
1

Architecture-Driven Reduction of Specification
Overhead for Verifying Confidentiality in

Component-Based Software Systems
Kateryna Yurchenko, Moritz Behr, Heiko Klare, Max Kramer and Ralf Reussner

Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: firstname.lastname@kit.edu

Abstract—Code verification techniques can be used
to guarantee that some of the information processed in
software systems remains confidential. For this, allowed
information flows have to be specified for the system
under analysis. Reducing the specification overhead
could render code verification feasible where verifica-
tion was considered too complex or costly so far. In this
paper, we introduce a model-driven approach to reduce
the overhead for creating and maintaining such speci-
fications. Independent of the verification input format,
developers can specify confidentiality for component-
based architecture models, which are kept consistent
with object-oriented code. They are supported in adapt-
ing the specifications to evolving systems in order to
detect information leaks with less effort and in earlier
development stages.

I . Introduction and Motivation
For many software systems, the confidentiality of pro-

cessed data is important. To guarantee this non-functional
property, it is possible to verify the flow of information
in the code. For this, confidentiality requirements have to
be specified for every system under analysis. The effort
required to specify and verify confidentiality represents a
design and development overhead. A part of this effort is
inevitable, and another part is due to accidental complexity.
As a result, it is either more costly than necessary to develop
secure software, or the software is less secure than required.
In this paper, we present an approach for reducing

the overhead for creating and maintaining confidentiality
specifications using the component-based development
paradigm and model-driven techniques. With this approach
1.) confidentiality can be specified for services that are
defined for component interfaces, 2.) architectural specifi-
cations for the component architecture are automatically
translated into proof obligations for code verification, and
3.) evolving architectures, confidentiality specifications as
well as code are kept semi-automatically consistent with
each other. As a result, developers do not need to consider
the internal realization of components or details of verifi-
cation techniques. Furthermore, they can read and modify
confidentiality specifications on their level of abstraction
because specifications in the architecture and in the code
are kept consistent with each other. Finally, by specifying

confidentiality for architectural designs, developers can
account for these requirements when developing or selecting
components for reuse in a particular system. This can
prevent late errors that are costly to fix.

I I . Background and Foundations
Before we present our approach to architecture-driven

confidentiality specifications, we briefly discuss the funda-
mental techniques that we use.

A. Component-Based Software Design
Our approach supports confidentiality specifications

for component-based software. Components are reusable
software units that provide and require services, for which
signatures are defined in interfaces. We use the Palladio
Component Model (PCM) [1] as architectural description
language. With the PCM, service signatures are modeled
with a return type, a name, and parameters, which have a
name and a type. Confidentiality is specified based on these
service signatures in line with the central idea of component-
based software development: the internal realization of
components is hidden behind interface contracts, which
specify properties of the input and output for provided and
required services.

B. Code Generation and Consistency
Techniques to automatically derive code from models

are called code generation or model-to-text transformation
techniques. Software is, however, often not developed in
a strict forward engineering process where models are
not changed after they have been used to produce code.
Therefore, techniques for preserving consistency between
code and models were developed. We use the Vitruvius
framework [2] and its reactions language to keep Java code
consistent with PCM instances based on monitored changes.

C. Specification and Verification of Confidentiality using
Non-Interference

Confidentiality is specified and verified with our approach
based on the notion of non-interference. The intuition



2

for preventing information leaks is that confidential in-
formation may not have any direct or indirect influence
on non-confidential information. For this, it has to be
specified which input data of a component’s service shall
not interfere. The observable behavior of the component
and output of the service has to be equivalent for all calls
that are equivalent with respect to this specification [3].
If information is classified as “high” (confidential) and
“low” (non-confidential), then high inputs may not have any
observable influence on low outputs. Low inputs, however,
may influence high outputs. In general, information can be
classified based on arbitrary lattices, i.e. partially ordered
sets with unique supremum and infimum for any two
elements.
From architectural specifications we derive proof obli-

gations that can be verified using the theorem prover
KeY [4]. KeY can be used for automated and interactive
proofs of requirements that are expressed using dynamic
logic and specified with the Java Modeling Language
(JML) [5]. Non-interference is verified with KeY using
two symbolic executions that only differ in terms of a
confidential input [6].

I I I . Architecture-Driven Confidentiality
We will explain how confidentiality can be specified,

verified and co-evolved in an architecture-driven way based
on a simple groupware example.

A. Groupware Calendar Example
In Figure 1, we show three snippets for a groupware

calendar system. The first snippet shows an architectural
model for a groupware component with a confidentiality
specification. The component provides a service yielding
all periods that are blocked by calendar entries and that
are scheduled between two given timestamps. The second
service yields all details for a specific calendar entry, such
as the location and participants.

B. Confidentiality Specification
Confidentiality is not directly specified on the code level

but on the level of component-based architectures. This
way, developers do not need to know the verification input
format and information flow only needs to be specified for
inter- but not for intra-component communication.

First, so-called data sets have to be defined. They group
data that may interfere with each other but not with other
data sets. If information may flow from and to these data
sets, it is specified for service signatures of architectural
interfaces. Other flows are not permitted.
In our example in Figure 1, confidentiality specifica-

tions are shown as notes with the keyword includes. For
the service getBlockedPeriods, a star yields two allowed
information flows: 1.) non-confidential information (low)
may influence all inputs, 2.) returned values may influence
low information. For the service getFullCalendarEntry,
it is specified that 1.) low information may influence
the provided ID, 2.) returned values may only influence
confidential information (high).

C. Code Generation and Verification
To obtain a fully functional and verified system, we

generate, complete, and verify code in four steps. First,
Java code and confidentiality annotations are generated
from PCM instances and the architectural specifications.
Then, the empty method stubs for component services
are manually completed. Next, the completed code with
confidentiality annotations is copied and the annotations
are translated into JML proof obligations. In this step, the
generator produces all required JML proof obligations for
cases that do not need to be distinguished by developers
in architectural specifications, such as different obligations
for inputs and outputs to service calls. Finally, the code
copy is verified by proving the JML obligations using
KeY (subsection II-C). Figure 1 illustrates these two code
representations of confidentiality specifications as Java
annotations (middle), and as JML proof obligations (right).
The purpose of the annotations is to reduce the complexity
for developers by providing them a code representation of
the architectural specifications. These two representations
only have syntactic differences: data set definitions are
turned into Java enums and stereotype applications are
turned into annotation usages. The level of abstraction
with data sets and information flow permissions only for
inputs and outputs of component services is the same.

D. Consistency across Models and Code
We introduce the intermediate annotation representation

for confidentiality specifications not only to reduce specifi-
cation complexity, but also to ease automated consistency
preservation for it. The goal is to support development
processes in which code, architectural models and confiden-
tiality specifications may co-evolve. To this end, we reuse
a mechanism that keeps component-based architectures
(PCM instances) and Java code consistent with each other
by reacting to monitored changes (subsection II-B). We
are currently extending this mechanism to keep confiden-
tiality specifications on the architectural level consistent
with specifications in code. The JML input for KeY is,
however, always regenerated and therefore no consistency
preservation is needed for it.

IV. Realization and Evaluation
In our prototypical implementation1, data set definitions

and pairs that link data sets and parameters or return values
are persisted in a confidentiality specification model that
is kept separate from the architectural models. Stereotypes
of a confidentiality profile for PCM can be applied to
service signatures of architectural interfaces in order to
refer to these pairs as tagged values. By using this non-
invasive profile mechanism the architecture models remain
compatible to all Palladio tooling.
To obtain Java code and confidentiality annotations

from PCM instances and specifications, we have created a
generator based on Xtend. An additional generator for JML

1github.com/KASTEL-SCBS/PCM2Java4Key

https://github.com/KASTEL-SCBS/PCM2Java4Key


3

enum DataSets {APPOINTMENT(),METADATA();}

enum IFPairs {

METADATA_STAR(DataSets.METADATA,"*"),

METADATA_ID(DataSets.METADATA,"id"),

APP_RETURN(DataSets.APPOINTMENT,"\return");

}

interface Calendar {

@NISPEC({IFPairs.METADATA_STAR})

BP[] getBlockedPeriods(TS from, TS to);

@NISPEC({IFPairs.METADATA_ID, IFPairs.APP_RETURN})

CE getFullCalendarEntry(ID id);

}

//@ model \seq metadata;

//@ \determines this.getBlockedPeriods(\result)

//@ \by this.getBlockedPeriods(from),

//@ this.getBlockedPeriods(to)

//@ \preserving metadata;

BP[] getBlockedPeriods(TS from, TS to) {...}

//@ model \seq metadata;

//@ \by this.getFullCalendarEntry(id)

//@ \preserving metadata;

//@ model \seq appointment;

//@ \determines this.getFullCalendarEntry(\result)

//@ \preserving appointment;

CE getFullCalendarEntry(ID id) {...}

Figure 1. Architectural model and specification (left), Java code with annotations (middle), and JML comments (right) for a groupware
calendar example

proof obligations is under development. Both generators
process the complete input in batch mode and overwrite
previous output. We are currently developing consistency
preservation reactions, which update annotations after
changes in architectural specifications. Java code and
architectural models are already kept consistent based on
previous work [2].

To ensure the quality of both batch generators and of the
incremental reactions, we create unit tests that compare
the obtained output with expected outputs for all types of
specification possibilities and changes. Furthermore, we will
perform cross-validation by always comparing the result of
incremental consistency preservation with that of a batch
generation of code and annotations.
We will evaluate how confidentiality can be specified

and maintained in an architecture-driven way using three
systems: a simple web shop, a cloud-based file sharing
platform, and a common case study realizing a trading
system for retail shops.

V. Related Work
Jürjens presents a model-driven approach where security-

relevant information is specified on the system design level
using the UMLsec extension for the Unified Modeling
Language (UML) [7]. This approach does, however, not
support automatic proof obligations generation for code.

The IFlow approach [8] allows the model-driven develop-
ment of distributed systems consisting of mobile apps and
web services which are secure w.r.t. information flow. Using
the system’s UML model, IFlow automatically generates
code and a formal model of the system based on abstract
state machines, which is used to verify information-flow
properties. IFlow does not support automatic consistency
preservation on both design and code levels during the
system evolution.

To the best of our knowledge, there is no other approach
for verifying component-based software against architec-
tural confidentiality requirements or for preserving con-
sistency between confidentiality specifications in software
architecture descriptions and code.

VI. Conclusions
In this paper, we have presented a model-driven approach

that facilitates the creation and maintenance of confi-

dentiality specifications for the verification of component-
based software. We have presented architecture-driven con-
fidentiality specifications for which JML proof obligations
can be automatically derived so that developers do not
need to know the verification input. Furthermore, we have
proposed a mechanism for keeping evolving architectures,
confidentiality specifications and code consistent with each
other. With it, developers can design and realize software
with confidential data in an incremental way and on their
level of abstraction. The goal of the approach is to help
developers in finding confidentiality leaks with less overhead
and in earlier development stages.

References
[1] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek,

H. Koziolek, M. Kramer, and K. Krogmann, Modeling and
Simulating Software Architectures – The Palladio Approach.
Cambridge, MA: MIT Press, 2016, 408 pp.

[2] M. E. Kramer,M. Langhammer, D. Messinger, S. Seifermann,
and E. Burger, “Change-driven consistency for compo-
nent code, architectural models, and contracts,” in 18th
International Symposium on Component-Based Software
Engineering, ser. CBSE ’15, Montréal, QC, Canada: ACM,
2015, pp. 21–26.

[3] S. Greiner and D. Grahl, “Non-interference with what-
declassification in component-based systems,” in 2016 IEEE
29th Computer Security Foundations Symposium (CSF),
2016, pp. 253–267.

[4] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification
of Object-Oriented Software: The KeY Approach, ser. LNCS
4334. Springer-Verlag, 2007.

[5] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary
design of jml: A behavioral interface specification language
for java,” ACM SIGSOFT Software Engineering Notes, 31,
no. 3, pp. 1–38, 2006.

[6] C. Scheben and S. Greiner, “Information flow analysis,”
in Deductive Software Verification – The KeY Book: From
Theory to Practice, W. Ahrendt, B. Beckert, R. Bubel, R.
Hähnle, P. H. Schmitt, and M. Ulbrich, Eds. Cham: Springer
International Publishing, 2016, pp. 453–471.

[7] J. Jürjens, “Umlsec: Extending uml for secure systems
development,” in International Conference on The Unified
Modeling Language, Springer, 2002, pp. 412–425.

[8] K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-
driven development of information flow-secure systems with
iflow,” in Social Computing (SocialCom), 2013 International
Conference on, IEEE, 2013, pp. 51–56.

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures

	Introduction and Motivation
	Background and Foundations
	Component-Based Software Design
	Code Generation and Consistency
	Specification and Verification of Confidentiality using Non-Interference

	Architecture-Driven Confidentiality
	Groupware Calendar Example
	Confidentiality Specification
	Code Generation and Verification
	Consistency across Models and Code

	Realization and Evaluation
	Related Work
	Conclusions

