
Modeling in Agile Project Courses
Lukas Alperowitz∗, Jan Ole Johanssen†, Dora Dzvonyar‡, and Bernd Bruegge§

Department of Informatics, Technical University of Munich, Germany
∗lukas.alperowitz@tum.de, †jan.johanssen@tum.de, ‡dora.dzvoynar@tum.de, §bruegge@in.tum.de

Abstract—Teaching software engineering in an applied setting
with projects provided by clients from industry creates a real-
world learning experience for students. While clients are domain
experts well-aware of the system’s requirements, they often lack
technical knowledge required to make decisions regarding the
system architecture or the technologies involved in the project.
Therefore, it is challenging for students to maintain a common
language of understanding.

To overcome this obstacle, we suggest a four-perspective
modeling approach that allows students to create models as a
basis for communicating with clients that don’t have a technical
background. The student teams apply these models to clarify
requirements as well as to discuss architectural considerations
and technological decisions. Each modeling perspective focuses
on different aspects of the system to be developed. We teach this
approach using a methodology that integrates modeling into agile
software engineering project courses.

I. INTRODUCTION

Applied software engineering project courses should involve
industry partners and their real-world problems to provide
more relevance and prepare students for their later careers
[2], [6], [9]. We regularly conduct such courses with 100
students developing applications in 10-12 projects in which we
refer to the industry partners as clients [5]. While universities
aim to teach their students in a real-world setting, industry
partners want to benefit in terms of creative uses of technology
and innovative product ideas. Therefore, the role of the client
in such a course goes beyond stating requirements upfront
at the beginning of a project; they need to understand and
take decisions regarding technical details of the future system
throughout the whole lifespan of the project.

In our course, the clients are often domain experts who
are highly familiar with the problem at hand, but they rarely
possess knowledge that is necessary to understand different
implementation-specific alternatives, nor to express and com-
municate their needs concerning technological aspects of the
project. The lack of a common basis of communication poses
a challenge for students to discuss architectural considerations
and technical details with their clients.

In this paper, we describe a four-perspective modeling
approach which we use to overcome this obstacle. Aside from
being easily learnable for students, its main goal is to establish
a common terminology which is utilized for discussions with
clients who are not familiar with software modeling languages
such as UML. Each perspective of the modeling approach puts
a different aspect of the system into focus and presents it using
an appropriate level of abstraction.

The remainder of this paper is structured as follows. In Sec-
tion II, we outline related work. Section III introduces the four-

perspective modeling approach by describing the models, their
perspective on the system at hand, and the transition between
each of these models. We provide an approach for teaching
the models in Section IV. Advantages and disadvantages are
discussed in Section V. Section VI concludes the paper and
describes starting points for future work.

II. RELATED WORK

Lemma et al. present a tablet-based approach utilizing
touch gestures for creating and managing object-oriented
software models [8]. Wüest et al. propose a similar tablet-
based approach, allowing multiple developers to collaborate
on thoughts and ideas while deviating from standards such
as UML [11]. Both approaches demonstrate the benefits of
informal modeling, but they focus on software engineers as
the target user group. To the best of our knowledge, an
educational method for informal models of software systems
that allows students in agile projects to communicate their
ideas and thoughts to a non-technical audience has not yet
been addressed in previous research.

URML, a language to model requirements knowledge relies
on visual notation to make models understandable by various
stakeholders and extends UML in its capability to describe the
complex requirements of a system [10]. URML replaces some
UML class boxes with icons to ”enhance the vividness of the
diagrams” [3]. With our four-perspective approach, we adopt
the idea of replacing elements of formal models with visual
representations and extend it to more diagram types.

In our previous work, we presented how we use informal
models in our capstone course [7]. The four-perspective mod-
eling approach builds upon this work, further structures our
teaching method, and describes our latest experiences.

III. FOUR-PERSPECTIVE MODELING

In this section, we describe our approach in detail by first
explaining the rationale behind each model and specifying its
target audience. Moreover, we give a brief overview of the
benefits and weaknesses of each model and discuss when it
is best applied to communicate a particular perspective of a
software system. We also explain how transitions between the
models support their understanding and thereby facilitate their
communication. Several of the models of our four-perspective
approach are described in detail in [4].

Smartphone App

Health Data RepositoryHealth Trackers

Blood Glucose Reader

Smartwatch App

Share with App

Medical Res. Framework

Fitness & Nutrition Data

Blood Glucose Test Blood Glucose Readings

Data Serialization

Visualization

Conduct SurveysPatient Data

Blood Test Strips

Blood Glucose Data
Fitness & Nutrition Data

Fig. 1: Top-Level Design of a system for mobile blood glucose level tracking.

To illustrate the different perspectives, we describe a system
that allows users to track their blood glucose level using their
smartphone in a mobile context1.

A. Top-Level Design

The Top-Level Design expresses the overall architecture
of a system by highlighting its subsystems and the data
exchanged between them as shown in Fig. 1. The notation
does not follow strict rules, but conforms to conventions: each
subsystem is depicted with an icon and labeled with a textual
description. Arrows and a short textual description describe
the data that is exchanged between the subsystems. Due to its
limited complexity, a Top-Level Design is especially useful to
explain and discuss software architectures with non-technical
stakeholders of a software project.

The Top-Level Design models the problem domain for
technology-independent discussions to keep the focus on the
system’s overall architecture [1]. Therefore, our example in
Fig. 1 shows a Smartphone App rather than an Apple iPhone,
Calorie Trackers instead of concrete application names and a
Health Data Repository without mentioning its actual imple-
mentation. Determining the right level of abstraction is key
when creating a Top-Level Design. During the creation of
a Top-Level Design, students should focus on answering the
following two questions:

• What parts of the system are relevant for the client?
• What can we omit to avoid unnecessary complexity and

distraction?

B. Analysis Object Model

The Analysis Object Model describes the static structure of
the system: objects with attributes and their associations. As
illustrated in the example in Fig. 2, the notation of the Analysis
Object Model is similar to an iconized version of a conceptual
UML class diagram. An Analysis Object Model supports the
establishment of a common terminology. This is relevant when
discussing parts of the system within the development team or
with non-technical stakeholders.

1The icons used for the models are retrieved from http://www.flaticon.com
and are licensed under the Creative Commons BY 3.0 license.

The Analysis Object Model should not cover every entity
of the system: it depicts a high-level overview of the problem
domain instead of the exact objects used for implementation.
Adding visionary entities, in particular entities that are never
implemented but are common in the system’s problem domain,
can support the model’s comprehension. The same holds
true for the relationships between objects: they are modeled
only if they provide further guidance for the audience. With
an Analysis Object Model, the students should address the
following questions:

• What are the system’s core entities and their relation-
ships?

• How can we align them with the client’s domain of
knowledge?

C. Subsystem Decomposition

For providing a more technical overview of the system that
should be developed, we leverage the notation of a UML
component diagram. The Subsystem Decomposition offers a
view beyond the subsystems previously introduced in the Top-
Level Design in terms of components and their interfaces.
Similar to the previously described models, the key when
creating or extending this diagram is to find the right level of
abstraction by visualizing the key interaction points between
the subsystems and their environment.

In order to make the model understandable for a non-
technical audience, students start by showing an iconized
version as visualized on the right side of Fig. 3. Then, the inner
structure of each subsystem on a component level is revealed
step by step. Finally, the entities of the Analysis Object
Model can be used to explain the data flow. This becomes
more expressive when the data flow is animated with colored
lines, serving as an entity’s trace through the system. The
Subsystem Decomposition allows students to provide details
on components and answer the following questions:

• How are objects processed by the system’s individual
components?

• How does the data flow between the subsystems and
components?

create

Medical Professional

Patient

Recommender

PatternsTherapy
Plan

Human
Recommendations

Generated 
Recommendations

Recommendations

BG Values Insulin Injections Health LabelsCarbs ActivitiesLocations

Data Sample

use use

use use
useprovide find

Fig. 2: Iconized Analysis Object Model visualizing important entities.

D. Hardware-Software Mapping

The Hardware-Software Mapping shows the distribution of
a system’s components on actual hardware and software nodes.
As opposed to the other perspectives, the use of concrete
instances and solution domain terminology is encouraged here.
For instance, iOS is proposed as an actual mobile operating
system, or iPhone as an implementation of a smartphone.

We recommend using a UML deployment diagram for
the Hardware-Software Mapping, while still working with
icons to preserve the model’s understandability for a non-
technical audience. The previously introduced components in
the Subsystem Decomposition can be detached from the over-
all diagram and placed within the actual hardware components,
as shown in the presentation recording of the blood glucose
tracking system2. Using this perspective, the students can
answer the following question:

• On which hardware or software node are the components
deployed on?

• What are the specific protocols used for communication
between the nodes?

IV. TEACHING APPROACH

We teach our four-perspective approach with a methodology
involving multiple roles and feedback rounds and concentrates
not only on the creation of models for each perspective, but
also on their effective communication. In this section, we
explain how we teach the approach in the iPraktikum, a multi-
project capstone course conducted at the Technical University
of Munich. In this course, 100 students develop systems in the
context of mobile applications over the course of one semester
based on an agile process model called Rugby optimized for
part-time developers [5].

Each project team works with a client from industry and is
led by a project leader who is a doctoral candidate. Further-
more, the organizational structure includes cross-project roles

2https://youtu.be/sNVMtK8CcbM

which cover topics relevant for all projects, such as modeling
or release management.

At the beginning of the course, each project team receives
a problem statement describing the purpose and requirements
of the system from their client. We precede the development
sprints with a period of 2-3 weeks in which the students
focus on understanding the requirements and transforming the
problem statement into a prioritized product backlog. In this
so-called Sprint 0, we encourage students to create initial
informal models to communicate their ideas concerning the
problem domain and the system architecture to their fellow
team members and the client [7]. This allows the team to estab-
lish a shared mental model of the system they will develop and
creates a mutual understanding of possible technologies in-
volved. The project teams typically create a Top-Level Design
as well as a Analysis Object Model during this Sprint 0. Most
teams choose to use Gliffy3 as a modeling tool because it is
well-integrated into the existing knowledge management tools
used during the course and offers a mix of semi-formal and
informal templates. Together with the modeling cross-project
team members, we review these two models in a feedback
meeting, in which one representative from each team presents
their models and the corresponding high-level architectural
decisions. In subsequent sprints the teams continuously refine
these models every time new requirements arise or existing
requirements change.

We introduce the remaining two perspectives of our model-
ing approach as well as techniques on how to present the mod-
els in a course-wide lecture held four weeks into the course.
As their project becomes more concrete in terms of system
components that are needed to fulfil the required functionality,
the teams refine their two initial models and iteratively develop
their Subsystem Decomposition. When they make decisions
concerning concrete technologies, protocols, and hardware
used, they create their Hardware-Software Mapping, which
completes the four-perspective approach.

3https://www.gliffy.com

Watch App

Glucose
Sensor

Insulin
Pen

Fig. 3: Subsystem Decomposition containing icons for the visualization of data flow.

After further peer-to-peer feedback rounds with their project
leader and experienced students who are familiar with our
approach, each team presents their relevant models in a course-
wide presentation which we call Design Review two months
into the course. For this presentation, we teach the students
to tell a story along with the models and to transform each
model from the four-perspective approach into one another.
For instance, the students present the relevant objects of the
problem domain and their relations in the Analysis Object
Model, and animate the same objects through their Subsystem
Decomposition diagram to show the data flow. While preparing
their presentation, students switch from modeling tools to
presentation software such as Apple Keynote4 to integrate
high-resolution icons and transitions. Keynote allows for a
seamless integration with other content, such as requirements
descriptions or status updates. We provide an example of
presenting the above-mentioned models as an online video.5

At the end of the course we ask each team to document their
results using the four models created. For each model they cre-
ate navigational text that describes the key elements and their
relationships. This document in combination with the other
artifacts created during the course, such as the actual source
code repositories, setup instructions for the infrastructure, or
videos of the teams’ presentations, are delivered to the clients.
The delivery marks the end of the course.

V. DISCUSSION

We have been teaching the four-perspective modeling ap-
proach in our project courses for over 5 years during which it
has been applied in over 100 student projects. In this section,
we reflect on the experiences we made.

4https://www.apple.com/keynote/
5https://youtu.be/sNVMtK8CcbM

Firstly, using a modeling approach that diverges from known
standards most students are already familiar with (such as
UML) certainly involves additional teaching effort from the
instructors’ side, as well as added learning effort for the
students. We go through several feedback cycles before the
Design Review to support the teams in preparing their models.
This is perceived as additional workload by students which
they do not always see as necessary, especially in the first
month of the course. As they begin using the models for com-
munication with their client, they start to see the usefulness
of the modeling approach for communicating their system
architecture. Students’ perception improves even further as
the Design Review approaches and they start preparing their
presentations. While we allow the students to decide which
models to present, most teams choose to show three or even
all four models in their presentation, transitioning from each
perspective to show a different view of their system.

Our experience shows that clients welcome the graphical
models and they use the Analysis Object Model to arrive
at a shared understanding of the problem domain early in
the project. Seeing how the students understood the problem
gives them the opportunity to correct assumptions or clarify
questions with their extensive domain knowledge. The Top-
Level Design and Subsystem Decomposition are used to dis-
cuss architectural decisions. The Hardware-Software mapping
is used internally by the team to discuss the deployment of
the components, but rarely shown to the customer due to its
comparably high level of technical detail.

One may argue that the applied modeling techniques do
not conform to the requirements of (semi-)formal modeling.
While we provide a basic set of notations for each model, we
encourage the students to integrate creative ideas that help to
understand the models’ content and to make adjustments to
the models’ syntax during discussions with customers.

While some models do break syntactic rules of UML, we
think that they make up for it in understandability and their
suitability to express the requirements of a wide range of
projects. By removing strict modeling rules, we reduce initial
hurdles faced by clients with a non-technical background and
thus allow them to be involved in discussions about system
design decisions. Furthermore, the use of informal models en-
courages involved discussion partners to focus on the relevant
parts of the system rather than syntactic details of the model
[7]. We also encourage students to strictly distinguish between
technology-independent and platform-specific representations
to focus on the problem domain rather than getting lost in
discussion about the solution domain. The results of each
perspective can subsequently serve as a basis for additional
iterations that fully comply with UML specifications.

The anecdotal evidence we gathered during the past years
indicates that while modeling is perceived as additional effort
at the beginning of the course, both students and clients see the
advantages of the approach and rely on it in their presentations
and their regular communication.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described a four-perspective modeling ap-
proach to overcome the challenge of enabling audiences with
limited technical knowledge to understand the architecture and
inner workings of a software system. The approach consists
of a Top-Level Design, Analysis Object Model, Subsystem
Decomposition and Hardware-Software Mapping.

It emphasizes the fast creation of models towards a com-
monly shared understanding of the system at hand. In addition,
we outlined a teaching method for iteratively creating the
model for each perspective which includes multiple roles and
responsibilities, feedback rounds and presentations. In the last
five years, we used the four-perspective modeling approach in
over 100 student projects with industry partners in the context
of a large capstone course. The feedback we received from
students, project leaders and clients as well as the successful
implementation of the projects validate the usefulness of the
four-perspective modeling approach on an anecdotal level.

In the future, we plan to further structure and evaluate how
development teams work with the four-perspective modeling
approach. In particular, we want to identify which aspects
help the most to transport key elements of a software system.
Another interest of ours is the influence of modeling on
learning outcomes in terms of an enhanced understanding of
software architecture and technologies.

REFERENCES

[1] L. Alperowitz, C. Scheuermann, and N. von Frankenberg. From
storyboards to code: Visual product backlogs in agile project courses. In
Tagungsband des 15. Workshops ”Software Engineering im Unterricht
der Hochschulen” 2017, Hannover, Deutschland, pages 69–72, 2017.

[2] C. Bastarrica, D. Perovich, and M. M. Samary. What can Students
Get from a Software Engineering Capstone Course? International
Conference on Software Engineering, 2017.

[3] B. Berenbach, F. Schneider, and H. Naughton. The use of a requirements
modeling language for industrial applications. In 2012 20th IEEE
International Requirements Engineering Conference (RE), pages 285–
290. IEEE, Sept 2012.

[4] B. Bruegge and A. H. Dutoit. Object Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, 2010.

[5] B. Bruegge, S. Krusche, and L. Alperowitz. Software engineering
project courses with industrial clients. ACM Transactions on Computing
Education (TOCE), 15(4):17, 2015.

[6] R. Chatley and T. Field. Lean Learning - Applying Lean Techniques to
Improve Software Engineering Education. 39th International Conference
on Software Engineering, 2017.

[7] D. Dzvonyar, S. Krusche, and L. Alperowitz. Real projects with informal
models. In Proceedings of the MODELS Educators Symposium co-
located with the ACM/IEEE 17th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2014), Valencia,
Spain, September 29, 2014., pages 39–45, 2014.

[8] R. Lemma, M. Lanza, and F. Olivero. CEL: Modeling everywhere.
In International Conference on Software Engineering ’13, pages 1323–
1326, USA, 2013. IEEE Press.

[9] M. Paasivaara, J. Vanhanen, V. T. Heikkil, C. Lassenius, J. Itkonen, and
E. Laukkanen. Do High and Low Performing Student Teams Use Scrum
Differently in Capstone Projects ? International Conference on Software
Engineering, 2017.

[10] F. Schneider. URML: Towards Visual Negotiation of Complex System
Requirements. Dissertation, Technische Universität München, München,
2016.

[11] D. Wüest, N. Seyff, and M. Glinz. FlexiSketch team: Collaborative
sketching and notation creation on the fly. In International Conference
on Software Engineering ’15, pages 685–688, USA, 2015. IEEE Press.

