. The performance of the developed QoS
prediction models are compared using three different types of
performance parameters i.e., MMRE, MAE and RMSE.

Table III displays the MMRE, MAE, and RMSE values
obtained after applying LSSVM method with linear kernel,
polynomial kernel and RBF kernel functions. Table III pro-
vides complete and detailed results for all the QoS parameters,
feature extraction and selecion techniques, metrics suites and
performance evaluation methods. From Table III, we make the
following observations:

1) In case of linear kernel function, we observe that the
model built by considering selected set of metrics using
RSA as input has low values of MMRE, MAE and
RMSE in comparison with other sets of metrics. This
clearly implies that the performance of the model de-
veloped using RSA is much better than the performance
of other models i.e., low vales of MMRE, MAE, and
RMSE for QoS prediction as compared to a model
developed using other sets of metrics.

2) In case of polynomial kernel function, we observe that
the model built by considering all metrics has low value
of MMRE, MAE and RMSE in comparison to other
sets of metrics. We thus infer that the performance of
the prediction model developed using all metrics (AM) is
much better than other models i.e., low vales of MMRE,
MAE, and RMSE for QoS prediction as compared to a
model developed using other sets of metrics.

3) In case of RBF kernel function, we notice that the model
developed by considering Baski and Misra Metric has
low value of MMRE, MAE, and RMSE in comparison
with other sets of metrics. This implies that the per-
formance of the model developed using BMS is much
better than other models i.e., low vales of MMRE, MAE,
and RMSE for QoS prediction as compared to a model
developed using other sets of metrics.

In order to have a visual comparion (visual analytics) of
the results, we draw the Pearson residual boxplots of models
developed using LSSVM method with linear kernel function.
The plots are displayed in Figure 5. The middle line of each
box in Figure 5 shows the median value of Pearson residual.
From Figure 5, we observe that all models built have a median
residual value close to zero and the model developed by
considering selected set of metrics using RSA has smallest
whiskers, narrowest box as well as few numbers of outliers.
This shows that model developed by considering selected set
of metrics using RSA as input results in better performance
as compared to other metrics. Figure 6 shows the Pearson
residual boxplots of models developed using LSSVM method
with polynomial kernel function. From Figure 6, we infer that
all models have a median residual value close to zero and
the model developed based on selected set of metrics using
AM has smallest whiskers, narrowest box as well as few
numbers of outliers. This result shows that model developed
by considering AM as input results in better performance as
compared to others.

Figure 7 shows the Pearson residual boxplots of models
developed using LSSVM method with RBF kernel function.
From Figure 7, it is observed that all developed models have

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 70

TABLE III: Performance Matrix for LSSVM method with Linear, Polynomial and RBF Kernel and All Different Metrics Suites

Av
ai

la
bi

lit
y

R
es

po
ns

e
Ti

m
e

Su
cc

es
sa

bi
lit

y

Th
ro

ug
hp

ut

C
om

pl
ia

nc
e

R
el

ia
bi

lit
y

La
te

nc
y

Be
st

Pr
ac

tic
es

M
ai

nt
ai

na
bi

lit
y

D
oc

um
en

ta
tio

n

R
eu

sa
bi

lit
y

M
od

ul
ar

ity

In
te

ro
pe

ra
bi

lit
y

Te
st

ab
ili

ty

C
on

fo
rm

ity

Linear Kernel
MMRE

AM 0.32 0.32 0.35 0.74 0.60 0.68 0.56 0.46 0.32 0.90 0.29 0.14 0.16 0.13 0.06
OOM 0.31 0.33 0.34 0.73 0.59 0.69 0.51 0.36 0.39 0.89 0.46 0.44 0.42 0.49 0.25
WIM 0.32 0.34 0.35 0.74 0.61 0.67 0.56 0.38 0.49 0.92 0.42 0.22 0.20 0.18 0.06
WSM 0.31 0.33 0.35 0.75 0.60 0.68 0.56 0.39 0.72 0.91 0.66 0.41 0.35 0.43 0.21
RSA 0.31 0.34 0.34 0.65 0.60 0.69 0.56 0.34 0.84 0.94 0.62 0.32 0.38 0.30 0.10
PCA 0.31 0.34 0.35 0.74 0.61 0.66 0.55 0.37 0.54 0.92 0.61 0.33 0.31 0.33 0.13

MAE
AM 0.13 0.09 0.16 0.19 0.25 0.24 0.11 0.19 0.08 0.21 0.09 0.04 0.08 0.04 0.03
OOM 0.13 0.09 0.16 0.18 0.25 0.24 0.1 0.17 0.10 0.21 0.13 0.12 0.18 0.13 0.14
WIM 0.14 0.10 0.17 0.18 0.26 0.24 0.11 0.18 0.11 0.22 0.11 0.06 0.10 0.04 0.03
WSM 0.14 0.10 0.17 0.18 0.26 0.24 0.11 0.18 0.17 0.22 0.16 0.11 0.15 0.11 0.13
RSA 0.13 0.10 0.16 0.16 0.25 0.24 0.11 0.17 0.20 0.23 0.15 0.10 0.18 0.10 0.06
PCA 0.14 0.10 0.17 0.18 0.26 0.23 0.11 0.18 0.13 0.22 0.15 0.10 0.14 0.09 0.08

RMSE
AM 0.20 0.13 0.22 0.22 0.29 0.27 0.14 0.23 0.11 0.26 0.11 0.05 0.1 0.05 0.04
OOM 0.19 0.14 0.21 0.22 0.29 0.27 0.13 0.21 0.13 0.27 0.17 0.17 0.22 0.18 0.17
WIM 0.20 0.15 0.22 0.21 0.30 0.27 0.15 0.22 0.16 0.28 0.15 0.08 0.13 0.07 0.05
WSM 0.20 0.15 0.22 0.21 0.29 0.27 0.15 0.22 0.22 0.28 0.21 0.15 0.20 0.16 0.16
RSA 0.19 0.15 0.22 0.2 0.29 0.27 0.14 0.2 0.25 0.29 0.20 0.15 0.23 0.14 0.10
PCA 0.20 0.15 0.22 0.21 0.30 0.26 0.14 0.21 0.17 0.28 0.19 0.14 0.18 0.13 0.11

Polynomial Kernel
MMRE

AM 0.32 0.33 0.35 0.74 0.61 0.68 0.56 0.48 0.73 0.90 0.70 0 0.37 0 0.25
OOM 0.31 0.33 0.34 0.73 0.59 0.70 0.55 0.38 1.02 0.89 0.61 0.59 0.51 0.53 0.37
WIM 0.32 0.34 0.35 0.74 0.61 0.67 0.56 0.38 0.5 0.92 0.62 0.11 0.19 0.19 0.54
WSM 0.31 0.33 0.34 0.73 0.60 0.67 0.56 0.39 0.70 0.91 0.71 0.54 0.32 0.48 0.15
RSA 0.3 0.34 0.34 0.74 0.61 0.69 0.56 0.36 0.85 0.94 0.62 0.47 0.47 0.32 0.60
PCA 0.31 0.34 0.35 0.74 0.61 0.68 0.55 0.38 1.03 0.92 0.65 0.45 0.36 0.38 0.14

MAE
AM 0.13 0.09 0.16 0.19 0.26 0.24 0.11 0.20 0.18 0.21 0.17 0 0.16 0 0.11
OOM 0.13 0.09 0.16 0.18 0.25 0.24 0.11 0.18 0.24 0.22 0.15 0.16 0.23 0.14 0.20
WIM 0.14 0.10 0.17 0.18 0.26 0.24 0.11 0.18 0.12 0.22 0.15 0.03 0.09 0.05 0.24
WSM 0.14 0.10 0.17 0.18 0.26 0.24 0.11 0.18 0.16 0.22 0.16 0.14 0.13 0.12 0.09
RSA 0.13 0.10 0.16 0.18 0.26 0.24 0.11 0.18 0.21 0.23 0.15 0.14 0.22 0.10 0.27
PCA 0.14 0.10 0.17 0.18 0.26 0.24 0.11 0.18 0.25 0.22 0.15 0.13 0.16 0.11 0.08

RMSE
AM 0.20 0.14 0.22 0.22 0.29 0.28 0.14 0.23 0.22 0.26 0.22 0 0.20 0 0.14
OOM 0.19 0.14 0.21 0.22 0.29 0.28 0.14 0.22 0.30 0.27 0.20 0.22 0.27 0.20 0.22
WIM 0.20 0.15 0.22 0.21 0.30 0.27 0.15 0.22 0.16 0.28 0.19 0.05 0.12 0.08 0.25
WSM 0.20 0.14 0.22 0.21 0.29 0.27 0.15 0.22 0.22 0.28 0.22 0.19 0.18 0.18 0.12
RSA 0.19 0.15 0.22 0.21 0.30 0.28 0.14 0.21 0.26 0.29 0.20 0.19 0.26 0.14 0.29
PCA 0.20 0.15 0.22 0.21 0.30 0.27 0.14 0.21 0.30 0.28 0.20 0.17 0.19 0.15 0.1

RBF Kernel
AM 0.32 0.32 0.35 0.71 0 0.67 0.38 0.45 0.09 0.38 0.08 0.03 0.08 0.05 0.02
OOM 0.3 0.32 0.34 0.57 0.13 0.68 0.28 0.36 0.22 0.01 0.40 0.42 0.20 0.44 0.13
WIM 0.32 0.34 0.35 0.27 0.42 0.39 0.45 0.29 0.08 0.92 0.16 0.03 0.07 0.02 0.02
WSM 0.3 0.33 0.33 0.50 0.60 0.67 0.56 0.37 0.39 0.89 0.30 0.35 0.16 0.24 0.05
RSA 0.3 0.34 0.34 0.60 0 0.68 0.28 0.35 0.58 0.34 0.10 0 0.16 0.13 0.09
PCA 0.31 0.33 0.35 0.73 0 0.67 0.49 0.36 0.17 0.29 0.27 0.18 0.21 0.22 0.05

MAE
AM 0.13 0.09 0.16 0.18 0 0.23 0.07 0.18 0.03 0.09 0.03 0.01 0.04 0.02 0.01
OOM 0.13 0.09 0.16 0.14 0.06 0.24 0.05 0.17 0.06 0 0.11 0.12 0.09 0.11 0.07
WIM 0.14 0.10 0.17 0.07 0.18 0.14 0.09 0.14 0.03 0.22 0.04 0.01 0.04 0.01 0.01
WSM 0.13 0.10 0.16 0.12 0.26 0.23 0.11 0.18 0.10 0.22 0.07 0.09 0.06 0.06 0.02
RSA 0.13 0.10 0.16 0.15 0 0.24 0.06 0.17 0.14 0.08 0.03 0 0.07 0.04 0.05
PCA 0.14 0.10 0.17 0.18 0 0.23 0.09 0.17 0.05 0.07 0.07 0.05 0.09 0.06 0.03

RMSE
AM 0.20 0.14 0.22 0.21 0 0.27 0.10 0.22 0.04 0.11 0.04 0.01 0.05 0.02 0.02
OOM 0.19 0.14 0.21 0.17 0.07 0.27 0.07 0.21 0.08 0.01 0.15 0.17 0.12 0.16 0.10
WIM 0.20 0.15 0.22 0.08 0.20 0.16 0.12 0.17 0.04 0.28 0.06 0.02 0.05 0.01 0.02
WSM 0.19 0.15 0.21 0.15 0.29 0.27 0.15 0.21 0.14 0.27 0.10 0.14 0.10 0.09 0.04
RSA 0.19 0.15 0.22 0.18 0 0.27 0.07 0.20 0.19 0.11 0.03 0 0.09 0.07 0.08
PCA 0.20 0.15 0.22 0.21 0 0.27 0.13 0.20 0.06 0.09 0.10 0.08 0.12 0.09 0.04

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 71

TABLE IV: Result of t-test: Among Different Metrics Set

P-Value
MMRE MAE RMSE

AM OOM HMS BMS RSA PCA AM OOM HMS BMS RSA PCA AM OOM HMS BMS RSA PCA
AM 1.000 0.063 0.031 0.063 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031
OOM 0.063 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031
HMS 0.031 0.031 1.000 0.031 0.094 0.031 0.031 0.031 1.000 0.063 0.031 0.031 0.031 0.031 1.000 0.313 0.031 0.031
BMS 0.063 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.063 1.000 0.031 0.031 0.031 0.031 0.313 1.000 0.031 0.031
RSA 0.031 0.031 0.094 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031
PCA 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000 0.031 0.031 0.031 0.031 0.031 1.000

Mean Difference
MMRE MAE RMSE

AM OOM HMS BMS RSA PCA AM OOM HMS BMS RSA PCA AM OOM HMS BMS RSA PCA
AM 0.000 0.020 -0.392 -0.013 -0.345 -0.268 0.000 0.038 -0.082 -0.068 -0.142 -0.158 0.000 -0.052 -0.067 -0.073 -0.123 -0.148
OOM -0.020 0.000 -0.412 -0.033 -0.365 -0.288 -0.038 0.000 -0.043 -0.030 -0.103 -0.120 0.052 0.000 -0.015 -0.022 -0.072 -0.097
HMS 0.392 0.412 0.000 0.378 0.047 0.123 0.082 0.043 0.000 0.013 -0.060 -0.077 0.067 0.015 0.000 -0.007 -0.057 -0.082
BMS 0.013 0.033 -0.378 0.000 -0.332 -0.255 0.068 0.030 -0.013 0.000 -0.073 -0.090 0.073 0.022 0.007 0.000 -0.050 -0.075
RSA 0.345 0.365 -0.047 0.332 0.000 0.077 0.142 0.103 0.060 0.073 0.000 -0.017 0.123 0.072 0.057 0.050 0.000 -0.025
PCA 0.268 0.288 -0.123 0.255 -0.077 0.000 0.158 0.120 0.077 0.090 0.017 0.000 0.148 0.097 0.082 0.075 0.025 0.000

TABLE V: t-test: Among different Kernel

P-Value
MMRE MAE RMSE

Lin Poly RBF Lin Poly RBF Lin Poly RBF
Lin 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
Poly 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000
RBF 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000

Mean Difference
MMRE MAE RMSE

Lin Poly RBF Lin Poly RBF Lin Poly RBF
Lin 0.000 -0.051 0.155 0.000 -0.015 0.047 0.000 -0.016 0.057
Poly 0.051 0.000 0.206 0.015 0.000 0.063 0.016 0.000 0.074
RBF -0.155 -0.206 0.000 -0.047 -0.063 0.000 -0.057 -0.074 0.000

a median residual value being close to zero and the model
developed by considering selected set of metrics using BMS
has smallest whiskers, narrowest box as well as few numbers
of outliers. This shows that model developed by considering
BMS as input obtained better performance as compared to
others.

VI. COMPARISON OF VARIOUS KERNEL FUNCTIONS AND
METRIC SUITES

We apply Wilcoxon signed rank test to compare the per-
formance of the models using LSSVM method with three
different types of kernel functions and different sets of source
code metrics. We use Wilcoxon test with Bonferroni correction
for comparative analysis.

A. Kernel Functions

Three different types of kernel functions have been applied
to develop QoS prediction models. Hence for each of the
kernel functions, a total number of three sets (one for each per-
formance parameter) are used. Each set has 90 data points (15
QoS parameters * 6 sets of metrics). The results of Wilcoxon
test with Bonferroni correction for all performance parameters
are shown in Table V. The upper portion of the Table V shows
the p-value between kernel functions and the lower portion
shows the mean difference value of performance parameters
between different kernels. The Bonferroni correction sets the
significance cut-off at α

n , where n is number of different
pairs (3 kernel functions; n=3techniqueC2 = 3 ∗ 2/2 = 3)
and all results are analyzed at a 0.05 significance level.

Hence, null hypothesis is rejected only if the p-value is less
than 0.05

3 = 0.0167. The null hypothesis while applying the
Wilcoxon test is that there is no significant difference between
the two classification techniques. From the result Table V, we
observe that there is a significant difference between the
kernel functions. This interpretation is due to the fact that
the p-value is lower than 0.0167 (rejecting the null hypothesis
and accpeting the alternate hypothesis). However by closely
examining the value of mean difference, RBF kernel function
yields better result as compared to other kernel functions.

B. Source Code Metrics Sets

In this work, six different set of source code metrics are
used as input to develop QoS prediction models. Hence for
each set of source code metrics, a total of three sets (one for
each performance parameter) are used. Each set has 45 data
points (15 QoS parameters * 3 kernel functions). Results of
Wilcoxon test with Bonferroni correction for all performance
parameter is shown in Table V. The Bonferroni correction sets
the significance cutoff at α

n , where n is number of different
pairs (here 6 sets of metrics; n=6techniqueC2 = 6 ∗ 5/2 = 15)
and all results are analyzed at a 0.05 significance level. Hence,
null hypothesis is rejected only if the p-value is less than
0.05
15 = 0.0033. From Table IV, we infer that there is no

significant difference between sets of metrics. We arrive
at this conclusion due to the fact that the p-value is greater
than 0.0033 (accepting the null hypothesis). However, by
closely examining the value of mean difference, we infer that
the object-oriented Metrics are yields better performance
results in comparison to other sets of metrics.

VII. THREATS TO VALIDITY

One threat to validity is that the impact on the dependent
variable may not be completely attributed to the changes in
the independent variable due to overfitting of the predictive
model. Another threat to validity is that we have conducted
experiments on a limited dataset and the answer result can be
biased to the specific dataset.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 72

VIII. CONCLUSION

Our main conclusions and takeaways are the following:
• Based on our correlation analysis of the metrics, we

conclude that there exists a high correlation between
Object-Oriented metrics and WSDL metrics.

• From the result of Wilcoxon test with Bonferroni correc-
tion, we conclude that there is a statistically significant
difference between the performance of the predictive
models built using three different LSSVM kernel func-
tions.

• From the rest of Wilcoxon test with Bonferroni correc-
tion, we conclude that there is no statistically significant
difference between different sets of source code metrics.

• From Table III, we conclude that no one set of source-
code metrics dominate the other sets for any QoS param-
eter and vice-versa.

• By assessing the value of mean difference shown in Table
V, we conclude that that the RBF kernel for LSSVM
method yields better performance results compared to
other kernel functions.

• By assessing the value of mean difference shown in
Table IV, we conclude that the object-oriented metrics
yields better result compared to other sets of source code
metrics.

• Our analysis shows evidences that it is possible to esti-
mate the QoS parameters of Web Services using source
code metrics and LSSVM based method.

REFERENCES

[1] E. Al-Masri and Q. H. Mahmoud. Investigating web
services on the world wide web. In Proceedings of the
17th international conference on World Wide Web, pages
795–804. ACM, 2008.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. How
reuse influences productivity in object-oriented systems.
Communications of the ACM.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of Object-Oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering,
22(10):751–761, October 1996.

[4] D. Baski and S. Misra. Metrics suite for maintainability
of extensible markup language web services. IET Soft-
ware, 5(3):320–341, 2011.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
Object-Oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, June 1994.

[6] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino.
Estimating web service interface quality through conven-
tional object-oriented metrics. CLEI Electron. J, 16(1),
2013.

[7] L. Kumar, S. K. Rath, and A. Sureka. Predicting qual-
ity of service (qos) parameters using extreme learning
machines with various kernel methods. In Quantitative
Approaches to Software Quality, page 11, 2016.

[8] L. Kumar, S. K. Rath, and A. Sureka. Using source
code metrics and multivariate adaptive regression splines

to predict maintainability of service oriented software.
In High Assurance Systems Engineering (HASE), 2017
IEEE 18th International Symposium on, pages 88–95.
IEEE, 2017.

[9] L. Kumar, S. K. Rath, and A. Sureka. Using source code
metrics to predict change-prone web services: A case-
study on ebay services. In Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE), IEEE
Workshop on, pages 1–7. IEEE, 2017.

[10] W. Li and S. Henry. Maintenance metrics for the Object-
Oriented paradigm. In International Software Metrics
Symposium, pages 52–60, 1993.

[11] R. Malhotra and Y. Singh. On the applicability of
machine learning techniques for object oriented software
fault prediction. Software Engineering: An International
Journal.

[12] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Cos-
cia. Detecting wsdl bad practices in code–first web
services. International Journal of Web and Grid Services,
7(4):357–387, 2011.

[13] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE Transactions
on Software Engineering, 32(11):883–895, 2006.

[14] M. Perepletchikov, C. Ryan, and K. Frampton. Cohesion
metrics for predicting maintainability of service-oriented
software. In QSIC, pages 328–335. IEEE, 2007.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari.
Coupling metrics for predicting maintainability in
service-oriented designs. In ASWEC, pages 329–340.
IEEE, 2007.

[16] B. Shim, S. Choue, S. Kim, and S. Park. A design quality
model for service-oriented architecture. In 2008 15th
Asia-Pacific Software Engineering Conference, pages
403–410. IEEE, 2008.

[17] H. M. Sneed. Measuring web service interfaces. In Web
Systems Evolution (WSE), pages 111–115. IEEE, 2010.

[18] J. A. Suykens, J. De Brabanter, L. Lukas, and J. Vande-
walle. Weighted least squares support vector machines:
robustness and sparse approximation. Neurocomputing.

[19] V. X. Tran, H. Tsuji, and R. Masuda. A new qos ontology
and its qos-based ranking algorithm for web services.
Simulation Modelling Practice and Theory, 17(8):1378–
1398, 2009.

[20] D. Wang and J. Romagnoli. Robust multi-scale prin-
cipal components analysis with applications to process
monitoring. Journal of Process Control, 15(8):869–882,
2005.

[21] P. Wang. Qos-aware web services selection with in-
tuitionistic fuzzy set under consumer’s vague percep-
tion. Expert Systems with Applications, 36(3):4460–
4466, 2009.

[22] Y. Zhou and H. Leung. Empirical analysis of object-
oriented design metrics for predicting high and low
severity faults. 32(10):771–789, 2006.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 73

