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Structured data storage technologies evolve very rapidly in the IT world. LHC experiments, and 

ATLAS in particular, try to select and use these technologies balancing the performance for a given 

set of use cases with the availability, ease of use and of getting support, and stability of the product. 

We definitely and definitively moved from the “one fits all” (or “all has to fit into one”) paradigm to 

choosing the best solution for each group of data and for the applications that use these data. This 

paper describes the solutions in use, or under study, for the ATLAS experiment and their selection 

process and performance measurements. 
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1. Introduction 

When software developments started for ATLAS [1] and all Large Hadron Collider (LHC) 

experiments about 20 years ago, the generic word "database" practically referred only to relational 

databases, with only a few exceptions. There were very few options to store largish amounts of 

structured data: Oracle [2] was fully supported by CERN-IT including license costs, MySQL [3] was 

in its early stages, not scaling yet to the expected data volumes and rates but promising rather well, or 

one could build a new in-house system. So the choice was clear: fit everything into Oracle because of 

the CERN system-level support, and develop the ATLAS applications to make use of Oracle's tools 

for performance optimization. ATLAS hired two expert Oracle application developers who obviously 

helped a lot with application development and optimization. 

Having only one underlying technology helped to provide a robust and performant central 

database service, managed jointly by CERN at the system level and ATLAS at the application level. 

Many time-critical applications are now hosted by the CERN Oracle infrastructure: 

 The conditions database (COOL) [4] 

 AMI (ATLAS Metadata Interface) [5] and COMA (Conditions Metadata) [6] 

 ProdSys/PanDA (distributed production system) [7] 

 Rucio (distributed data management system) [8] 

 AGIS (Grid information system) [9] 

 Glance (membership, authorship, speakers etc.) [10] 

All these applications grew in size and complexity with time and are working quite well for the 

Collaboration’s current usage; Oracle can be very fast if database schemas and queries are well 

designed and optimized. 

On the other hand having only one underlying technology forced some applications that have 

no need of relational information into fixed schemas that may be not completely optimal; for 

example time-series measurements produced by DCS (Detector Control System) can be more simply 

represented by time-value pairs, and their data have to be compressed before storing in Oracle 

because of their huge sizes. In addition Oracle schemas have to be carefully designed upfront and are 

then hard to extend or modify, and data access to Oracle databases from Grid jobs was less than 

obvious and an interface system (Frontier [11]) had to be adopted to allow concurrent running of over 

300k jobs. So when data analytics tools started appearing on the Open Source market that can deal 

with huge amounts of less structured data, ATLAS groups started evaluating them for their needs. 

Towards the end of LHC Run1 in 2012 and during the shutdown period in 2013-2014 a 

number of new structured data storage solutions ("NoSQL Databases") were tested as back-end 

support systems for new applications, including Hadoop [12] and the many associated tools and data 

formats, Cassandra [13], MongoDB [14], etc. They are mostly key-value pair or column-oriented 

storage systems. 

 

 

Figure 1. Hadoop ecosystem as provided by CERN-IT at the end of 2017 

At the same time the Worldwide LHC Computing Grid (WLCG) Collaboration launched a 

few study groups on new computing technologies, one of which was the "Database Technical 
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Evolution Group" (DB TEG), which recommended that CERN deploy and support a Hadoop cluster 

for new applications, with all associated tools [15]. In fact several Hadoop clusters were set up over 

the years to avoid destructive interference between different applications, while both system 

managers and application developers were learning the best practices for application design and 

optimization. Figure  shows the many tools provided currently by CERN-IT in the Hadoop 

ecosystem. 

2. Database usage by ATLAS in LHC Run2 

The database systems are used to support ATLAS data processing and analysis, as well as all 

other collaboration activities. One can identify three major groups of data: 

 Conditions data. They are all non-event data that are useful to reconstruct events, such as 

detector hardware conditions (temperatures, currents, voltages, gas pressures and 

mixtures, etc), detector read-out conditions, detector calibrations and alignments, and 

physics calibrations. All conditions data have associated intervals of validity and (for 

derived data) versions.  The COOL database is used for all conditions data. 

 Physics metadata. This is information about datasets and data samples, provenance 

chains of processed data with links to production task configurations, cross-sections and 

configurations used for simulations, trigger and luminosity information for real and 

simulated data. 

 Distributed computing data management and processing book-keeping. The distributed 

production/analysis and data management systems produce and need to store a wealth of 

metadata about the data that are processed and stored: 

o Rucio (Distributed Data Management) has a dataset contents catalogue (list 

of files, total size, ownership, provenance, lifetime, status etc.) a file 

catalogue (size, checksum, number of events), a dataset location catalogue 

(list of replicas for each dataset) and keeps information on the activities of 

data transfer tools, deletion tools and on storage resource status etc. 

o ProdSys/JEDI/PanDA (Distributed Workload Management) store lists of 

requested tasks and their input and output datasets, software versions, lists of 

jobs with status, running locations, lists of processing resources with their 

status etc. 

Both systems use a combination of quasi-static and rapidly changing information, as 

ATLAS runs over 1 million jobs/day using on average almost 300k job slots and moves 

600 TB/day around the world. Oracle supports very well both systems if the tables and 

the load don't grow indefinitely; “old" information is automatically copied to an archive 

Oracle database and removed from the primary one. 

2.1 Oracle storage 

All this information is stored in three main Oracle RACs (Real Application Clusters), 

respectively for ATLAS online, offline, and distributed computing applications, plus an archive 

database, all with active stand-by replicas and back-ups. Selected users and processes have write 

access; all users have read access. Read access normally goes through front-end web services as 

direct access to Oracle from many processes could overload the servers: Frontier for access to 

conditions data from production and analysis jobs, the AMI and COMA front-end servers for access 

to metadata, and DDM and PanDA servers for access to dataset and production/analysis task 

information. Figure  shows a sketch of the Oracle RACs and the data flow between them, including 

the replication to the active stand-by instances and the distribution of conditions data to IN2P3-CC in 

Lyon (France), RAL in Oxfordshire (United Kingdom) and TRIUMF in Vancouver (Canada). 
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Figure 2. ATLAS Oracle databases and data flow between them 

2.2 NoSQL storage 

The main distributed computing applications (Rucio and ProdSys/PanDA) have a very high 

transaction rate and the Oracle database is very efficient in dealing with this large information flow. 

Applications such as monitoring and accounting, that only read from the database, are instead better 

suited for different storage systems, with needed data extracted from Oracle and formatted 

appropriately for the expected queries. Tasks to extract the relevant information from Oracle and 

store it in Hadoop run continuously and provide input to several other tools, including dataset 

popularity, task monitoring and data management accounting. 

ElasticSearch [16] became popular in the last couple of years as a "quick" way to search 

information, and it is now used by several distributed computing analytics applications. The 

ElasticSearch storage needs filling with data extracted from logfiles or databases, and then interactive 

tools can be used to generate plots that are displayed with Kibana [17]. It is very useful for 

monitoring and to find out what is going on in case of unexpected failures, correlating information 

from different sources; for example, if a Frontier server becomes unresponsive, we can look up 

which jobs or tasks caused that, where they ran (or are running) and correlate it with the PanDA 

status of that site. As the ElasticSearch performance gets degraded if the amount of accumulated data 

becomes large and the hardware is not sufficient for the data size and the tasks to be performed, 

careful provisioning is needed (like for any other computing system!). 

2.3 The first ATLAS NoSQL tool: EventIndex   

The ATLAS EventIndex [18] is the first application that was entirely developed having in 

mind the usage of modern structured storage systems as back-end instead of a traditional relational 

database. The design started in late 2012 and the system was in production at the start of LHC Run2 

in Spring 2015. The EventIndex is a system designed to be a complete catalogue of ATLAS events, 

with all real and simulated data. Its main use cases are event picking (give me this event in that 

format and processing version), counting and selecting events based on trigger decisions, production 

completeness and consistency checks (data corruption, missing and/or duplicated events) and trigger 

chain and derivation overlap counting. It contains event identifiers (run and event numbers, trigger 

stream, luminosity block, bunch crossing number), trigger decisions and references (GUID plus 

internal pointer) to the events at each processing stage in all permanent files generated by central 

productions. 

The EventIndex has a partitioned architecture, following the data flow, sketched in Figure . 

The Data Production component extracts event metadata from files produced at Tier-0 or on the Grid, 

the Data Collection system [19] transfers EventIndex information from jobs to the central servers at 

CERN, the Data Storage units provide permanent storage for EventIndex data and fast access for the 

most common queries, plus finite-time response for complex queries. The full information is stored 

in Hadoop in MapFile format [20], with an internal catalogue in HBase [21] and also a copy to 
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HBase for event look-up; reduced information (only real data, no trigger) is copied to Oracle for 

faster queries [22]. A monitoring system keeps track of the health of servers and the data flow [23].  

 

 

Figure 3. EventIndex architecture and data flow 

At the time of writing the Hadoop system stores 120 TB of real data and 36 TB of simulated 

data, plus 154 TB of other data (input and transient data and archive). In Oracle we have over 100 

billion event records, stored in a table of 2.2 TB with 2 TB of index space. 

An active R&D programme to explore different, and possibly better performing, data store 

formats in Hadoop was started in 2016. The "Pure HBase" approach (database organized in columns 

of key-value pairs) was one of the original options in 2013, but did not work in 2015 because of the 

then poor performance of the CERN lxhadoop cluster (problem solved at the end of 2015); it is more 

promising now as it shows good performance for event picking. The Avro [24] and Parquet [25] data 

formats have been explored, with tests on full 2015 real data, and look promising (for different 

reasons). Kudu [26] is a new technology in the Hadoop ecosystem, implementing a new column-

oriented storage layer that complements HDFS and HBase. It appears to be more flexible to address a 

wider variety of use cases, in particular as it is addressable also through SQL queries, placing it 

midway between Oracle and the NoSQL world; tests are continuing this year in view of a possible 

use in production in 2018 [27]. 

3. Evolution of Databases for Run3 

The continued usage of Oracle is fine for the time being but we were warned by CERN that 

the license conditions may change in the future, so some kind of diversification may be needed. 

Some types of data and metadata fit naturally into the relational database model, but other data much 

less, for example the large amounts of useful but static data on DDM datasets for accounting, or 

information on completed PanDA production and analysis tasks, event metadata and so on. 

As long as access to the data is done through an interface server, the user won't actually see 

the underlying storage technology. In this way it is possible to keep only the "live" data in Oracle and 

move the rest to different technologies. This also means that at some point in the future we could 

change technology for the SQL database without too much trouble. 

3.1 A new Conditions Data Service for Run3 

CREST [28] is a new architecture for conditions data services for HEP experiments, 

developed initially by CMS and ATLAS, and now considered by a number of other experiments. It is 

based on the relational schema simplification introduced by CMS for Run2, with data identified by 

type, interval of validity and version, and payload data in BLOBs. It will contain in its schema only 

data used for event processing (no dump of raw information). The functions are partitioned: the 

relational database is used only for payload data identification, but the payload can be anywhere, 

including files in CVMFS [29]. A web server (with an internal cache) is used for interactions with the 

relational database and data input, search and retrieval, and Frontier servers and Squids provide 

access from Grid jobs and local caches. Figure  shows a scheme of the component architecture and 

data access paths. 
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Figure 4. CREST architecture and data access 

The CREST system for ATLAS is under active development and will be in production for 

the start of LHC Run3. By that time all existing conditions for Run1 and Run2 will have to be 

transferred to the new system, to allow processing and analysis of all ATLAS data with the most 

recent software suites. 

3.2 Time series databases 

Time series are for example streams of DCS (Detector Control System) data, where for each 

data type a raw data record consists of a time stamp and one or a few values. This information is 

currently stored in Oracle using COOL, after averaging over short time periods, or storing new 

values only when sufficiently different from previous ones. Data sizes can become enormous 

compared to other data types, so much that direct use of this information in reconstruction jobs is not 

a good idea; it is much better to store this information in a system that is designed for time series and 

has useful tools for averaging over predefined time intervals, threshold detection, and an integrated 

display of the values as a function of time. 

CERN-IT decided to use InfluxDB [30] coupled with Grafana [31] initially for their internal 

system monitoring and then also for the monitoring of WLCG site status and experiment distributed 

computing tools. As they seem happy with it, ATLAS started evaluations in the online and offline 

context, including displaying the time series with Grafana. An example of data extracted from the 

PanDA database in Oracle, stored as time series in InfluxDB and displayed with Grafana is shown in 

Figure . 

 

 

Figure 5. Display with Grafana of the time series of the number of CPU cores used on the Grid by 

ATLAS jobs between 19 and 27 October 2017 
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3.3 Metadata for Run3 and beyond 

A new effort to revise and harmonize metadata information and its storage and retrieval tools 

started this year in ATLAS: the DCC (Data Characterization and Curation) project. It has three 

complementary approaches, respectively on the overall architecture, a top-down approach for dataset 

related metadata and dataset discovery based on the Data Knowledge Base, and a bottom-up 

approach to event metadata based on the concepts of the Event WhiteBoard and Virtual Datasets. 

The Event WhiteBoard (EWB) project has been launched recently. It is an evolution of the 

EventIndex concept, but with an event-oriented architecture, whereas the EventIndex has a dataset-

oriented internal storage organization. It will have one and only one logical record per event, 

containing event identification and immutable information (trigger, luminosity block etc.), but then 

for each processing step involving each event it will have the link to the algorithm producing it 

(processing task configuration), pointers to outputs and flags for offline selections (derivations). An 

important new feature of the EWB is the possibility for automatic processes and single users to 

annotate single event records, adding key-value pairs (or similar formats) that can then be interpreted 

and used for automatic selections or other actions. Figure  shows the EWB component architecture 

and the flow of data into and out of it. 

 

Figure 6. Event WhiteBoard architecture and data flow 

The problem is not intrinsically difficult but the EWB will have to support 10 billion new 

real and 35 billion simulated events per year for Run2, a factor of 3 more for Run3 and another factor 

of 3 more for Run4. Work on the technology selection is starting now, with the aim to have a 

prototype working at the Run2 scale by the end of 2018 that will be promising to scale as required for 

Run3, and the new EWB in operation during 2020. 

Virtual Datasets (VDS) are not a new idea but with the new EWB technology it should be 

possible to implement them. A VDS is a list of events that satisfy a number of conditions as 

contained in the EWB. For example, the derivation step after reconstruction now writes out O(100) 

streams with selected events; even if the events are “slimmed”, the amount of required disk space is 

large. With VDSs, it will be enough to flag the selected events in the EWB, saving lots of storage, 

and user analysis jobs will then read only those events. 

4. Conclusions 

ATLAS is always following technology developments in the database and structured data 

storage fields. The lifetime of ATLAS computing tools and infrastructure is much longer than the 

active lifetime of many open source products, and this fact poses very strong constraints on product 

selection. In any case we need to continue the R&D programs to make the best use of new upcoming 

computing technologies, without neglecting ongoing operations of course. 

Continued collaboration with CERN-IT is essential for providing well-performing and robust 

services to the Collaboration.  

The tool that is invisible to most users is the one that works without problems all the time! 
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