Moldable Debugging

Andrei Chis
feenk gmbh
Bern, Switzerland
andreichis.com

Abstract—Programming languages evolved towards letting de-
velopers design software applications in terms of domain abstrac-
tions. What about development tools? While developers express
software using programming languages, they craft software
exclusively by interacting with development tools. Unfortunately,
all too often developers rely on rigid development tools, focused
on programming language constructs, unaware of application
domains. On the one hand, we educate developers to shape
custom and rich domain models. On the other hand, we still
force them to use a one-size-fits-all-paradigm when it comes to
development tools.

One way to approach this abstraction gap is to empower
developers to shape their development tools together with their
domain models. In this extended abstract we explore how this
can transform debugging and debuggers, and delve into what is
needed to make this view a reality. We argue that to achieve this,
debugging infrastructures need to support the straightforward
and inexpensive creation of custom debuggers by leveraging the
explicit representation of the underlying application domains.

I. PROGRAMMING IS MODELING

Software applications capture abstract models of the real
world as executable models (i.e., programs) within the design
space of a programming language. Model-driven engineering
provides developers with different mechanisms for facilitat-
ing the creation of models, like domain-specific modelling
languages [1]. Object-oriented programming in particular sup-
ports this desideratum by allowing developers to model their
domains in terms of objects and message sends.

Debugging software applications requires developers to
(i) navigate between domain abstractions and the code that
addresses those abstractions, and (ii) understand domain ab-
stractions together with their interactions. Traditional debug-
gers support this activity by focusing on generic stack-based
operations, line breakpoints, and generic user interfaces. This
impedes the ability of developers to take direct advantage
of the domain, leading to a fragmentation of their domain-
specific questions into low-level ones that can be answered with
available tools [2]. To eliminate this abstraction gap developers
should rely on debuggers that work at the level of abstraction
of an application’s domain and enable domain-specific views,
queries and analyses [3]. While this goal is clear, it is not
always straightforward to reach.

II. DEVELOPERS AS TOOL BUILDERS

When developers encounter domain-specific questions for
which their debuggers or development tools do not offer
a direct answer, they have the option to adapt those tools.

Tudor Girba
feenk gmbh
Bern, Switzerland
tudorgirba.com

Whittle et al. [4]] observed that in the context of model-
driven engineering many developers build their own tools or
make heavy adaptations to off-the-shelf tools, even if this
requires significant effort. Smith er al. [S]] further noticed
that developers take the initiative to build tools to solve the
problems they face, especially when their organization’s culture
promotes this activity.

Hence, developers are willing to extend their tools. Support-
ing them in doing this implies not a focus on providing ready-
made functionality, but a focus on offering rich programabil-
ity [6]]. Consider testing. With frameworks like SUnit, testing
frameworks focused explicitly on significantly decreasing the
cost of creating tests, encouraging the adoption of testing as
an integral activity of the software development process. The
same should happen for debugger extensions.

III.

Extending debuggers to capture domain-specific aspects
should be as obvious as writing unit tests. Attaining this goal
is a challenging endeavour as it raises many questions: What
are the right extension mechanisms? How inexpensive can
the creation of a domain-specific debugger really be? Let us
explore next the first of these questions in more details.

Understanding a domain model requires first and foremost
reasoning about its individual domain objects. Traditional
debuggers support this through the use of object inspectors
that favor a generic view showing only the state of an object.
While universally applicable, this solution does not take into
account the varying needs of developers that could benefit
from domain-specific views and exploration possibilities [7].
For example, we should display an object representing a parser
using a view that shows its grammar productions, and a widget
using a view that shows its actual graphical representation
or its containment structure. Hence, a moldable debugging
infrastructure should start by enabling developers to view
model elements using multiple tailored views, and facilitate
the creation and integration of new views.

Understanding domain objects in isolation is not enough.
Depending on the application domain and their task, developers
need to correlate information from multiple sources. For
example, when debugging a parser both the grammar rules
and the input being parsed are of interest; when debugging
an event-driven system, the publisher, the subscriber, and the
event are of interest. A moldable debugging infrastructure
should support the creation of multiple domain-specific user

ENABLING MOLDABILITY

andreichis.com
tudorgirba.com

interfaces for debugging that extract and highlight relevant data
from application domains. A tailored user interface consists
in multiple widgets, each showing custom views for domain
objects.

Once developers have custom user interfaces offering
domain-specific views, they also need to navigate through the
execution at the level of abstraction of those domains. If the
domain is that of a parser, stepping through the execution
at the level of grammar production or the input string is
what is needed. If it is an event-driven system, the right
level of abstraction is given by the propagation of events
through the system. To enable this, a moldable debugging
infrastructure needs to allow developers to create debugging
operations that express and automate high-level abstractions
from application domains. Debugging operations are then
attached to the appropriate widgets.

While addressing the basic information needs in a debugger,
the aforementioned mechanisms are not enough. During de-
bugging, developers cannot know in advance in what situations
they will find themselves in [8]]. Hence, they might begin with
the wrong user interface and set of actions. If they do not
know that certain views and actions are applicable for their
current debugging context, they will not use them. A moldable
debugging infrastructure can address this by attaching to every
view, widget and action an activation predicate, i.e., a boolean
condition over the state of the program capturing those states
in which the extension is applicable. Then, only extensions
applicable in the current debugging context are made available;
if two or more user interfaces are applicable a developer should
be able to switch at run time between them.

IV. ON THE COST OF TOOL BUILDING

For developers to extend their debuggers, the cost associated
with creating extensions should be small. How we define cost,
and the way to reduce it, depends on the mechanism for
defining extensions. If we automatically generate debugging
extensions from a model’s specification [9]], [LO], the cost
goes into creating well-formed specifications for models. If we
provide developers with a toolset for constructing debugger
extensions on top of their models, cost is related to the effort
needed to develop and maintain these extra extensions.

Through the Moldable Debuggelﬂ we explored the second di-
rection, in the context of object-oriented programming [11], as
object-oriented programming provides developers with a direct
way of expressing domain models using objects. Debuggers
however rarely take those models into account.

We observed that the cost of creating custom views for
domain objects can be significantly reduced. MooseE] a plat-
form for software and data analysis comes with more than
230 extensions for visualising objects, ranging from parsers
and compiled code to graphical widgets. Custom views are
expressed using an internal DSL that supports different kinds

'The Moldable Debugger is a model of an extensible debugger. GTDebugger
is an implementation of this model in Pharo (pharo.org) as part of the GToolkit
(gtoolkit.org).

“moosetechnology.org

of views. On average creating a view requires 9 lines of code.
Combining these views to form custom user interfaces and
adding debugging actions increases the cost. Moose also ships
with six custom debuggers. By providing internal DSLs for
constructing user interfaces and specifying debugging actions,
a debugger can be created in under 500 LOC of code, on
top of a base implementation of 1500 LOC. Certainly, the
LOC metric must be taken with care as it does not indicate
the time and expertise needed to write the lines. Nevertheless,
it does provide a good indication of the small size of these
domain-specific debuggers. By supporting each step of the
customisation through an internal DSL, developers do not have
to learn new syntaxes, only dedicated APIs.

Given the difficulty of debugging, improving how developers
view and navigate their models is needed, even if the cost
of creating custom debuggers is high. A low cost can make
this activity even more appealing. In today’s world, we rarely
develop an application without tests, or depend on external
components without tests. In tomorrow’s world, we should be
as demanding when it comes to debugger extensions.

REFERENCES

[1] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel,
and J. Gray, “Globalizing modeling languages,” Computer, vol. 47, no. 6,
pp. 68-71, 2014.

[2] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw. Eng.,
vol. 34, pp. 434451, Jul. 2008.

[3] O. Nierstrasz, “The death of object-oriented programming,” in FASE
2016, ser. LNCS, P. Stevens and A. Wasowski, Eds., vol. 9633. Springer-
Verlag, 2016, pp. 3—10.

[4] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
Model-Driven Engineering Languages and Systems: 16th International
Conference, (MODELS 2013). Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, ch. Industrial Adoption of Model-Driven Engineering:
Are the Tools Really the Problem?, pp. 1-17.

[5] E. K. Smith, C. Bird, and T. Zimmermann, “Build it yourself! Home-
grown tools in a large software company,” in Proceedings of the 37th
International Conference on Software Engineering. 1EEE — Institute of
Electrical and Electronics Engineers, May 2015.

[6] T. Girba and A. Chis, “Pervasive Software Visualizations,” in Proceed-
ings of 3rd IEEE Working Conference on Software Visualization, ser.
VISSOFT’15. IEEE, Sep. 2015, pp. 1-5.

[71 A. Chig, T. Girba, O. Nierstrasz, and A. Syrel, “The Moldable Inspector,”
in Proceedings of the 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, ser.
Onward! 2015. New York, NY, USA: ACM, 2015, pp. 44-60.

[8] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss,
“Debugger canvas: industrial experience with the code bubbles paradigm,”
in Proceedings of the 2012 International Conference on Software
Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 1064-1073.

[9]1 P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, and

H. Wu, “Automatic generation of language-based tools using the LISA

system,” Software, IEE Proceedings -, vol. 152, no. 2, pp. 54-69, 2005.

E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Supporting

Efficient and Advanced Omniscient Debugging for xDSMLs,” in 8th

International Conference on Software Language Engineering (SLE) ,

Pittsburg, United States, Oct. 2015.

A. Chis, M. Denker, T. Girba, and O. Nierstrasz, “Practical domain-

specific debuggers using the Moldable Debugger framework,” Computer

Languages, Systems & Structures, vol. 44, Part A, pp. 89-113, 2015.

[10]

[11]

pharo.org
gtoolkit.org
moosetechnology.org

	Programming is modeling
	Developers as tool builders
	Enabling moldability
	On the cost of tool building
	References

