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Abstract— State-of-the-art meta-model based technologies are 

facing increasing pressure under new challenges originating from 

practical industrial applications. Dynamic Multi-Layer Algebra 

(DMLA) is a novel generic modeling approach that intends to 

meet these challenges by combining multi-level meta-modeling 

and validated instantiation. This paper describes the core ideas 

and techniques that have been applied to DMLA in order to 

create a modular model intrinsic validation of instantiation. The 

approach is also illustrated by a simple example. 

Keywords— validated meta-model; modular constraints; multi-

level modeling  

I.  INTRODUCTION  

Meta-model based solutions have been gradually gaining 

acceptance in many complex industrial applications, for 

example in the domains of telecommunications, IoT and cloud 

management systems. Many of these applications rely on EMF 

technologies to provide facilities for type safe storage and 

manipulation of millions of configuration and control 

parameters. Nevertheless, those practical model-based 

solutions are seriously hampered by a legacy, that is, meta-

model induced database schemas must be maintained by 

design-time derived toolchains such as EMF/CDO. Thus, 

these solutions are hardly capable of automatically coping 

with a massive amount of frequently changeable instance data 

that is mostly regulated by a slowly, but steadily evolving set 

of type information controlled by some product life-cycle 

schemes. Therefore, an integrated validation mechanism of 

design- and run-time models should become part of any such 

industrial solutions. Also, the validation mechanism shall be 

both modular and capable of maintaining the instance data and 

the meta-model schemas in sync irrespective of their 

abstraction levels and design or run-time nature. This 

practicality requirement asks for a proper multi-level meta-

modeling technique, which supports the validation of the 

instantiation step not as an afterthought, but as a direct 

consequence of the underlying multi-level modeling 

formalism.  

The paper describes our proposed solution, the Dynamic 

Multi-Layer Algebra (DMLA), which represents a modular, 

operation-based, multi-level meta-modeling approach with a 

self-described, model intrinsic validation mechanism to 

automatically evaluate every potential change of its 

encompassing multi-level meta-model. Most of our ideas and 

solution techniques are the results of our hands-on experiences 

we have gathered by analyzing real industrial information 

models for several years. As a consequence, the current 

DMLA version (v2.1), is not a theory any longer; we have also 

implemented major parts of it as an executable demo, which is 

available for download at [1].  

II. RELATED WORK 

Practical meta-model based applications show an increased 

interest for both state-of-the-art and innovative modeling 

technologies. OMG’s Meta-Object Facility (MOF) is still the 

dominant meta-modeling approach used for industrial 

applications. There are two reasons for this: 1) MOF's four 

layer modeling architecture is easily comprehensible; 2) the 

Eclipse Modeling Framework (EMF) has been maturing 

during the recent years. However, new practical challenges, 

for example, full life-cycle management of model-based 

instances may require full-fledged multi-level meta-modeling. 

These alternative techniques advocate an explicit distinction 

between linguistic and ontological meta-models [2] [3] and 

can also differentiate between shallow and deep instantiation 

[4]. Deep instantiation is more prevalent because it can 

effectively reduce accidental complexity in the domain 

models. For example, in the case of potency notion [4], every 

class and attribute gets a potency assigned, which indicates the 

remaining levels the model elements can get through before 

reaching their finally instantiated status. In a sense, potencies 

are simple non-negative numbers, but, in their effect, they 

represent the current level of abstraction. They are 

decremented at each instantiation and when they reach 0 no 

further instantiation is allowed. Potency notion has been 

successfully implemented in the EMF based tool Melanee [5]. 

However, despite the many advantages potency notion 

provides, it also showcases some disadvantages due to its 

Orthogonal Classification Architecture (OCA) [6] heritage. 

Namely, OCA takes it for granted that all meta-model 

management facilities, i.e. introducing a new attribute to a 

clabject, are operational on each metalevel, thus, the 

instantiation step is oversimplified; it is merely controlled by a 
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single integer value. Melanee tried to diversify this naïve 

counting by distinguishing the concepts of durability and 

mutability, but the constraining of the instantiation is still only 

described by integer values. 

An important step forward to achieve expressive multi-

level meta-modeling is the Lazy Initialization Multilayered 

Modeling framework (LIMM, [7]). This approach enables the 

definition of model elements at the meta level, at the 

application level, or one can simply declare them as data. In 

effect, LIMM associates flags to the model elements in order 

to control how they are to be used in the successive layers. An 

attached flag can take three values: it restricts, allows or 

enforces the initialization of a model element in subsequent 

layers. In a sense, the potency value evolves into a simple 

indicator of life-cycle status, which incorporates more than 

only checking if the value is positive when meta-level 

transitions of model elements are being evaluated. 

DMLA aims to combine multi-level meta-modeling with 

dynamic model manipulation, which also necessitates non-

trivial description of constraints on the instantiation steps 

through meta-levels. Also, DMLA incorporates a fully self-

modeled operation language, which is currently implemented 

as a lightweight external DSL, called DMLAScript. Hence, 

although on the surface, DMLA looks very similar to XMF 

and XModeler [8], it clearly advocates a different architectural 

design. Firstly, DMLA’s main focus lies on the multi-level 

meta-modeling of data; thus, it considers operations also as 

data (of a particular meta-level) that can be mixed in into the 

rest of the meta-model. Secondly, DMLA separates the DSL 

representation of DMLAScript from its internal meta-

modeling formalism. Thirdly, DMLA’s formal foundation is 

ASM-based, that is, it is executable by design [9]. 

Nevertheless, both approaches rely on the concept of a self-

describing multi-level meta-model and the core idea of having 

a bootstrap. However, as long as XMF’s meta-model utilizes 

higher order functions to process syntax and to provide a basic 

executable language which extends OCL syntax and 

semantics, in DMLA, the operation language is a mere 

facilitator to generate meta-model elements for the bootstrap. 

As a result of this setup, the operations are constrained only by 

the other elements of the bootstrap; thus, either they can be 

directly interpreted by the underlying ASM formalism or they 

must be translated and later executed by some ASM 

compatible run-time platform(s). 

III. THE DYNAMIC MULTI-LAYER ALGEBRA 

The Dynamic Multi-Layer Algebra (DMLA) is a multi-

level modeling framework that consists of two major parts: (i) 

the Core, a formal definition of the modeling structure and its 

management functions; (ii) the Boostrap, an initial set of 

predefined modeling entities.  

A. The Core 

The definition of the Core is based on Abstract State 

Machines (ASM, [9]). In our case, the states of the state 

machine are snapshots of the models, while transitions 

represent modification actions between these states (e.g. 

deleting a node). The model is represented as a Labeled 

Directed Graph. Each element of the model such as nodes, 

edges or even attributes can have labels. These labels are used 

either to hold data (e.g. concrete literal value of an attribute) or 

to express relations (e.g. containment) between the elements. 

Because attributes may have complex structure, we represent 

them as hierarchical trees. Also, for the sake of simplicity, we 

will use a dual field notation for labelling of Name/Value 

pairs, that is, a label with the name N of the model element X 

is referred to as XN. We defined the following labels: (i) XID: 

globally unique ID of model element; (ii) XMeta: ID of the 

meta-model definition; (iii) XValues: values of the model 

element; (iv) XAttributes: ordered set of contained attributes. 
Definition – The superuniverse |A| of a state A of the 

DMLA consists of the following universes: (i) UBool containing 
logical values {true/false}; (ii) UNumber containing rational 
numbers and a special symbol ∞ representing infinity; (iii) 
UString containing character sequences of finite length; (iv) UID 
containing all possible entity IDs; (v) UBasic containing 
elements from {UBool ∪  UNumber ∪ UString ∪ UID}. Additionally, 
all universes also contain a special element, undef, which refers 
to an undefined value.  

The labels of the entities take their values from the 

following universes: (i) XID: UID, (ii) XMeta: UID, (iii) XValues: 

UBasic[] (contained primitive values), (vi) XAttrib: UID[] 

(reference to entities). 

In ASMs, functions are used to rule how one can change 

the states. In DMLA, we rely on shared and derived functions. 

The current attribute configuration of a model element is 

represented via shared functions. The values of these functions 

can be modified either by the algebra itself, or by the 

environment of the algebra (e.g. by the user). Derived 

functions represent calculations which cannot change the 

model; they are only used to obtain and to restructure existing 

information. The vocabulary ∑ of DMLA is assumed to 

contain the following characteristic functions: (i) Meta(UID): 

UID, (ii) Attrib(UID, UNumber): UID, (iii) Value(UID, UNumber): 

UBasic. The functions are used to access the values stored in the 

corresponding labels. These functions are not only able to 

query the requested information, but they can also update it. 

For example, one can update the meta definition of an entity 

by simply assigning a value to the Meta function (although the 

new relation may be invalid based on the instantiation rules). 

Moreover, there are two other derived functions: (i) 

Contains(UID, UID): UBool and (ii) DeriveFrom(UID, UID): UBool, 

which check containment and  instantiation (transitive) 

relations, respectively. 

B. The Bootstrap 

In a nutshell, the Core is the formalism, while the 

Bootstrap is the practical foundation for DMLA. The 

Bootstrap is an initial set of modeling constructs and built-in 

model elements (e.g. built-in types) which are necessary in 

order to adapt the abstract modeling structure to practical 

applications. The main idea behind separating the Core and 

the Bootstrap is to improve flexibility, but also to keep the 

formal definition: the algebraic part is relatively fixed and 

structurally self-contained; its purpose is to isolate itself from 

the certain particularities of the various bootstraps. This design 



makes it possible to replace the Bootstrap; hence, one can not 

only customize the basic modeling entities, but one can also 

re-define even the semantics of what valid instantiation means. 

A particular bootstrap seeds the meta-modeling facilities of 

generic DMLA formalism, thus, one may create a Bootstrap 

for simulating potency notion, another one for LIMM and a 

third one for power type behavior, etc.  

The main elements of the current bootstrap (Fig. 1) can be 

categorized into four groups: (i) basic entities (blue boxes), (ii) 

built-in types (purple boxes) representing the primitive types 

available in DMLA, (iii) entities used in facilitating the 

introduction of operations in DMLA (green boxes), and (iv) 

validation related entities (red boxes). 

1) Basic entities 

Basic entities are the enablers of multi-level meta-

modeling in DMLA. They create the root of the meta 

hierarchy all other modelled entities rely on.  

The Base entity is at the very top of the hierarchy, thus all 

other entities are instantiated from it (directly or indirectly). 

Base defines that entities can have slots (defined by SlotDefs) 

and ConstraintContainers. Slots represent substitutable 

properties, which are syntactically similar to class members in 

OO languages. ConstraintContainers (and the contained 

Constraints) are used to customize the instantiation validation 

formulae. Moreover, Base has two other slots, reserved for 

validation of those formulae, which enforce the basic 

mechanisms of instantiation validation for multi-level 

modeling as explained later. 

The SlotDef entity is a direct instantiation of Base. It is 

used to define slots. Slots can contain ConstraintContainers, 

which grants them the capability to attach constraints to the 

containment relations defined by the slot. Moreover, SlotDef 

overrides the validation slots inherited from Base. 

The Entity entity is another direct instance of Base. Entity 

is used as the common meta of all primitive and user-defined 

types. Entity has two instances: Primitive (for primitive types) 

and ComplexEntity (for custom types). All domain relevant 

entities further instantiate ComplexEntity.  

2) Built-in Types 

The core entities needed to represent the universes of ASM 

in the bootstrap are: Bool, Number and String. All these types 

refer to sets of values in the corresponding universe. For 

example, the entity Bool has been created so that it could be 

used to represent Boolean type values within the model. Built-

in types are relied on when a slot is filled by a concrete value 

and that value is not a reference to another model entity, but a 

primitive, atomic value. All built-in types are instances of 

Primitive. 

3) Operations 

All these entities representing the grammar of the operation 

language are defined in the AST subpart of the bootstrap 

under ComplexEntity. Moreover, there are also some extra-

grammar entities defined here that deal with ASM execution 

semantics of those operations by specifying for example the 

invocation mechanism and the handling of return values and 

variables. This aspect of DMLA is not discussed in this paper 

in detail. 

4) Validation 
In DMLA, the validation logic relies on the selection of two 

type specific formulae based on the meta-hierarchy of the 
element to be validated. These two types are referred to as 
alpha and beta. The Base entity contains the default alpha and 
beta formulae, which can be constrained by the instances via 
their own specialized definition of valid instantiation, provided 
that does not contradict the standard validation rules imposed 
by Base. The validation mechanism is detailed later.  

IV. VALIDATION AND OPERATIONS 

In DMLA, if a model entity claims another entity as its 

meta the framework automatically validates if there is indeed a 

valid instantiation between the two. In DMLA 1.0 [11] 

instantiation was simply validated by a fixed set of general 

usage formulae, but in DMLA 2.0 [10], those formulae have 

been modularized by introducing a bootstrap compatible 

representation thereof. Since these formulae can directly 

influence the current semantics of the instantiation, model 

modification has got modularized and DMLA’s instantiation 

has become effectively self-defined by model interpretation. 

While implementing DMLA 2.0, we realized that by 

introducing operations into our framework we could describe 

validation formulae and their modular extensions, the so-

called constraints, by attaching operations onto certain DMLA 

Fig. 1 – Main elements of the Bootstrap 



entities. Herewith, automatic model validation became a core 

feature. By further experimenting with this feature, we were 

able to establish a very compact though flexible validation 

system. 

When we introduced operations into DMLA, the first 

technical issue was related to their representation. It was clear 

that operations must be described by DMLA modeling 

elements only, similar to other modeling entities in the 

Bootstrap. We have decided to base our representation on 

Abstract Syntax Tree (AST), where operations consist of 

entities representing their roles in the grammar such as 

expressions or statements. For example, the conditional 

statement (“if”) has three child attributes: a condition 

(expression), a true branch (statement), and an optional false 

branch (statement). Since all of these subparts are DMLA 

entities, validation rules are applied to them similarly to other 

entities, which created the self-describing facility of DMLA.  

The second technical issue considered how and when the 

operations must be executed. DMLA’s practicality agenda 

aims at a virtual machine (DMLA VM) implementation 

similar to Java VM in order to interpret and execute 

operations. We have not reached this goal yet, but we have 

already defined and implemented an engine capable of parsing 

AST related DMLA entities and of producing executable Java 

code from the model. Currently, the generated code can be 

automatically integrated into the program, which is running 

the Core of DMLA’s ASM implementation. Since the 

validation logic of the bootstrap is in its entirety described in 

DMLA operations, its semantics can be completely and 

consistently updated by simply changing the model. 

The last technical issue focused on the effective 

manipulation of the operations within DMLA. Since DMLA 

2.0’s formal entity syntax is 4-tuple based [10], operations 

must be specified accordingly. Nevertheless, we realized that 

it would become cumbersome to produce realistic models by 

only relying on the 4-tuple representation. Even simple 

statements and operation calls may require dozens of entities 

that refer to each other in a complex entanglement. Hence, we 

implemented a simple XText-based DSL language with 

concrete syntax for DMLA, the so-called DMLAScript. The 

language design has borrowed syntax ideas mainly from Java, 

but the repertoire of language constructs is limited by the 

needs of DMLA. Although DMLAScript looks like being part 

of DMLA, it is not: DMLAscript is pure syntactic sugar above 

DMLA’s 4-tuple representation. Nevertheless, by being able 

to specify validation logic in DMLAScript, our productivity 

increased enormously. Currently, DMLAScript descriptions 

are parsed into 4-tuples, which are then input to DMLA 

ASM’s standard Java code generator. In other words, code 

generator (semantics) and language parsing (syntax) work 

independently, but hand-in-hand in the current toolchain 

implementation. 

A. Flexible instantiation 

In DMLA, the validation logic of instantiation relies on the 

selection of two type specific formulae based on the hierarchy 

of the element to be validated. We refer to these two types of 

formulae as alpha and beta. The alpha type formulae have 

been designed to validate an entity against its instances, by 

simply checking if the instantiation relation can be verified 

between the two entities (meta and instance). During 

validation, the framework iterates over the entities of the 

model, and invokes the alpha type validation on every entity 

and its meta entity. In contrast, the beta type formulae are in 

context checks: they are used when an entity has to be 

validated against multiple related entities, typically the 

attributes of an entity. For example, cardinality-like 

constraints shall be evaluated by beta formulae due to the 

underlying one-to-many relation thereof. Note that the exact 

validation rules provided by the alpha and beta formulas are 

Bootstrap-dependent, thus, it is easy to re-interpret the 

instantiation logic by only modifying these formulae. 

Modular validation in DMLA works via compatible 

constraint extension. It means that entities can copy or extend 

the validation logic of their meta entity, which grants a very 

high level of flexibility without any loss of expressivity. The 

integration of operation ASTs into the Bootstrap allowed it to 

contain executable logic. Therefore, any model entities may 

provide their own specialized version(s) of valid instantiation, 

provided there is no contradiction with the standard validation 

rules imposed by their meta type (meta formulae are 

automatically validated by the framework).In parallel to 

validation rules, constraint specification was also modularized 

in order to avoid repeated definitions by introducing a generic 

Constraint entity. Constraints describe reusable validation 

logic that can be attached to any entity. It is important though 

to mention that the validation of constraints is special because 

it is not enough to validate the (Constraint) entity itself, but 

also the entity the constraint is referring to. For example, a 

range checker constraint added to a slot describing a number 

attribute must validate the value of the attribute, not the 

constraint (definition) itself. This is why we added special 

formulae to Constraints: the constraint-alpha and constraint-

beta aimed to validate the entity containing the constraint. 

However, constraints are also special due to their life cycle. 

Thus, in order to achieve self-describing multi-level validation 

we needed constraints which are able to govern their own 

(customized) life-cycle. E.g. a constraint can decide if its re-

instantiation is valid, or not. This feature is encoded in two 

other operations (lifecycle alpha and beta). This feature is 

similar to a self-managed, customizable potency notion. 

In summary, the validation of the Bootstrap is based on 

three pairs of formulae: 1) the alpha and the beta type 

validation formulae, which are applied to every entity of the 

Bootstrap; 2) the ConstraintAlpha and the ConstraintBeta 

formulae, which are extensions of the container entity’s alpha 

and beta formulae; 3) the Constraint-LifeCycleAlpha and the 

ConstraintLifeCycleBeta formulae, which manage and 

validate the DMLA correct life-cycle of Constraint instances 



B. Validation example 

In order to showcase how DMLA and its validation 

framework in practice, let us take the following example: we 

are creating the meta model of a person that has a name which 

consists of one or two first names and a single last name. 

There is also a constraint imposed on every person, namely 

that a person cannot have matching first names: e.g. “Bob 

Smith” and “Bob Rob Smith” are valid, but “Bob Bob Smith” 

is not. In order to turn this specification into DMLA entities, 

only a few steps are required. As usual in modeling, one has to 

create customized composite entities to represent these 

concepts. In the current Bootstrap, the entities are instances of 

ComplexEntity, which enables having an arbitrary amount of 

attribute slots within.  

First, the ComplexName entity is defined to encapsulate 

the parts of a person name. It has two slots: one for the first 

name(s) with [1..2] cardinality, and another one for the last 

name with [1..1] cardinality; both being of type String. 

Secondly, the Person entity is defined, which contains a single 

slot with [1..1] cardinality, and is an instance of 

ComplexName. Now, the structure having been set up, 

validation follows. 

As explained earlier, validation in DMLA is based on two 

operation types: the alpha and the beta type formulae. The 

core validation logic is defined in the alpha and beta formulae 

defined inside entity Base, which is the root meta of the 

Bootstrap (all other entities are direct or indirect instances of 

Base). Since in the example the validation logic can be 

evaluated on a single Person instance without considering any 

of its context (matching name constraint is contained within 

Person), one only has to override the alpha formula. In order 

to do so, an additional operation must be attached to Person 

describing the customized alpha validation logic. The alpha 

formula (Code 1) is a simple operation, it accepts two IDs, an 

instance ID and a meta ID, and it returns true if the meta-

instance relation is valid in this regard. The logic of the 

operation is written in DMLAScript. When it comes to 

execution, the validation logic is first translated into 4-tuples, 

that is, into DMLA native entities, and then the tuples are 

compiled into Java code that represents the ASM compliant 

behavior in JVM carrying out the validation. 

V. CONCLUSION AND FUTURE WORK 

DMLA went through various stages during the last few 

years, from the pure theoretical foundation to the 

implementation of a highly modular and practical multi-level 

meta-modeling framework of industrial focus. Although the 

current implementation is still pre-alpha, model validation has 

become flexible and modular enough due to DMLA’s 

powerful self-describing formalism. By now, we have started 

producing realistic bootstraps to cover industry induced use 

cases. Currently, our research goals aim at introducing 

executable semantics via operations, polishing 4-tuple 

generation, and streamlining the Java based execution engine 

for DMLA’s ASM virtual machine. 

REFERENCES 

[1] "DMLA Website," [Online]. 
https://www.aut.bme.hu/Pages/Research/VMTS/DMLA.  
[Accessed 23 04 2017]. 

[2] J. D. Lara, E. Guerra and J. S. Cuadrado, "When and How to Use 
Multilevel Modelling," Journal ACM Transactions on Software 
Engineering and Methodology, vol. 24, no. 3, 2014.  

[3] M. Gutheil, K. Bastian and C. Atkinson, A systematic approach to 
connectors in a Multi-level Modeling Environment, vol. 5301, Lecture 
Notes in Computer Science, 2008, pp. 843-857. 

[4] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,” 
The Unified Modeling Language. Modeling Languages, Concepts, and 
Tools, vol. 2185, pp. 19-33, 2001.  

[5] C. Atkinson and R. Gerbig, Melanie: Multi-level modeling and ontology 
engineering environment, New York, USA: ACM, 2012, pp. 7:1 - 7:2. 

[6] C. Atkinson, M. Gutheil and B. Kennel, "A Flexible Infrastructure for 
Multilevel Language Engineering," IEEE Transactions on Software 
Engineering , vol. 35, no. 6, pp. 742 - 755, 2009.  

[7] F. Raque Golra and F. Dagnat., "The Lazy Initialization Multilayered 
Modeling Framework," in ICSE 2011 : 33rd International Conference on 
Software Engineering, Honolulu, 2011.  

[8] T. Clark, C. G.-P. and B. Henderson-Sellers, "A Foundation for Multi-
Level Modelling," Proceedings of the Workshop on Multi-Level 
Modelling at ACM/IEEE 17th International Conference on Model 
Driven Engineering Languages & Systems, vol. 1286, pp. 43-52, 2014.  

[9] E. Boerger and R. Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis, Springer-Verlag Berlin and 
Heidelberg GmbH & Co. KG, 2003.  

[10] D. Urbán, Z. Theisz and G. Mezei, "Formalism for Static Aspects of 
Dynamic Metamodeling," Periodica Polytechnica Electrical Engineering 
and Computer Science, vol. 61, no. 1, pp. 34-47, 2017.  

[11]  Z. Theisz and G. Mezei, "Towards a novel meta-modeling approach for 
dynamic multi-level instantiation," in Automation and Applied 
Computer Science Workshop, Budapest, Hungary, 2015. 

operation Bool ID::PersonAlpha(ID instance) { 

   //Access the value of the slot containing the name of the person 

ID fullName = call $GetRelevantAttributeValue(instance, $Person.FullName); 

If (fullName==null)   

return true;  // If no name is specified yet => valid 

Object[] firstNames=call $GetRelevantAttributeValues(fullName, $ComplexName.FirstName);   

 

//Access the first name values contained by the ComplexName 

if(firstNames ==null || size(firstNames)<2) return true; //not specified/has less than 2 first names 

  

//Ensure the first names do not match 

return index<Object>( firstNames, 0) != index<Object>( firstNames, 1); 

} 

Code 1 – The PersonAlpha operation 


