
A Multipurpose Framework for Model-based
Reuse-oriented Software Integration Synthesis

Alexander Perucci
University of L’Aquila, Italy

alexander.perucci@graduate.univaq.it

Marco Autili
University of L’Aquila, Italy

marco.autili@univaq.it

Massimo Tivoli
University of L’Aquila, Italy

massimo.tivoli@univaq.it

Abstract—Systems are increasingly built by reusing and inte-
grating existing software. This paper presents the preliminary
version of a multipurpose framework for software integration
synthesis. The objective is to provide both researchers and
practitioners with an easily accessible environment that, integrat-
ing different kinds of software synthesizers, permit to perform
different kinds of analyses, verification, model-to-model and
model-to-code transformations, all oriented to the reuse and the
integration of existing, possibly third-party, software.

I. INTRODUCTION

The Future Internet1 (FI) promotes a large-scale computing
environment that will be increasingly surrounded by software
that, at different granularities, can be reused and composed to
build value added services.

Systems are increasingly produced by integrating existing
software. Furthermore, the focus of system development is
on integration of third-parties software that exposes interfaces
describing the provided functionalities and the way to interact
with them, i.e., the behavioral interaction protocol.

Reuse-based software engineering is becoming the main
development approach for building both business and com-
mercial systems [1], [2]. Numerous methodologies and soft-
ware engineering approaches have been proposed to address
the problem of automatic synthesis of integration code and
architectures, as well as integration paradigms and patterns [1],
[3]–[8]. The proposed approaches encompasses a variety of
formally grounded and practical aspects, ranging from spec-
ification and analysis, from model transformation to code
generation, model checking and formal verification, from
implementation to run-time management.

During the last decade, our research activity has been
focused on model-based reuse-oriented software synthesis [2],
[9]–[14] for integrating (centralized or distributed) software
systems, from system architecture to composition code, from
coordination to protocol mediation/adaptation. This research
activity has been funded by a number of national and
EU projects, among which the FP7 CONNECT2, the FP7
CHOReOS and its follow-up H2020 CHOReVOLUTION3, the
GAUSS4 and D-ASAP5 Italian PRIN projects.

1www.future-internet.eu
2www.connect-forever.eu
3www.choreos.eu – www.chorevolution.eu
4www.lta.disco.unimib.it/GAUSS
5d-asap.ws.dei.polimi.it

This paper initiates a new research and development action
that we intend to pursue towards realizing a multipurpose
framework for software integration synthesis. The objective
is to provide both researchers and practitioners with an eas-
ily accessible environment that, integrating different kinds
of software synthesizers, permit to perform different kinds
of analyses, verification, model-to-model and model-to-code
transformations, all oriented to the reuse and the integration
of existing, possibly third-party, software.

With this goal in mind, we present the MULTISYNTH STU-
DIO6, a web application7 that supports model-based synthesis
of software integration code, as well as different kinds of
analysis and verification. In its preliminary version, the studio
provides support for realizing choreography-based systems by
integrating existing software peers in a fully distributed way.

The MULTISYNTH STUDIO offers extension mechanisms
so to include other kind of integration synthesis methodolo-
gies. That is, our mid-term goal is to include in the studio all
the synthesis methodologies we have proposed in the past, so
to offer a ready-to-use integrated working environment where
practitioners can experiment with different synthesis method-
ologies, meeting both theoretical and practical interests.

The paper is structured as follows. Section II sketches a gen-
eral picture of our multi-purpose integration synthesis method-
ology. Section III describes an instance of the general synthesis
process to support the automated synthesis of choreography-
based systems and its implementation. Section IV reviews
related work, and Section V concludes the paper.

II. MODEL-BASED SYNTHESIS OVERVIEW

In its most general sense, a multi-purpose integration syn-
thesis process might involve quite different activities and
manipulated artifacts. Figure 1 shows a high-level activity
diagrams describing the multi-purpose integration synthesis
process that we have in mind.

The System Design activity concerns the definition of
the models to be given as input to the synthesis process.
Input models can be a mix of functional models, such as
(global or peer-style) interaction protocols, and non functional
ones, such as security requirements and QoS constraints. For
instance, input models can be XML-based specifications of

6The code is freely available at https://github.com/sesygroup
7multisynthstudio.disim.univaq.it



Fig. 1. Model-based Synthesis Approach

the interfaces (such as WSDL8) together with automata-based
specifications of the interaction behavior of the third-party
services/components being reused.

These models can then undergo both a Model-2-Model
Synthesis step to be transformed into intermediate models,
and/or a Model-2-Code Synthesis step to be transformed into
actual code. Examples of output (intermediate) models can
be the system architecture, coordination and adaptation mod-
els, deployment descriptor and, in general, any intermediate
representation that supports further synthesis steps or analysis
and verification. Examples of actual code can be additional
software artifacts (implemented in any programming language)
that, e.g., when integrated with the third-party software to be
composed, contribute to built the overall final system while
fulfilling the specified functional and non functional system
properties.

Both intermediate models and code can be analyzed and
verified to check, e.g., desired system properties, such as
safety and liveness, QoS requirements fulfillment, structural
properties of the input and intermediate models, and code, as
well as the system realizability. The results of the Analysis and
Verification activity can lead to reiterate the entire process, by
possibly refining input models.

When the goal of the synthesis is to realize the final sys-
tem, beyond analysis and verification, the System Realization
activity may return an overall model, e.g., specifying all the
possible interactions of the composed system, as well as, a
bundle (e.g., a Web Archive or a JAR file) containing all the
synthesized software artifacts (e.g., coordinators, adapters and
security filters) together with a description of their dependen-
cies for actual deployment and execution.

III. CHOREOGRAPHY SYNTHESIS

In this section we describe an instance of the general syn-
thesis process to support the realization of choreography-based
systems. Choreographies are an emergent service engineer-
ing approach to compose together and coordinate distributed

8https://www.w3.org/TR/wsdl

software peers by describing the interactions among them
from a global perspective. Choreographies model peer-to-peer
communication by defining a multiparty protocol that, when
put in place by the cooperating participant peers, allows for
reaching the overall choreography goal in a fully distributed
way.

Out of a choreography specification, the goal is to automati-
cally generate a set of Coordination Delegates (CDs). CDs are
additional software entities with respect to the choreography
participants, and are synthesized in order to proxify and
control the participants interaction. When interposed among
the choreography participants, CDs enforce the collaboration
prescribed by the choreography specification. The synthesized
CDs are correct by construction, meaning that the resulting
choreographed system realizes the choreography specification,
even when not realizable by simply projecting the choreogra-
phy specification into each single participant [2], [9], [11]–
[13]. Our synthesis method deals with hybrid choreography
participants that can communicate synchronously and/or asyn-
chronously.

Fig. 2. Choreography Synthesis Approach

The choreography synthesis process supported by the MUL-
TISYNTH STUDIO consists of the following six activities
(Figure 2), each manipulating models conforming to aptly
defined metamodels. Model conformance ensures that each
model satisfies the constraints captured in its metamodel, i.e.,
that the model is indeed a valid instance of the metamodel [15].

Choreography Design – This activity concerns the definition
of the choreography-based system to be realized. The choreog-
raphy specification is given in terms of a state machine where
a transition from a state to another models the exchange of a
message between two peers. The choreography specification
describes the way peers perform their interactions from a
global perspective by focusing on the exchange of messages.
Thus, a choreography specification defines the (partial) order



in which the message exchanges occur. Each message ex-
change involves two peers: the sender and the receiver of
the message. The choreography specification abstracts from
the way peers communicate to exchange messages, i.e., syn-
chronous versus asynchronous communication. The commu-
nication style will be concretized after concrete participants
(e.g., software services, software components, and things) are
selected to play the roles of the choreography peers.

Fig. 3. Sample Choreography Specification

Figure 3 shows a sample choreography specification. It
describes the interactions of the peers P1 to P6. The possible
interactions are such that P3 receives the message m1 from
P1, followed by P3 receiving the message m2 from P2. Then,
when in the branching state s2, three exclusive alternatives
can be undertaken. One alternative accounts for P6 receiving
m3 from P4, followed by P6 receiving m6 from P3, in
turn followed by P6 receiving m7 from P5. The other two
alternatives account for either P6 receiving m4 from P5, or P3
receiving m5 from P2. Each possible alternative path leads to
the state s5, from where no more outgoing transitions can be
undertaken. The choreography specification conforms to the
metamodel depicted in Figure 4. The metamodel consists of
an arbitrary number of Messages, Participants, Transitions, and
States. Exactly one of these states is an initial state. Each state
serves as source and/or target for a transition. Each transition
is concretized as SendingMessageActionTransition to model
the exchange of a message between a source participant (i.e.,
the one sending the message) a target participant (i.e., the one
receiving the message).

M2M Synthesis (Projection) – Out of the choreography spec-
ification, the projection step generates one behavioral model
for each choreography peer. This model is a state machine
where a transition represents the action of either sending or
receiving a message (observable actions), or an internal action
(not observable from outside). The transition labels postfixed
with “!” represent send actions; the transition labels postfixed
with “?” represent receive actions; the label “epsilon” indicates
an internal action. For a given choreography peer, a projection
represents the behavior expected by the concrete participant
that will be selected to play the role of the choreography peer,
according to the sequences of message exchanges specified
by the choreography. Being derived from the choreography

Fig. 4. Choreography Specification metamodel

specification, also this model abstracts from the type of the
send and receive actions (synchronous or asynchronous). For
this reason, we call this model Abstract Participant Behavior.

Fig. 5. Abstract Participant Behavior P3

Figure 5 shows the abstract participant behavior of the
participant P3. For example, from the state s0 to s5, a possible
expected execution is such that P3 receives the message m1,
followed by the message m2. Then, when in the branching
state s2, one alternative is that of receiving m5.

Fig. 6. Abstract Participant Behavior metamodel



Fig. 7. Abstract CD Behavior for coordinating P2 and P3

Note that we have deliberately left internal actions, which
indeed could be collapsed through an automaton simplification
procedure. The related metamodel is shown in Figure 6.
By analyzing the metamodel, we can notice that (differently
from the choreography metamodel in Figure 4) a message is
concretized by OutputMessage and InputMessage in order to
distinguish between sent messages from received ones, respec-
tively. A transition is concretized by SendActionTransition,
ReceiveActionTransition, and InternalActionTransition.

M2M Synthesis (Coordination Logic Extraction) – This
step takes as input the choreography specification and automat-
ically extracts the coordination logic that is required to coordi-
nate the choreography peers in a distributed way. The extracted
coordination logic is thus distributed into a set of Abstract
CD Behavior models. Similarly to the Abstract Participant
Behavior, each of them is a state machine where a transition
models the action of either sending a message or receiving
a message, or an internal action. As better detailed later on
this section, these actions are related to the standard com-
munication performed to achieve the choreography business
logic (see Figure 10). Differently from the Abstract Participant
Behavior, there are also transitions modeling the synchronous
exchange of coordination/synchronization messages. These
actions model additional communication required to realize
the coordination logic that is needed to enforce the realizability
of the specified choreography. Standard communication takes
place between a CD and the participant it controls and
supervises. When needed, additional communication messages
are exchanged among the involved CD.

Figure 7 shows the logic of CD{2,3} coordinating the chore-

ography peers P2 and P3. The coordination logic is such that
CD{2,3} waits for receiving a synchronization message from
CD{1,3}. Only after it can receive the message m2 from P2 and
forward it to P3. When in the state “Ssynch2”, CD{2,3} send a
synchronization message to CD{4,6} and CD{5,6} reaching the
branch state “Sbranch2”. When in this state, three exclusive
alternatives can be undertaken. From top to bottom, one alter-
native accounts for a send synchronization message to CD{4,6}
and CD{5,6}, followed by a send and then a receive of the
message m5; the other two alternatives account for receiving
synchronization from CD{5,6} or CD{4,6}, respectively, in turn
followed by internal actions. The coordination logic model
also conforms to the Abstract Participant Behavior metamodel
in Figure 6.

Selection – Since our approach is reuse-oriented, the chore-
ography is not implemented from scratch; rather, the approach
allows to enforce the realizability of choreographies that reuse,
as much as possible, e.g., third-party services published in
a service inventory. Then, the selection activity consists of
selecting concrete participants capable of playing the roles of
the choreography peers. This calls for exogenous coordination
of the selected participants since, in general, we cannot access
their code or change it.

The output of the selection phase is a set of the behavioral
specifications, each one defining the interaction protocol of
the selected participants. A behavioral specification is also
an automata-based model that we call Concrete Participant
Behavior. The related metamodel (not shown for lack of space)
is similar to the metamodel in Figure 6, with the difference
that for each transition, its type is specified: synchronous,



asynchronous, or internal.
Figure 8 shows the behavior of concrete participants se-

lected for the choreography peers P1 to P6. The messages
m3, m4, m6, m7 are exchanged synchronously (graphically
represented as continuous arrows); m1, m2, m5 are exchanged
asynchronously (graphically represented as dashed arrows).

Fig. 8. Behavior of the Concrete Participants P1 to P6

Figure 9 shows an excerpt of the hybrid system (manually
drawn) obtained by composing the set of concrete participants
P1 to P6 in Figure 8 (the automatically generated model is
not reported here since too large in size). In Figure 8, we
have named the states so to facilitate the mapping of the
choreography states in Figure 3 to the states of the hybrid
system behavior resulting from the composition in Figure 9.
For each participant Pi, its states are labeled as Pi:state-name.

In the hybrid system in Figure 9, asynchronous interactions
(◦) are handled through messages queues all having maximum
size equals to 1, i.e., the participants P1, P2 and P3 are all
assigned 1-bounded queues; whereas, the participant P4, P5
and P6 are all assigned 0-bounded queues – they exchange
only synchronous messages (•). The participant P3 is indeed
a hybrid participant since it exchanges m6 synchronously, and
m1, m2 and m5 asynchronously. In the figure, message queues
are denoted as [...]. Initially, all the queues are empty, hence
[]. State changes and queue updates are highlighted in bold
step by step.

Following the branch on the left-hand side of Figure 9, three
different paths can be undertaken from the state marked with
(1). The corresponding traces are:
m1P1→P3 ε m2P2→P3 ε m5P2→P3 ε

m1P1→P3 ε m2P2→P3 ε m3P4→P6 m6P3→P6 m7P5→P6

m1P1→P3 ε m2P2→P3 ε m4P5→P6 m7P5→P6

It is easy to see that these three traces are all allowed by the
choreography in Figure 3. Conversely, all the traces (not com-
pletely shown in Figure 9) traversing either the state marked
with (2) or the state marked with (3) are not allowed by the
choreography. Thus, according to the notion of choreography
realizability given in [16], [17], the choreography in Figure 3
is not realizable. Intuitively, this basically means that if we let
the selected participants interact in an uncontrolled way in the
composed system, they can perform interactions that are not
permitted by the choreography specification.

M2M Synthesis (Concretization) – Since the Abstract CD
Behavior is a priori generated out of the choreography speci-
fication only, it abstracts from the way the selected participants
communicate. This information is added by the Concretization
step, just after the Selection step. Interested readers can play
with the MULTISYNTH STUDIO web application to visualize
the resulting concrete CDs.

M2M Synthesis (System Integration) – For the set of synthe-
sized CDs, correctness by construction means that when they
are composed with the selected participants (System Integra-
tion step), the behavior of the integrated choreographed system
realizes the specified choreography. That is, the synthesized
concrete CDs enforce by construction the realizability of the
specified choreography. According to a predefined architec-
tural style, CDs are interposed among the participants needing
coordination. Figure 10 shows the instance of the architectural
style related to the sample choreography in Figure 3.

CDs perform coordination (i.e., additional communication
in the figure) of the participants interaction (i.e., standard
communication in the figure) in a way that the resulting
collaboration realizes the specified choreography. According
to the type of actions performed by the concrete participants,
standard communication can be synchronous or asynchronous.
Additional communication is always synchronous. In this
sense, the system behavior is modeled as a Hybrid System
Behavior model. Interested readers can visualize the latter
by using our web application. The related metamodel can be
found under the github repository.

Analysis & Verification, M2C Synthesis – It is out of
scope for this paper to discuss all the kinds of analysis and
verification steps that can be performed on the generated
models (beyond the fact that here we have described only
the choreography-oriented synthesis process). Just to mention
a few, concrete participants behavior that model third-party
services and CDs can be analyzed and verified to check if
the choreographed system can be effectively realized taking
into account specified system properties. Reachability paths,
deadlock freeness, dead loops, sink states, etc, can also be
analyzed. The discussion of the different M2C transformations
that can be employed is also outside the scope of this paper.
Interested reader can however refer to our previous work in [2],
[9]–[14].



(P1:s1:[], P2:s0:[], P3:s0:[m1], P4:s0:[], P5:s0:[], P6:s0:[])

(P1:s0:[], P2:s0:[], P3:s0:[], P4:s0:[], P5:s0:[], P6:s0:[])

(P1:s0:[], P2:s2:[], P3:s0:[m2], P4:s0:[], P5:s0:[], P6:s0:[])
m3P4->P6

m2P2->P3

(P1:s1:[], P2:s0:[], P3:s1:[], P4:s0:[], P5:s0:[], P6:s0:[])

𝜖

(P1:s0:[], P2:s2:[], P3:s0:[m2], P4:s3:[], P5:s0:[], P6:s3:[])

m3P4->P6

(P1:s1:[], P2:s2:[], P3:s1:[m2], P4:s0:[], P5:s0:[], P6:s0:[])

m2P2->P3

(P1:s1:[], P2:s2:[], P3:s2:[], P4:s0:[], P5:s0:[], P6:s0:[])

𝜖

m5P2->P3

(P1:s1:[], P2:s5:[], P3:s2:[m5], P4:s0:[], P5:s0:[], P6:s0:[])

(P1:s1:[], P2:s5:[], P3:s5:[], P4:s0:[], P5:s0:[], P6:s0:[])

𝜖

m4P5->P6

(P1:s1:[], P2:s2:[], P3:s2:[], P4:s3:[], P5:s0:[], P6:s3:[])

m3P4->P6

(P1:s1:[], P2:s2:[], P3:s5:[], P4:s3:[], P5:s5:[], P6:s5:[])

m6P3->P6

m7P5->P6

(P1:s1:[], P2:s2:[], P3:s2:[], P4:s0:[], P5:s5:[], P6:s5:[])

(P1:s1:[], P2:s2:[], P3:s2:[], P4:s0:[], P5:s4:[], P6:s4:[])

(P1:s0:[], P2:s0:[], P3:s0:[], P4:s3:[], P5:s0:[], P6:s3:[])

m1P1->P3

(P1:s1:[], P2:s0:[], P3:s0:[m1], P4:s3:[], P5:s0:[], P6:s3:[])

m1P1->P3

𝜖

(P1:s1:[], P2:s0:[], P3:s1:[], P4:s3:[], P5:s0:[], P6:s3:[])

(P1:s1:[], P2:s2:[], P3:s5:[], P4:s3:[], P5:s0:[], P6:s4:[])

m7P5->P6

(1)
(2)

(3)

Fig. 9. An excerpt of the hybrid system composing the participants P1 to P6 (1-bounded queues)

P1

P2

P3

P4

Standard communication
(synchronous and/or asynchronous 

message exchange)

Additional communication
(synchronous coordination

message exchange)

CD{i,j}

Pi

Concrete Participant

Coordination Delegate

P5

P6

CD{4,6} CD{3,6}

CD{2,3}

CD{1,3}

CD{5,6}

Fig. 10. Architectural style (a sample instance of)

IV. RELATED WORK

The work described in this paper is related to approaches
and tools for automated choreography realization.

In [3], the authors propose an approach to enforce syn-
chronizability and realizability of a choreography. The method
implementing the approach is able to automatically generate
monitors, which act as local controllers interacting with their
peers and the rest of the system in order to make the peers
respect the choreography specification. Our notion of CD is
“similar” to the notion of monitor used in [3], since CDs are
able to interact with the choreography participants by also
performing additional communication (i.e., the exchange of
Sync messages) to exogenously coordinate the participants
interaction so to fulfill the choreography specification. How-
ever, the two synthesis methods are different. In [3], the mon-

itors are generated through an iterative process, automatically
refining their behavior. They are first obtained by generating
the set of peers via choreography projection. Then, the system
synchronizability and realizability is automatically checked
by using equivalence checking. If one of these properties is
violated, the method exploits the generated counterexample to
augment the monitors with a new synchronization message.
Our synthesis method automatically generates CDs out of the
choreography specification by considering that the selected
concrete participants are (language) equivalent to the chore-
ography abstract participants. The notion of realizability that
we use in this paper is the same as the one used in [3] in that
both works leverage results on choreography realizability and
its decidability that are given in [16], [17].

In [4], the authors address the realizability problem based



on a priori verification techniques, using refinement and
proof-based formal methods. They consider asynchronous
systems where peers communicate via possibly unbounded
FIFO buffers. The obtained asynchronous system is correct
by construction, i.e., it realizes the choreography specification.
With respect to our method and other methods discussed in
this section, this method is more scalable in terms of number
of involved peers and exchanged messages. However, our
approach focuses on realizing a choreography specification
by reusing third-party peers (possibly black-box), rather than
generating the correct peers from scratch. This is why we
cannot avoid to deal with exogenous coordination by means
of additional software entities such as the CDs.

The approach in [5] checks the conformance between the
choreography specification and the composition of participant
implementations. The described framework can model and
analyze compositions in which the interactions can be asyn-
chronous and the messages can be stored in unbounded queues
and reordered if needed. Following this line of research,
the authors provided a hierarchy of realizability notions that
forms the basis for a more flexible analysis regarding classic
realizability checks [5]. In [6], the authors identify a class of
systems where choreography conformance can be efficiently
checked even in the presence of asynchronous communication.
This is done by checking choreography synchronizability.

VerChor is a framework for choreography design and verifi-
cation [1]. The framework checks a set of key properties that
choreographies must respect for ensuring correctness of the
system under development, by using verification techniques
and tools for choreography analysis. The authors focuses
on asynchronous communication semantics, that is, peers
involved in the distributed system exchange messages via
FIFO buffers. Although, in its current stage, MULTISYNTH
STUDIO provides support to realize service choreographies
only, differently to VerChor, it has been conceived and engi-
neered to support the analysis and synthesis of reuse-based
software, which is not limited to service choreographies.

The ASTRO toolset supports automated composition of
Web services and the monitoring of their execution [7].
ASTRO deals with centralized orchestration-based processes
rather than fully decentralized choreography-based ones.

In [8], the authors present a unified programming framework
for developing choreographies that are correct by construction
in the sense that, e.g., they ensure deadlock freedom and
communication safety.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the preliminary version of the MULTI-
SYNTH STUDIO, a multipurpose framework for software in-
tegration synthesis. The studio offers extension mechanisms so
to include other kind of integration synthesis methodologies.
Our mid-term goal is to provide both researchers and practi-
tioners with an easily accessible web-based environment that
integrates different kinds of integrator synthesis approaches.

ACKNOWLEDGMENT

This research work has been supported by (i) the European
Union’s H2020 Programme under grant agreement number
644178 (project CHOReVOLUTION - Automated Synthesis
of Dynamic and Secured Choreographies for the Future Inter-
net), (ii) the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (project INCIPICT - INnovating CIty Planning
through Information and Communication Technologies), and
(iii) the GAUSS national research project, which has been
funded by the MIUR under the PRIN 2015 program (Contract
2015KWREMX).

REFERENCES

[1] M. Güdemann, P. Poizat, G. Salaün, and L. Ye, “Verchor: A framework
for the design and verification of choreographies,” IEEE Transaction on
Services Computing, vol. 9, no. 4, pp. 647–660, 2016.

[2] M. Autili, P. Inverardi, and M. Tivoli, “Automated synthesis of service
choreographies,” IEEE Software, vol. 32, no. 1, pp. 50–57, 2015.

[3] M. Güdemann, G. Salaün, and M. Ouederni, “Counterexample guided
synthesis of monitors for realizability enforcement,” in Automated Tech-
nology for Verification and Analysis, ser. LNCS, S. Chakraborty and
M. Mukund, Eds., 2012, pp. 238–253.

[4] Z. Farah, Y. Ait-Ameur, M. Ouederni, and K. Tari, “A correct-by-
construction model for asynchronously communicating systems,” Int.
Journal on Software Tools for Technology Transfer, 2016.

[5] R. Kazhamiakin and M. Pistore, “Choreography conformance analysis:
Asynchronous communications and information alignment,” in Web
Services and Formal Methods, ser. LNCS, 2006, vol. 4184.

[6] S. Basu and T. Bultan, “Choreography conformance via synchronizabil-
ity,” in 20th WWW, 2011.

[7] M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Bar-
bon, P. Bertoli, and P. Traverso, “ASTRO: supporting composition
and execution of web services,” in 3rd Int. Conf. on Service-Oriented
Computing ICSOC, 2005.

[8] M. Carbone and F. Montesi, “Deadlock-freedom-by-design: multiparty
asynchronous global programming,” in 40th ACM SIGPLAN-SIGACT
POPL, 2013, pp. 263–274.

[9] R. Calinescu, M. Autili, J. Cámara, A. D. Marco, S. Gerasimou,
P. Inverardi, A. Perucci, N. Jansen, J. Katoen, M. Z. Kwiatkowska, O. J.
Mengshoel, R. Spalazzese, and M. Tivoli, “Synthesis and verification of
self-aware computing systems,” in Self-Aware Computing Systems, 2017,
pp. 337–373.

[10] M. Autili, P. Inverardi, F. Mignosi, R. Spalazzese, and M. Tivoli,
“Automated synthesis of application-layer connectors from automata-
based specifications,” in 9th Int. Conf. on Language and Automata
Theory and Applications LATA, 2015, pp. 3–24.

[11] M. Autili, A. D. Salle, A. Perucci, and M. Tivoli, “On the automated
synthesis of enterprise integration patterns to adapt choreography-based
distributed systems,” in 14th Int. Workshop on Foundations of Coordi-
nation Languages and Self-Adaptive Systems FOCLASA, 2015.

[12] M. Autili, A. D. Salle, and M. Tivoli, “Synthesis of resilient chore-
ographies,” in 5th Int. Workshop on Software Engineering for Resilient
Systems SERENE, 2013, pp. 94–108.

[13] M. Autili, D. D. Ruscio, A. D. Salle, P. Inverardi, and M. Tivoli,
“A model-based synthesis process for choreography realizability en-
forcement,” in 16th Int. Conf. on Fundamental Approaches to Software
Engineering FASE, 2013, pp. 37–52.

[14] M. Autili, L. Mostarda, A. Navarra, and M. Tivoli, “Synthesis of de-
centralized and concurrent adaptors for correctly assembling distributed
component-based systems,” Journal of Systems and Software, vol. 81,
no. 12, pp. 2210–2236, 2008.

[15] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based model
conformance and multiview consistency checking,” ACM Trans. Softw.
Eng. Methodol., vol. 16, no. 3, p. 11, 2007.

[16] S. Basu, T. Bultan, and M. Ouederni, “Deciding choreography realiz-
ability,” in 39th ACM SIGPLAN-SIGACT POPL, 2012, pp. 191–202.

[17] S. Basu and T. Bultan, “Automated choreography repair,” in 19th Int.
Conf. on Fundamental Approaches to Software Engineering FASE, 2016,
pp. 13–30.


