
Validated Multi-Layer Meta-modeling

via Intrinsically Modeled Operations

Gergely Mezei, Dániel Urbán

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

Budapest, Hungary

{gmezei, urban.daniel}@aut.bme.hu

Zoltán Theisz

Huawei Design Centre,

Dublin, Ireland

zoltan.theisz@huawei.com

Abstract— State-of-the-art meta-model based technologies are

facing increasing pressure under new challenges originating from

practical industrial applications. Dynamic Multi-Layer Algebra

(DMLA) is a novel generic modeling approach that intends to

meet these challenges by combining multi-level meta-modeling

and validated instantiation. This paper describes the core ideas

and techniques that have been applied to DMLA in order to

create a modular model intrinsic validation of instantiation. The

approach is also illustrated by a simple example.

Keywords— validated meta-model; modular constraints; multi-

level modeling

I. INTRODUCTION

Meta-model based solutions have been gradually gaining

acceptance in many complex industrial applications, for

example in the domains of telecommunications, IoT and cloud

management systems. Many of these applications rely on EMF

technologies to provide facilities for type safe storage and

manipulation of millions of configuration and control

parameters. Nevertheless, those practical model-based

solutions are seriously hampered by a legacy, that is, meta-

model induced database schemas must be maintained by

design-time derived toolchains such as EMF/CDO. Thus,

these solutions are hardly capable of automatically coping

with a massive amount of frequently changeable instance data

that is mostly regulated by a slowly, but steadily evolving set

of type information controlled by some product life-cycle

schemes. Therefore, an integrated validation mechanism of

design- and run-time models should become part of any such

industrial solutions. Also, the validation mechanism shall be

both modular and capable of maintaining the instance data and

the meta-model schemas in sync irrespective of their

abstraction levels and design or run-time nature. This

practicality requirement asks for a proper multi-level meta-

modeling technique, which supports the validation of the

instantiation step not as an afterthought, but as a direct

consequence of the underlying multi-level modeling

formalism.

The paper describes our proposed solution, the Dynamic

Multi-Layer Algebra (DMLA), which represents a modular,

operation-based, multi-level meta-modeling approach with a

self-described, model intrinsic validation mechanism to

automatically evaluate every potential change of its

encompassing multi-level meta-model. Most of our ideas and

solution techniques are the results of our hands-on experiences

we have gathered by analyzing real industrial information

models for several years. As a consequence, the current

DMLA version (v2.1), is not a theory any longer; we have also

implemented major parts of it as an executable demo, which is

available for download at [1].

II. RELATED WORK

Practical meta-model based applications show an increased

interest for both state-of-the-art and innovative modeling

technologies. OMG’s Meta-Object Facility (MOF) is still the

dominant meta-modeling approach used for industrial

applications. There are two reasons for this: 1) MOF's four

layer modeling architecture is easily comprehensible; 2) the

Eclipse Modeling Framework (EMF) has been maturing

during the recent years. However, new practical challenges,

for example, full life-cycle management of model-based

instances may require full-fledged multi-level meta-modeling.

These alternative techniques advocate an explicit distinction

between linguistic and ontological meta-models [2] [3] and

can also differentiate between shallow and deep instantiation

[4]. Deep instantiation is more prevalent because it can

effectively reduce accidental complexity in the domain

models. For example, in the case of potency notion [4], every

class and attribute gets a potency assigned, which indicates the

remaining levels the model elements can get through before

reaching their finally instantiated status. In a sense, potencies

are simple non-negative numbers, but, in their effect, they

represent the current level of abstraction. They are

decremented at each instantiation and when they reach 0 no

further instantiation is allowed. Potency notion has been

successfully implemented in the EMF based tool Melanee [5].

However, despite the many advantages potency notion

provides, it also showcases some disadvantages due to its

Orthogonal Classification Architecture (OCA) [6] heritage.

Namely, OCA takes it for granted that all meta-model

management facilities, i.e. introducing a new attribute to a

clabject, are operational on each metalevel, thus, the

instantiation step is oversimplified; it is merely controlled by a

mailto:gmezei,%20urban.daniel%7D@aut.bme.hu

single integer value. Melanee tried to diversify this naïve

counting by distinguishing the concepts of durability and

mutability, but the constraining of the instantiation is still only

described by integer values.

An important step forward to achieve expressive multi-

level meta-modeling is the Lazy Initialization Multilayered

Modeling framework (LIMM, [7]). This approach enables the

definition of model elements at the meta level, at the

application level, or one can simply declare them as data. In

effect, LIMM associates flags to the model elements in order

to control how they are to be used in the successive layers. An

attached flag can take three values: it restricts, allows or

enforces the initialization of a model element in subsequent

layers. In a sense, the potency value evolves into a simple

indicator of life-cycle status, which incorporates more than

only checking if the value is positive when meta-level

transitions of model elements are being evaluated.

DMLA aims to combine multi-level meta-modeling with

dynamic model manipulation, which also necessitates non-

trivial description of constraints on the instantiation steps

through meta-levels. Also, DMLA incorporates a fully self-

modeled operation language, which is currently implemented

as a lightweight external DSL, called DMLAScript. Hence,

although on the surface, DMLA looks very similar to XMF

and XModeler [8], it clearly advocates a different architectural

design. Firstly, DMLA’s main focus lies on the multi-level

meta-modeling of data; thus, it considers operations also as

data (of a particular meta-level) that can be mixed in into the

rest of the meta-model. Secondly, DMLA separates the DSL

representation of DMLAScript from its internal meta-

modeling formalism. Thirdly, DMLA’s formal foundation is

ASM-based, that is, it is executable by design [9].

Nevertheless, both approaches rely on the concept of a self-

describing multi-level meta-model and the core idea of having

a bootstrap. However, as long as XMF’s meta-model utilizes

higher order functions to process syntax and to provide a basic

executable language which extends OCL syntax and

semantics, in DMLA, the operation language is a mere

facilitator to generate meta-model elements for the bootstrap.

As a result of this setup, the operations are constrained only by

the other elements of the bootstrap; thus, either they can be

directly interpreted by the underlying ASM formalism or they

must be translated and later executed by some ASM

compatible run-time platform(s).

III. THE DYNAMIC MULTI-LAYER ALGEBRA

The Dynamic Multi-Layer Algebra (DMLA) is a multi-

level modeling framework that consists of two major parts: (i)

the Core, a formal definition of the modeling structure and its

management functions; (ii) the Boostrap, an initial set of

predefined modeling entities.

A. The Core

The definition of the Core is based on Abstract State

Machines (ASM, [9]). In our case, the states of the state

machine are snapshots of the models, while transitions

represent modification actions between these states (e.g.

deleting a node). The model is represented as a Labeled

Directed Graph. Each element of the model such as nodes,

edges or even attributes can have labels. These labels are used

either to hold data (e.g. concrete literal value of an attribute) or

to express relations (e.g. containment) between the elements.

Because attributes may have complex structure, we represent

them as hierarchical trees. Also, for the sake of simplicity, we

will use a dual field notation for labelling of Name/Value

pairs, that is, a label with the name N of the model element X

is referred to as XN. We defined the following labels: (i) XID:

globally unique ID of model element; (ii) XMeta: ID of the

meta-model definition; (iii) XValues: values of the model

element; (iv) XAttributes: ordered set of contained attributes.
Definition – The superuniverse |A| of a state A of the

DMLA consists of the following universes: (i) UBool containing
logical values {true/false}; (ii) UNumber containing rational
numbers and a special symbol ∞ representing infinity; (iii)
UString containing character sequences of finite length; (iv) UID
containing all possible entity IDs; (v) UBasic containing
elements from {UBool ∪ UNumber ∪ UString ∪ UID}. Additionally,
all universes also contain a special element, undef, which refers
to an undefined value.

The labels of the entities take their values from the

following universes: (i) XID: UID, (ii) XMeta: UID, (iii) XValues:

UBasic[] (contained primitive values), (vi) XAttrib: UID[]

(reference to entities).

In ASMs, functions are used to rule how one can change

the states. In DMLA, we rely on shared and derived functions.

The current attribute configuration of a model element is

represented via shared functions. The values of these functions

can be modified either by the algebra itself, or by the

environment of the algebra (e.g. by the user). Derived

functions represent calculations which cannot change the

model; they are only used to obtain and to restructure existing

information. The vocabulary ∑ of DMLA is assumed to

contain the following characteristic functions: (i) Meta(UID):

UID, (ii) Attrib(UID, UNumber): UID, (iii) Value(UID, UNumber):

UBasic. The functions are used to access the values stored in the

corresponding labels. These functions are not only able to

query the requested information, but they can also update it.

For example, one can update the meta definition of an entity

by simply assigning a value to the Meta function (although the

new relation may be invalid based on the instantiation rules).

Moreover, there are two other derived functions: (i)

Contains(UID, UID): UBool and (ii) DeriveFrom(UID, UID): UBool,

which check containment and instantiation (transitive)

relations, respectively.

B. The Bootstrap

In a nutshell, the Core is the formalism, while the

Bootstrap is the practical foundation for DMLA. The

Bootstrap is an initial set of modeling constructs and built-in

model elements (e.g. built-in types) which are necessary in

order to adapt the abstract modeling structure to practical

applications. The main idea behind separating the Core and

the Bootstrap is to improve flexibility, but also to keep the

formal definition: the algebraic part is relatively fixed and

structurally self-contained; its purpose is to isolate itself from

the certain particularities of the various bootstraps. This design

makes it possible to replace the Bootstrap; hence, one can not

only customize the basic modeling entities, but one can also

re-define even the semantics of what valid instantiation means.

A particular bootstrap seeds the meta-modeling facilities of

generic DMLA formalism, thus, one may create a Bootstrap

for simulating potency notion, another one for LIMM and a

third one for power type behavior, etc.

The main elements of the current bootstrap (Fig. 1) can be

categorized into four groups: (i) basic entities (blue boxes), (ii)

built-in types (purple boxes) representing the primitive types

available in DMLA, (iii) entities used in facilitating the

introduction of operations in DMLA (green boxes), and (iv)

validation related entities (red boxes).

1) Basic entities

Basic entities are the enablers of multi-level meta-

modeling in DMLA. They create the root of the meta

hierarchy all other modelled entities rely on.

The Base entity is at the very top of the hierarchy, thus all

other entities are instantiated from it (directly or indirectly).

Base defines that entities can have slots (defined by SlotDefs)

and ConstraintContainers. Slots represent substitutable

properties, which are syntactically similar to class members in

OO languages. ConstraintContainers (and the contained

Constraints) are used to customize the instantiation validation

formulae. Moreover, Base has two other slots, reserved for

validation of those formulae, which enforce the basic

mechanisms of instantiation validation for multi-level

modeling as explained later.

The SlotDef entity is a direct instantiation of Base. It is

used to define slots. Slots can contain ConstraintContainers,

which grants them the capability to attach constraints to the

containment relations defined by the slot. Moreover, SlotDef

overrides the validation slots inherited from Base.

The Entity entity is another direct instance of Base. Entity

is used as the common meta of all primitive and user-defined

types. Entity has two instances: Primitive (for primitive types)

and ComplexEntity (for custom types). All domain relevant

entities further instantiate ComplexEntity.

2) Built-in Types

The core entities needed to represent the universes of ASM

in the bootstrap are: Bool, Number and String. All these types

refer to sets of values in the corresponding universe. For

example, the entity Bool has been created so that it could be

used to represent Boolean type values within the model. Built-

in types are relied on when a slot is filled by a concrete value

and that value is not a reference to another model entity, but a

primitive, atomic value. All built-in types are instances of

Primitive.

3) Operations

All these entities representing the grammar of the operation

language are defined in the AST subpart of the bootstrap

under ComplexEntity. Moreover, there are also some extra-

grammar entities defined here that deal with ASM execution

semantics of those operations by specifying for example the

invocation mechanism and the handling of return values and

variables. This aspect of DMLA is not discussed in this paper

in detail.

4) Validation
In DMLA, the validation logic relies on the selection of two

type specific formulae based on the meta-hierarchy of the
element to be validated. These two types are referred to as
alpha and beta. The Base entity contains the default alpha and
beta formulae, which can be constrained by the instances via
their own specialized definition of valid instantiation, provided
that does not contradict the standard validation rules imposed
by Base. The validation mechanism is detailed later.

IV. VALIDATION AND OPERATIONS

In DMLA, if a model entity claims another entity as its

meta the framework automatically validates if there is indeed a

valid instantiation between the two. In DMLA 1.0 [11]

instantiation was simply validated by a fixed set of general

usage formulae, but in DMLA 2.0 [10], those formulae have

been modularized by introducing a bootstrap compatible

representation thereof. Since these formulae can directly

influence the current semantics of the instantiation, model

modification has got modularized and DMLA’s instantiation

has become effectively self-defined by model interpretation.

While implementing DMLA 2.0, we realized that by

introducing operations into our framework we could describe

validation formulae and their modular extensions, the so-

called constraints, by attaching operations onto certain DMLA

Fig. 1 – Main elements of the Bootstrap

entities. Herewith, automatic model validation became a core

feature. By further experimenting with this feature, we were

able to establish a very compact though flexible validation

system.

When we introduced operations into DMLA, the first

technical issue was related to their representation. It was clear

that operations must be described by DMLA modeling

elements only, similar to other modeling entities in the

Bootstrap. We have decided to base our representation on

Abstract Syntax Tree (AST), where operations consist of

entities representing their roles in the grammar such as

expressions or statements. For example, the conditional

statement (“if”) has three child attributes: a condition

(expression), a true branch (statement), and an optional false

branch (statement). Since all of these subparts are DMLA

entities, validation rules are applied to them similarly to other

entities, which created the self-describing facility of DMLA.

The second technical issue considered how and when the

operations must be executed. DMLA’s practicality agenda

aims at a virtual machine (DMLA VM) implementation

similar to Java VM in order to interpret and execute

operations. We have not reached this goal yet, but we have

already defined and implemented an engine capable of parsing

AST related DMLA entities and of producing executable Java

code from the model. Currently, the generated code can be

automatically integrated into the program, which is running

the Core of DMLA’s ASM implementation. Since the

validation logic of the bootstrap is in its entirety described in

DMLA operations, its semantics can be completely and

consistently updated by simply changing the model.

The last technical issue focused on the effective

manipulation of the operations within DMLA. Since DMLA

2.0’s formal entity syntax is 4-tuple based [10], operations

must be specified accordingly. Nevertheless, we realized that

it would become cumbersome to produce realistic models by

only relying on the 4-tuple representation. Even simple

statements and operation calls may require dozens of entities

that refer to each other in a complex entanglement. Hence, we

implemented a simple XText-based DSL language with

concrete syntax for DMLA, the so-called DMLAScript. The

language design has borrowed syntax ideas mainly from Java,

but the repertoire of language constructs is limited by the

needs of DMLA. Although DMLAScript looks like being part

of DMLA, it is not: DMLAscript is pure syntactic sugar above

DMLA’s 4-tuple representation. Nevertheless, by being able

to specify validation logic in DMLAScript, our productivity

increased enormously. Currently, DMLAScript descriptions

are parsed into 4-tuples, which are then input to DMLA

ASM’s standard Java code generator. In other words, code

generator (semantics) and language parsing (syntax) work

independently, but hand-in-hand in the current toolchain

implementation.

A. Flexible instantiation

In DMLA, the validation logic of instantiation relies on the

selection of two type specific formulae based on the hierarchy

of the element to be validated. We refer to these two types of

formulae as alpha and beta. The alpha type formulae have

been designed to validate an entity against its instances, by

simply checking if the instantiation relation can be verified

between the two entities (meta and instance). During

validation, the framework iterates over the entities of the

model, and invokes the alpha type validation on every entity

and its meta entity. In contrast, the beta type formulae are in

context checks: they are used when an entity has to be

validated against multiple related entities, typically the

attributes of an entity. For example, cardinality-like

constraints shall be evaluated by beta formulae due to the

underlying one-to-many relation thereof. Note that the exact

validation rules provided by the alpha and beta formulas are

Bootstrap-dependent, thus, it is easy to re-interpret the

instantiation logic by only modifying these formulae.

Modular validation in DMLA works via compatible

constraint extension. It means that entities can copy or extend

the validation logic of their meta entity, which grants a very

high level of flexibility without any loss of expressivity. The

integration of operation ASTs into the Bootstrap allowed it to

contain executable logic. Therefore, any model entities may

provide their own specialized version(s) of valid instantiation,

provided there is no contradiction with the standard validation

rules imposed by their meta type (meta formulae are

automatically validated by the framework).In parallel to

validation rules, constraint specification was also modularized

in order to avoid repeated definitions by introducing a generic

Constraint entity. Constraints describe reusable validation

logic that can be attached to any entity. It is important though

to mention that the validation of constraints is special because

it is not enough to validate the (Constraint) entity itself, but

also the entity the constraint is referring to. For example, a

range checker constraint added to a slot describing a number

attribute must validate the value of the attribute, not the

constraint (definition) itself. This is why we added special

formulae to Constraints: the constraint-alpha and constraint-

beta aimed to validate the entity containing the constraint.

However, constraints are also special due to their life cycle.

Thus, in order to achieve self-describing multi-level validation

we needed constraints which are able to govern their own

(customized) life-cycle. E.g. a constraint can decide if its re-

instantiation is valid, or not. This feature is encoded in two

other operations (lifecycle alpha and beta). This feature is

similar to a self-managed, customizable potency notion.

In summary, the validation of the Bootstrap is based on

three pairs of formulae: 1) the alpha and the beta type

validation formulae, which are applied to every entity of the

Bootstrap; 2) the ConstraintAlpha and the ConstraintBeta

formulae, which are extensions of the container entity’s alpha

and beta formulae; 3) the Constraint-LifeCycleAlpha and the

ConstraintLifeCycleBeta formulae, which manage and

validate the DMLA correct life-cycle of Constraint instances

B. Validation example

In order to showcase how DMLA and its validation

framework in practice, let us take the following example: we

are creating the meta model of a person that has a name which

consists of one or two first names and a single last name.

There is also a constraint imposed on every person, namely

that a person cannot have matching first names: e.g. “Bob

Smith” and “Bob Rob Smith” are valid, but “Bob Bob Smith”

is not. In order to turn this specification into DMLA entities,

only a few steps are required. As usual in modeling, one has to

create customized composite entities to represent these

concepts. In the current Bootstrap, the entities are instances of

ComplexEntity, which enables having an arbitrary amount of

attribute slots within.

First, the ComplexName entity is defined to encapsulate

the parts of a person name. It has two slots: one for the first

name(s) with [1..2] cardinality, and another one for the last

name with [1..1] cardinality; both being of type String.

Secondly, the Person entity is defined, which contains a single

slot with [1..1] cardinality, and is an instance of

ComplexName. Now, the structure having been set up,

validation follows.

As explained earlier, validation in DMLA is based on two

operation types: the alpha and the beta type formulae. The

core validation logic is defined in the alpha and beta formulae

defined inside entity Base, which is the root meta of the

Bootstrap (all other entities are direct or indirect instances of

Base). Since in the example the validation logic can be

evaluated on a single Person instance without considering any

of its context (matching name constraint is contained within

Person), one only has to override the alpha formula. In order

to do so, an additional operation must be attached to Person

describing the customized alpha validation logic. The alpha

formula (Code 1) is a simple operation, it accepts two IDs, an

instance ID and a meta ID, and it returns true if the meta-

instance relation is valid in this regard. The logic of the

operation is written in DMLAScript. When it comes to

execution, the validation logic is first translated into 4-tuples,

that is, into DMLA native entities, and then the tuples are

compiled into Java code that represents the ASM compliant

behavior in JVM carrying out the validation.

V. CONCLUSION AND FUTURE WORK

DMLA went through various stages during the last few

years, from the pure theoretical foundation to the

implementation of a highly modular and practical multi-level

meta-modeling framework of industrial focus. Although the

current implementation is still pre-alpha, model validation has

become flexible and modular enough due to DMLA’s

powerful self-describing formalism. By now, we have started

producing realistic bootstraps to cover industry induced use

cases. Currently, our research goals aim at introducing

executable semantics via operations, polishing 4-tuple

generation, and streamlining the Java based execution engine

for DMLA’s ASM virtual machine.

REFERENCES

[1] "DMLA Website," [Online].
https://www.aut.bme.hu/Pages/Research/VMTS/DMLA.
[Accessed 23 04 2017].

[2] J. D. Lara, E. Guerra and J. S. Cuadrado, "When and How to Use
Multilevel Modelling," Journal ACM Transactions on Software
Engineering and Methodology, vol. 24, no. 3, 2014.

[3] M. Gutheil, K. Bastian and C. Atkinson, A systematic approach to
connectors in a Multi-level Modeling Environment, vol. 5301, Lecture
Notes in Computer Science, 2008, pp. 843-857.

[4] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,”
The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, vol. 2185, pp. 19-33, 2001.

[5] C. Atkinson and R. Gerbig, Melanie: Multi-level modeling and ontology
engineering environment, New York, USA: ACM, 2012, pp. 7:1 - 7:2.

[6] C. Atkinson, M. Gutheil and B. Kennel, "A Flexible Infrastructure for
Multilevel Language Engineering," IEEE Transactions on Software
Engineering , vol. 35, no. 6, pp. 742 - 755, 2009.

[7] F. Raque Golra and F. Dagnat., "The Lazy Initialization Multilayered
Modeling Framework," in ICSE 2011 : 33rd International Conference on
Software Engineering, Honolulu, 2011.

[8] T. Clark, C. G.-P. and B. Henderson-Sellers, "A Foundation for Multi-
Level Modelling," Proceedings of the Workshop on Multi-Level
Modelling at ACM/IEEE 17th International Conference on Model
Driven Engineering Languages & Systems, vol. 1286, pp. 43-52, 2014.

[9] E. Boerger and R. Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis, Springer-Verlag Berlin and
Heidelberg GmbH & Co. KG, 2003.

[10] D. Urbán, Z. Theisz and G. Mezei, "Formalism for Static Aspects of
Dynamic Metamodeling," Periodica Polytechnica Electrical Engineering
and Computer Science, vol. 61, no. 1, pp. 34-47, 2017.

[11] Z. Theisz and G. Mezei, "Towards a novel meta-modeling approach for
dynamic multi-level instantiation," in Automation and Applied
Computer Science Workshop, Budapest, Hungary, 2015.

operation Bool ID::PersonAlpha(ID instance) {

 //Access the value of the slot containing the name of the person

ID fullName = call $GetRelevantAttributeValue(instance, $Person.FullName);

If (fullName==null)

return true; // If no name is specified yet => valid

Object[] firstNames=call $GetRelevantAttributeValues(fullName, $ComplexName.FirstName);

//Access the first name values contained by the ComplexName

if(firstNames ==null || size(firstNames)<2) return true; //not specified/has less than 2 first names

//Ensure the first names do not match

return index<Object>(firstNames, 0) != index<Object>(firstNames, 1);

}

Code 1 – The PersonAlpha operation

