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A fundamental problem of data processing for high energy and nuclear physics (HENP) experiments 

is the event reconstruction. The main part of it is finding tracks among a great number of so-called 

hits produced on sequential co-ordinate planes of tracking detectors. The track recognition problem 

consists in joining these hits into clusters, each of them joins all hits belonging to the same track, one 

of many others, discarding noise and fake hits. Such a procedure named tracking is especially 

difficult for modern HENP experiments with heavy ions where detectors register events with very 

high multiplicity. Besides, this problem is seriously aggravated due to the famous shortcoming of 

quite popular multiwired, strip and GEM detectors where the appearance of fake hits is caused by 

extra spurious crossings of wires or strips, while the number of those fakes is greater for some order 

of magnitude than for true hits. Here we discuss the novel two steps technique based on hit 

preprocessing by a sophisticated directed search followed by applying a deep learning neural 

network. Preliminary results of our approach for simulated events of the BM@N GEM detector are 

presented. 
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1. Introduction 

Event reconstruction is one of the most important problems in the modern high energy and 

nuclear physics (HENP). It consists of the determination of parameters of vertices and particle tracks 

for each event.   The main part of it is finding tracks among a great number of so-called hits produced 

by charged particle passage through sequential co-ordinate planes of tracking detectors. The track 

recognition problem consists in joining these hits into clusters, each of them joins all hits belonging 

to the same track, one of many others, discarding noise and fake hits. Such a procedure named 

tracking is especially difficult for modern HENP experiments with heavy ions where detectors 

register events with very high multiplicity. Besides, this problem is considerably aggravated due to 

the famous shortcoming of quite popular multiwired, strip and GEM detectors where the appearance 

of fake hits is caused by extra spurious crossings of wires or strips, while the number of those fakes is 

greater for some order of magnitude than for true hits (see [1], for example). 

Traditionally tracking algorithms based on the combinatorial Kalman Filter have been used 

with great success in HENP experiments for years [2]. However, the initialization procedure needed 

to start Kalman filtering requires a really vast search of hits needed to obtain so-called “seeds”, i.e. 

initial approximations of track parameters of charged particles. Besides these state-of-the-art 

techniques are inherently sequential and scale poorly with the expected increases in detector 

occupancy in new conditions as for planned NICA experiments. In frames of the NICA project the 

Baryonic Matter at Nuclotron (BM@N) experiment is already running since 2015. One of methods to 

overcome the seed search problem for data of the BM@N GEM detector was proposed in [1] on the 

basis of a special coordinate transformation, but it is still also not always acceptably efficient. The 

actuality of data processing problems for BM@N experiment inspired us to apply our efforts to 

improve the tracking efficiency of its GEM microstrip detector on a new machine learning way.  

Machine learning algorithms could make a great contribution to this problem due to their 

capability to model complex non-linear data dependencies, to learn effective representations of high-

dimensional data through training, and to parallelize on high-performance computing means such as 

GPUs. 

2. BM@N GEM tracking system 

BM@N is a fixed target experiment aimed to study dense baryonic matter which can be 

created as a result of heavy-ion collisions [3]. The core of the central tracking system in the BM@N 

is represented by the GEM (Gas Electron Multiplier) detector that consists of a fixed number of gas-

filled chambers combined into independent parts named «stations». The stations are positioned at 

some distances from one another along the beam axis. Moreover, in order to measure charged 

particles momenta, the stations are placed inside the large aperture dipole magnet. The last of 

BM@N experimental runs was carried out in spring 2017 with the setup comprised six stations. 

Namely this setup is considered in this article. 

The operation of the GEM chamber is founded on principles of gas ionization and electron 

multiplication. The chamber, as a basic element of the station, is filled with a certain gaseous mixture 

to reach effective gas ionization. A charged particle, interacting with atoms in the gas mixture, 

produces lots of electron-ion pairs. Then the produced electrons are transmitted through the GEM's 

foils, resulting in electron avalanches. These avalanches are transferred by electric field toward the 

readout plane where they can be registered as a signal by the set of parallel microstrips as sensitive 

elements. Depending on the particle trajectory inclination not only one, but several adjacent strips 

can be activated forming a cluster. As usual, a clustering procedure is applied to get the central strip 

number with its total charge of all cluster strips.  

Detectors with a microstrip-based readout system are widely used in many physics 

experiments because such readout electronics have a small number of readout channels in 

comparison with other types of readouts, such as pads or pixels. Using the smaller quantity of readout 

channels simplifies the wire bonding process and make assembling cheaper. It also allows the 

designers to use a more simple cooling system. These features help to reduce the amount of 

scattering materials on the way of particles. 
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Microstrip readout problems. Activated strips of one layer, crossing strips of another layer, 

form intersections in space called «hits». We deal with two types of the intersections: the first of 

these are real points through which charged particles passed. The second,  named “fakes” produces 

spurious coordinates of non-existent tracks of the particles. The fakes are the principal disadvantage 

of using strips as a readout in track reconstruction problems. The case when strips of two layers cross 

at right angle (orthogonal strips) gives us the largest number of fakes. One of the ways to decrease 

the fake number is to rotate strips of one layer on a small angle with respect to another layer. As it is 

shown in fig.1, such rotation removes the majority of fake crossings out of the sensitive area 

(although lots of them are still left). Therefore the GEM chambers used in the BM@N have two-

dimensional microstrip readout boards with two sets of strips rotated by stereo-angle of 15 degrees 

relatively to each other. 

 

 

 

 

 

 

 

 

 

  

 

 

           
 

 

 

 

 

 

 

 

 

 

 

Nevertheless, a significant quantity of fake hits seriously contaminates data needed for 

further processing and diminishes the efficiency of track finding. Carrying out the next BM@N runs 

planned for the short term implies increasing the multiplicity of events. Thus, the fake rejection 

procedure remains an important problem. In this paper we present a new approach to track 

recognition based on using deep learning networks.  

 

3. Two-step tracking strategy 
 

BM@N tracking implies a combinatorial search through many hits and thousands of fakes 

situated on sequential stations for namely such hits that belong to some of tracks, i.e. lying on a 

smooth curve. Starting from every hit on some of stations one should search for a corresponding 

(nearest) hit on the adjacent station. One of ways to reduce immense combinatorics is to use the 

curve smoothness to predict some smaller area for searching hits on the next station. 

Therefore we choose two-step tracking starting from a preprocessing intended to find all 

possible track-candidates by a directed search followed then by applying a deep learning recurrent 

neural network. On the first step, track seeds are yielded using a simple and computationally 

effective algorithm that has relatively low efficiency, i.e. it produces a lot of fake seeds along with 

Figure 1. Left panel: orthogonal strips 
produce extra spurious crossing.  

Right panel: in result of rotating strips of 
the second layer on 15

o
, many fakes are 

swopped out of the sensitive area 
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true seeds. After that on the second step a neural network is applied in order to effectively filter out 

fake tracks. 

3.1 Tracking by directed search  

 

The so-called directed search algorithm can be simply described as a procedure that goes 

through reconstructed hit points at every station, starting from the first one and extending current 

track candidates by one hit at every station also taking into account possible target coordinates. 

Having a model for the target greatly increases performance because a lot of tracks can be filtered out 

that, according to a simple track model, at a large distance from a target. Also, for this algorithm to 

be computationally simple, it is very important to utilize a lot of speeding up techniques. 

As the main characteristic of the algorithm is a search of possible hits for extending a 

trajectory of the current track candidate to the next station, an effective search is crucial for the 

computing performance. Thus, the algorithm itself is divided into two sub-algorithms. The starting 

one does the preliminary search - for each track it filters out hits that just cannot possibly be an 

extension of the track, but it actually utilizes spatial indexes to extract hits of interest – these that 

have even the smallest possibility to be possible candidates for the extension. The next sub-algorithm 

extends the track by the extracted hits (thus making one extended track for each hit) and filters out 

tracks by a weak 𝜒2 criterion. 

 

3.2. Preliminary search 

 

 BM@N magnetic field is not homogenous, but due to its overwhelming vertical component 

it is possible to work simultaneously in two projections: YoZ and XoZ (fig. 2). 

 
Figure 2. Spatial indices for algorithm speed-up 

 

On YoZ projection, tracks are almost straight lines. It makes it possible to predict y 

coordinate starting with the second station (stationId=1). Thus, merely by sorting hit indices array by 

y coordinate, making a confidence interval and executing a binary search we can exclude all hits that 

are not in the confidence interval. A possible approach to deduce a confidence interval that we use is 

estimation of slope and intercept parameters of weighted linear regression (given errors of hit 

reconstruction), but while they seem to be normally distributed (as by simple Monte-Carlo modeling 

experiment given normal hit reconstruction errors), they are not IID and thus y estimation is not 

normal. At the moment we believe that the confidence interval parameters should be computed by a 

linear function of slope and intercept (non-linear if considering the distance from track mean z 

coordinate) with coefficients deduced by Monte-Carlo method for each event type) independently. 
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Thus confidence interval width 𝜔 = 𝐴𝑏 + 𝐵(𝑧 − 𝑧̅)𝑘 with 𝐴 and 𝐵 being Monte-Carlo deduced, 

intercept 𝑏 and slope 𝑘, 𝑧̅ is track hits’ mean z coordinate (intercept is y coordinate of the line at 𝑧̅). 
The XoZ projection case is more complicated. The track projection looks as a curve, but is 

not exactly a circle. Thus we enable limited rotational component. The limitation is on change in 

rotation – it should not change substantially. To account the field inhomogeneity the criterion is 

local, so only four adjacent hits are considered. Given hits’ projections ℎ0, ℎ1, ℎ2, ℎ3 we define 

vectors 𝑣𝑖 = ℎ𝑖+1 − ℎ𝑖 and define that angle between these vectors should not change a lot. The 

angle can be deduced from easily computable sines, and we avoid arcsine computation by working 

directly with sines – thus we call the XoZ projection criterion the sine criterion. Using this criterion 

an X coordinate can be deduced starting from the third station.  

Again, as in the case of the YoZ projection filtering, the parameters of the confidence 

interval is difficult to deduce, and again we are  going to obtain the best value for confidence interval 

coefficients by Monte-Carlo experiments. At the moment, we utilize the admissiblity function 

admissible({ℎ0, ℎ1, ℎ2, ℎ3}) = [|sin(𝛽) − sin(𝛼)| < ∆ sin(𝛼) + 𝑊𝑓𝑖𝑒𝑙𝑑] where ∆ sin(𝛼) should be 

deduced from hit errors; 𝛼 is an angle between 𝑣0 and 𝑣1, 𝛽 is an angle between 𝑣1 and 𝑣2. The 

𝑊𝑓𝑖𝑒𝑙𝑑 coefficient takes into account field inhomogeneity and enables slight changes in rotation, and 

we believe it is very difficult to deduce it in any other way besides Monte-Carlo. That being said, the 

specific form of ∆ sin(𝛼) is an open question. 

Starting with third station, both hit search criterion has to be utilized. We use kd-tree [4] data 

structure, but in reality any type of spatial index structure should be utilized. 

 

3.3. Postfiltering  

 

The postfiltering by 𝜒2 criterion is also difficult to perform. The problem is that errors given 

on hit coordinates are suffered from the fact that two close intersections with strip layer can be 

reconstructed as one hit, which has error comparable to cluster width, while isolated hit produces 

cluster of large width but small error. Thus, if taking cluster width for error, the 𝜒2is underestimated 

and a lot of fake tracks are not filtered, while in the other case a lot of real tracks are filtered out. 

Again, we choose, as the most efficient way, the Monte-Carlo determination of a coefficient of the 

scaling cluster width. 

4. Track-candidate classification via deep recurrent network 

After doing the first step of our tracking we obtain a bunch of track-candidates, which should 

be divided into two groups: real tracks and, so named, ghost tracks formed by fakes and, possibly, by 

parts of different tracks. Thus we have a classification task, what can be solved by using artificial 

neural networks (NNs), which have become on top of classification over the past decade.  

Hits belonging to some of tracks are indicated by three coordinates – features and situated on 

sequential stations along a particle way through the detector. Thus, a track-candidate presents as a 

sequence of hits. Each time step of such sequences is the specific point on k-th station of the detector, 

hence for 6 stations we have a vector of 3*6=18 features to define the track-candidate. They form a 

dynamical system like a movie, but unfortunately, ordinary neural networks, even deep ones with 

many layers, deep belief networks and such advanced nets as convolutional NNs are designed to 

manipulate with static objects, predicting a probability distribution over all observable classes. To 

handle dynamic objects the neural net should possess a kind of memory. It turns out that processing 

such kind of data refers us to dynamical systems as recurrent neural networks (RNNs), which are 

able to process sequential data.  

 

4.1. Gated recurrent unit  

 

The main difference of RNNs from other neural nets is their ability to memorize and extract 

previous states to operate on problems going through time. A simple block of RNN represents as a 
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loop over inputs divided into time steps, in the heart of the loop there is a feedforward neural 

network, which we will refer to as «RNN cell». The unrolled block, can be thought of as multiple 

copies of the same network, each passing a message to a successor.  

However, operating on memory should be restricted to prevent from information morphing 

and vanishing and exploding sensitivity. For example, humans do not remember every moment in 

their life, they determine for themselves what information is needed for memorization, and which one 

should be forgotten. So, the main principle of RNNs family is that new information should be 

incrementally added to memory, herewith not all of it, but only such its important part that can be 

useful in the future. 

Gated recurrent unit (GRU) [5] presented in fig.3 is a specific type of RNN. The core idea of 

GRU is a kind of memory named the cell state that works like a conveyor belt for running 

information (line on the top of GRU model, fig.3). Instead of having a single neural layer, GRU 

includes three layers interacting in a very special way. These layers are capable to protect and control 

the cell state with the mechanism of gates – filters that optionally let information through. They are 

composed out of a sigmoidal layer and a pointwise multiplication operation and have the ability to 

write or forget information with atrainable degree of selectivity. GRU combines the «input» and 

«forget» gates into a single «update» gate. 

 

 
 

Figure 3. GRU unit schema with definition of used functions 

Denotations in fig. 3 are as follows:  “.” is a matrix multiplication, “*” means element-wise 

multiplication, “[H, X]” is a concatenation of matrices H and X and “𝜎" – is sigmoid activation; t is a 

current time step, ℎ𝑡−1 determines the state on the previous time step and x is an input; rectangles are 

neural network layers with specific activations and circles are the pointwise operations.  

However, a construction of using only the GRU layer is not enough to build a classifier. To 

perform classification on the output of our model, we need to stack on top of our network a so-called 

fully-connected layer, consisting of a single neuron with logistic activation function connected to all 

GRU cells on the previous layer. 

This single neuron outputs the probability that input sample belongs to positive class (track-

candidate is the real track). If it is true, then the output value is close to 1, otherwise it will be tagged 

as a member of negative class (track-candidate is a ghost). To train our NN classifier a binary cross-

entropy error, also known as Kullback-Leibler divergence [6], should be minimized. The binary 

cross-entropy formula is defined as follows: 

 

𝐿(𝑦, 𝑦̂) = −𝑦𝑙𝑜𝑔𝑦̂ − (1 − 𝑦) log(1 − 𝑦̂),     (1) 

where 𝑦 determines a label and 𝑦̂ is an output of RNN. 

 

4.2 Model selection  

 

The first part of study is to select which method of optimization should be used to minimize 

the network error function. We tried to train four RNNs each with one hidden layer consisting of 64 

GRU neurons by different optimizers.  Four gradient and subgradient methods were applied: Adagrad 

[7], Adadelta [8], Adam [9] and RMSProp [10] to compare validation efficiencies. We found that 

RMSProp method performs better than others.  
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The key idea of RMSProp gradient descent is to use for weight updating the inversely 

proportional value of the gradient root mean square (hence RMS) averaged by recent gradients.  

We consider the gradient of the objective function 𝑔𝑡 with respect to the weight at the time 

step t, and denote averaged value 𝑔2
𝑡 as follows: 

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2,      (2) 

 

where 𝛾 is a weights decay parameter, which we set equals to 0.9. Then the weights update rule is: 

 

𝑊𝑡+1 = 𝑊𝑡 −
𝜂𝑔𝑡

√𝐸[𝑔2]𝑡 + 𝜖
,                                                           (3) 

 

where 𝜂 is a learning rate (we set it to 0.001) and epsilon is a small value of order 1E-10. 

The next step of the model selection is to choose the number and type of hidden layers and 

neurons per layer. We made several attempts combining such layers as convolutional [11], maximum 

pooling layer (MaxPool) [11] and GRU, trying to stack them in different ways varying numbers of 

hidden neurons in them.  

 The main reason for using the convolutional layer after the input is that it can produce a 

greater number of new meaningful features for RNN layer than original 18 input features only. Each 

convolutional filter acts as a feature detector, defined to respond maximally to specific temporal 

sequences within the timespan of the kernel. 

Since we have input data as vectors, we use one dimensional convolutions (Conv1D) and 

MaxPool. Each 1D kernel is actually 3 × 3 filter, which performs only in one dimension across 6 × 3 

matrix of features of particular track-candidate. As we applied padding, i.e., adding zeros across 

bound of features matrix, each 1D filter convolution gives a 6 × 1 vector. The convolutional layer 

outputs eventually a matrix of  6 × 𝑁_𝑓𝑖𝑙𝑡𝑒𝑟𝑠, where N_filters means the number of specified 

convolutional kernels. 

We found in our study that the best results of validation efficiency (fig. 4) was obtained by 

the combination of one convolutional layer and two GRU layers one after another. Besides, we 

applied 30% dropout [12] to each of GRU layers to prevent our model from getting overfitted and 

made the first GRU layer to extract features in bidirectional mode. 

Eventually, the final setup of our model has five hidden layers, except input and output: 

 32 Conv1D 3 × 3 filters; 

 bidirectional GRU with the output size equals to 64; 

 30% dropout layer; 

 forward GRU with 64 hidden neurons; 

 30% dropout layer. 

 

 
Figure 4. Validation efficiency value vs training epoch number for 6 different models of NN 
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4.3 Track-candidates classification results 

 

To evaluate our NN classifier we generated two data sets: (1) the small data set with of 80 

thousand track-candidates marked as real tracks and 80 thousand ghosts; (2) another one with 82 677 

real tracks and 695 887 false track-candidates labeled as ghosts. All data was created using BOX 

Monte-Carlo generator of BM@N ROOT library. We divided each of data sets in two parts: train and 

test, in the ratio of 70 to 30. 

Testing efficiency is the same for both samples, trained on small and big dataset, and equals 

to  97.5%. Trained RNN can process 6500 track-candidates in one second on the single Nvidia Tesla 

M60. All computations were performed on HybriLIT cluster [13]. 
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6. Conclusion 

Two-step tracking algorithm was proposed in frames of the BM@N data processing project 

intended to improve the tracking efficiency of the GEM microstrip detector on a new machine 

learning way. Preprocessing based on the greed KD-tree 2D search allows to extract possible track-

candidates on the first stage of tracking. Then deep recurrent network on the second stage classifies 

track-candidates in two groups: true tracks and ghosts. The main efforts were applied to find such 

types and structures of our NN model which should provide the highest tracking efficiency being at 

the same time suitable for parallelization. As the result, we choose the neural network with five 

layers: one convolutional, two layers of gated recurrent units alternating with two dropout layers.   

Test classification efficiency of this network is on the level of 97.5%. The trained network 

can process 6500 track-candidates in one second on the single Nvidia Tesla M60. 

We are going to speed up the preprocessing stage by using either parallel computations or 

proper neural network. 
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