
Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

PARALLEL FRAMEWORK FOR PARTIAL WAVE

ANALYSIS AT BES-III EXPERIMENT

V.A. Tokareva
a
, I.I. Denisenko

 Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna,

Moscow region, 141980, Russia

E-mail:
a
tokareva@jinr.ru

The most common approach to the partial wave analysis in modern experiments is the event-by-event

maximum likelihood fit. Within this approach the analysis of the collected so far statistics at BESIII

(more than one billion of 𝐽/𝜓 events) typically requires huge amount of a computational time.

Fortunately, the event-by-event analysis can be naturally parallelized. We developed the parallel

cross-platform software architecture that can run calculations at various high-performance computing

platforms, such as multi-core CPUs, Intel Xeon Phi co-processors, and GPUs. The software supports

switching between different minimization algorithms like MINUIT or FUMILI. The wave functions

amplitudes are constructed using covariant tensor formalism. Currently, analysis is developed for the

J/ψ → K
+
K

-
π

0
 decay channel. The algorithm for caching the intermediate results has been developed,

that minimizes the amount of calculations performed in each iteration. Besides, a number of software

optimizations has been used, including vectorization, memory access linearization, and data

alignment. In future we plan to add the analysis for new reaction channels, the option for combined

analysis of several reaction or decay channels and opportunity to adapt our software for use in other

experiments.

Keywords: partial wave analysis, big data, heterogeneous computing, high-performance

computing, Xeon Phi, GPU, minimization algorithms.

© 2017 Victoria A. Tokareva, Igor I. Denisenko

303

Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

1. Introduction

Partial wave analysis (PWA) is the technique of studying scattering or decay of hadrons

based on the decomposition of the process amplitude to partial waves. This method is widely used

nowadays in HEP (high energy physics) experiments such as BESIII, LHCb, COMPASS etc. in

order to search for new and exotic resonances, that can not be seen directly as a peak in the mass

spectrum.

The main objective of the BES-III experiment, which takes place at Beijing Electron–

Positron Collider II (China), is investigating the properties of charmonia and charmed mesons. The

physics program of BESIII includes light hadron spectroscopy in charmonia decays. The typical

process that can be studied in BESIII experiment is the J/ψ → K
+
K

-
π

0
 decay. For the moment,

(1310.6 ± 7.0) × 106 billions [1] J/ψ events have been accumulated and the number is expected to

rise up to 10 billions.

From the other side, the unbinned likelihood PWA method is a computationally expensive

one (see the discussion of PWA cost issues in [2]), and has a number of restrictions related to

minimization issues, which will be considered further. The third point is that models tend to be

complicated, and the larger number of parameters we have, the more time-consuming the

calculations are.

 Thus, performing PWA for the typical J/ψ process mentioned above provides us with a

number of challenges to solve because the expensive calculations have to be performed under the big

data amounts in appropriate time. The widely-used nowadays approach to solution of such kind of

problems is optimization and refactoring of existing algorithms for effective usage on massive-

parallel hardware (GPU, multi-core CPU, Xeon Phi processors, etc.).

In this article we present the current state of the parallel PWA framework being developed at

DLNP JINR.

2. Issues of the task and our optimization approach

 In our studies used covariant tensor formalism [3] to described partial waves and assumed

that decay amplitude 𝐴 can be described with the isobar model (i.e. decay amplitude is given by a

sum of resonances for each pair of our final mesons). Our fit model consisted of set of resonances

with masses, width and couplings to be determined in the fit. Given the fit model we can calculate

probability to observe data event 𝑖 with measured momenta of final particles:

𝑝𝑖 = |𝐴𝑖 |
2/𝜎, (1)

where 𝜎 is a normalization integral over the phase space (𝜎 = ∫ |𝐴|2 𝑑𝛷) . In following this integral

will be approximated as MC-sum : ∫ |𝐴|2 𝑑𝛷 = 𝐶 ∑ |𝐴𝑘 |
2

𝑘 (index 𝑘 runs over sample of MC phase

space distributed events). Finally log-likelihood 𝐹 to be minimized is given by

𝐹 = −𝑙𝑛𝐿 = −𝑙𝑛(∏ 𝑝𝑖𝑖) = −∑ 𝑙𝑛 𝑝𝑖𝑖 , (2)

where the product and the sum are taken over data events. An important feature of this approach is

that detector data selection efficiency can be trivially introduced.

The classical approach to solving such tasks include using gradient minimization methods

where the values of parameters are being varied on the sequential basis and the numerical value of

the log-likelihood function is being recalculated, respectively. At the end of every step the direction

of next step (i.e. the direction where the function gradient is decreased in the fastest way) is chosen.

In this work, we use the realizations of gradient minimization methods included in the ROOT

framework (see further).

Since the contributions to the log-likelihood function could be estimated independently for

different events, the task can be naturally parallelized. The data access linearization provides the

decreasing of execution time too, especially for the multi-core devices supporting vector calculations

(modern multi-core CPUs, Intel Xeon Phi coprocessors, etc.). The main formula could be separated

in parts, which can be calculated independently and do not need to be recalculated in case, if there

were no changes in this part parameters on the current step.

Thus, the properly organized data caching is helpful for decreasing computational costs. The

speed up even increases with the increasing the model complexity (as more parameters mean more

304

Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

cached factors that do not need to be recalculated) and the number of events being analyzed (as the

relative importance of overheads for creating the parallel regions diminishes).

Performance has been measured with 10
5
 data events and a PHSP sample of data for

normalization consisting of 10
6
 events.

3. Minimization notes

Minimization of a log likelihood function is a narrow place for any PWA framework

development. Various minimization algorithms have different convergence and demand various

computation times per iteration. It was noticed in [2] that it is exponentially hard to determine

whether the likelihood fit (usually with a large number of free parameters) has found the global

minimum or one of the local ones.

Using the approved and broadly known minimization tools, besides obvious advantages, do

not provide the opportunity to fine-tune the inner work of a minimizer.

Such issues are being solved in different ways at the others PWA projects [4]-[8]. It is quite

typical for the frameworks in this domain to support minimization employing one or two

minimization frameworks. For these and other essential details about PWA frameworks supported

nowadays, see Table 1.

Table 1. Great variety of PWA frameworks being developed

Framework Language Support of parallel

computations

Minimization Actual release

Fortran PWA Fortran — Fumili [9] 80’s

GPUPWA C++ GPU (OpenCL) Minuit2 [10] 2011

PyPWA Python — PyFit [11] 2015

ComPWA C++ CPU Minuit2,

Geneva [12]

—

ROOTPWA C++, Python GPU (CUDA),

CPU (MPI)

Minut2 2015

Our framework C++ CPU (OpenMP),

Xeon Phi

(OpenMP), GPU

(CUDA)

Minuit, Fumili —

In our framework we support minimization with both Minuit [9] and Fumili [10] packages.

In Fig. 1 measurements of the convergence times are shown for the J/ψ → K
+
K

-
π

0
 decay

reaction, employing Fumili, MIGRAD, and SIMPLEX minimization algorithms with 2 and 4

resonances taken as initial conditions.

Figure 1. Convergence time for the different minimization methods

4. Algorithm and realizations

Presently, the industry of multi-core devices is rapidly developing and almost every

computing device around us already has several cores inside. It is reasonable to assume that proper

305

Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

use of all computing cores allows one to speed up the execution of the code without losing the quality

of calculations. However, any implementation of the framework aimed at parallel computations

inevitably should deal with the volumes of simultaneously available RAM, the bandwidth of

accessing it, and the resolution of collisions in case of sequential atomic operations. Individual

approach of the developers to solving these issues is implemented through the choice of general

software architecture of the framework, as well as the tools and the platforms for parallelization.

In our framework we implemented support for two popular solutions for heterogeneous

clusters: either of control CPU and executing GPU or control CPU and executing coprocessor Intel

Xeon Phi of the first generation. Our framework also supports performing multi-threaded

computations on a multi-core CPU — this category, besides CPU nodes present on most modern

computing clusters, includes also the majority of user-end PCs sold nowadays, potentially expanding

the audience of users for our framework.

Fig. 2 shows the results of comparative testing of the framework on various hardware

platforms: CPU (represented by 2 ×Intel Xeon E5-2695v2), GPU (NVIDIA Tesla K80), and Intel

Xeon Phi (model 5110P, denoted as PHI).

Figure 2. Average call time for test function with gradients, 5 resonances

GPU is deservedly the most popular tool for solving massively-parallel tasks. We can see in

our case it shows the best performance as well. CPU performance is comparable to that of GPU.

Xeon Phi looks like not as effective, probably because it is more sensitive to vectorization issues like

memory alignment. Fine-tuning of the code for a better performance on Phi coprocessors is included

in our future plans.

For CPU and Phi processors we have taken the numbers of threads, where the system reaches

its maximum performance and/or a plateau. More details on the performance of the parallel algorithm

depending on the number of cores can be seen in Fig. 3-4. We see that the speedup at low amounts of

threads increases almost linearly and reaches plateau at the number of threads that equals

approximately the number of physical CPU cores, meaning that for this task hyper-threading brings

almost no effect since there are almost no I/O operations.

Figure 3. CPU benchmarks: time, speedup, efficiency (2 Intel Xeon E5-2695v2 CPUs)

306

Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

Figure 4. Co-processor benchmarks: time, speedup, efficiency (Intel Xeon Phi 5110P)

5. Future plans

Our priorities involve employing other models and reactions which are typically used in

PWA to support our users with a wide range of predefined analysis patterns.

We are going as well to increase framework cross-platform stability, providing a big deal of

benchmarks, unit tests and user documentation.

We are planning to make a comparative study of performance and features for the currently

available PWA frameworks, which is going to bring massive benefits for the community of PWA

users and product developers and advance community searches for the general PWA framework

solution to a new discussion level.

Additionally speeding up for the calculations could be discussed in terms of lower level code

specifications and searches for new applicable architecture patterns.

 Our priorities also include an implementation of ROOT-independent PWA framework

version (on the base of the stand-alone versions of Minuit and Fumili minimizers).

6. Acknowledgements

Authors express their gratitude to the team of HybriLIT heterogeneous cluster for support,

discussions and provided resources.

We are thankful to the Fumili minimizer authors for the fruitful discussions on optimization

theory and applications.

7. Conclusion

The framework for the partial wave analysis, which we are working on, employes data-level

parallelisation of calculations event-by-event maximum likelihood estimation using the benefits of

brand-new high-performance computing hardware (such as fast parallel processing of big amounts of

data and good task scalability). Since during the technical revolution such kind of computational

devices became cheaper and easier-available not only for big organizations, but for personal users as

well, our framework is organized in such a way individual researchers could use it with a maximum

profit.

The framework architecture is intended for calculations performing on a wide range of

popular multi-core devices, which are multi-core CPUs, Intel Xeon Phi coprocessors, and GPUs.

Minimization is provided on the basis of both Minuit and Fumili minimizers.

In this research, sensitive architecture principles were discussed, performance benchmarks

for calculations on different types of devices and for different minimization tools were provided for

predefined analysis of the J/ψ → K
+
K

-
π

0
 decay reaction employing the data samples accumulated by

the BES-III experiment.

References

[1] Ablikim M. et al. Determination of the number of J/ψ events with inclusive J/ψ decays. // Chinese

Phys. C, 2017, vol. 41, No. 1 (013001). DOI: 10.1088/1674-1137/41/1/013001.

[2] Berger N. Partial Wave Analysis using Graphics Cards. // Proceedings of the XIV International

Conference on Hadron Spectroscopy (hadron2011), Munich, 2011, edited by B. Grube, S. Paul, and

N. Brambilla, eConf C110613 (2011) [arXiv:1108.5882v1], pp. 810-817.

307

Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017)

Becici, Budva, Montenegro, September 25 - 29, 2017

[3] Zou B.S., Bugg D.V. Covariant tensor formalism for partial wave analyses of ψ decay to mesons.

// arXiv:hep-ph/0211457v2. Web. 26 Dec 2002.

[4] GPUPWA framework, available at http://sourceforge.net/projects/gpupwa/

[5] ROOTPWA framework, available at http://sourceforge.net/projects/rootpwa/.

[6] PyPWA framework, available at https://github.com/JeffersonLab/PyPWA

[7] ComPWA framework, available at https://github.com/ComPWA/ComPWA

[8] Model-independent partial wave analysis using a massively-parallel fitting framework.

//submitted to the proceedings of the 22nd International Conference on Computing in High Energy

and Nuclear Physics, CHEP 2016, arXiv:1703.03284v1. Web.19 Feb 2017.

[9] James F., Roos M. Minuit - a system for function minimization and analysis of the parameter

errors and correlations. //Comp. Phys. Communications, vol. 10 (1975), pp. 343 - 367.

[10] Dymov S. N. et al. Constrained minimization in C++ environment. // Nucl. Instrum. Meth.

A440, 431-437 (2000).

[11] PyFit, available at http://www.stsci.edu/institute/software_hardware/pyfits/Download

[12] Geneva optimisation tools, available at https://www.gemfony.eu/index.php?id=geneva

308

