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Abstract. This paper proposes a case-based reasoning methodology to 

automatically choose the most appropriate optimization algorithms and 

respective parameterizations to solve the problem of optimal resource scheduling 

in smart energy grids. The optimal resource scheduling is, however, a heavy 

computation problem, which deals with a large number of variables. Moreover, 

depending on the time horizon of this optimization, fast response times are 

usually required, which makes it impossible to apply traditional exact 

optimization methods. For this reason, the application of metaheuristic methods 

is the natural solution, providing near-optimal solutions in a much faster 

execution time. Choosing which optimization approaches to apply in each time 

is the focus of this work, considering the requirements for each problem and the 

information of previous executions. A case-based reasoning methodology is 

proposed, considering previous cases of execution of different optimization 

approaches for different problems. A fuzzy logic approach is used to adapt the 

solutions considering the balance between execution time and quality of results 

Keywords: Case Base Reasoning, Optimization Algorithm, Classification  

1 Introduction 

One of the main objectives of computational intelligence is to impart systems with 

the ability to reproduce human-like reasoning. Case-based Reasoning (CBR) is an 

Artificial Intelligence (AI) approach to learning and problem solving based on the past 

experience, which is usually stored in a case-base (CB) [1]. CBR also captures new 

knowledge, making it immediately available for solving new problems. AI techniques 

have excelled in problem-solving as a good solution over conventional techniques.  
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CBR has been used in many application domains, one of them being in solving 

power and energy systems. In [2] a CBR system for building energy prediction is 

proposed, with the aim at identifying operation issues and proposing better operating 

strategies. Simplified models based on CBR to predict the hourly electricity 

consumption of an institutional building are proposed in [3]. A CBR method providing 

online decision-making for optimization of coal-blend combustion was investigated in 

[4]. The estimation of the energy performance of new buildings using CBR is studied 

in [5]. These are relevant contributions that cover some problems in the energy domain. 

However, many urgently needed issues in this area are still not addressed, such as the 

energy resource operation and planning.  

The Optimal Resource Scheduling (ORS) problem, however, requires extremely 

heavy computational models, depending on the amount and diversity of the considered 

resources, and on the depth of network validation and analysis. For this reason 

deterministic approaches are, most of the times, inadequate [6]. Metaheuristics are 

proving to be the most suitable alternative, since they are able to reach near-optimal 

solutions in much faster execution times [7]. These algorithms do not guarantee the 

optimum global solution, but in turn the response time is much lower compared to the 

traditional exact algorithms that guarantee it. Many of these methods have also been 

applied in the resolution of the ORS problem [6, 8]. 

The question remains, however, on how to make most use of the whole set of 

available algorithms, depending on the needs and characteristics of each problem. 

Metaheuristic methods are able to provide approximate solutions in fast execution 

times, while deterministic approaches need larger times to compute, but are able to 

provide the optimal solution. Some work has already been made with the application 

of CBR systems to similar problems, namely in [9], which presents a study to try 

finding the ideal parameters to apply in evolutionary algorithms. In this work a CBR 

methodology is used to estimate the best parameter setting for maximizing the 

performance of evolutionary algorithms. However, in the present work authors propose, 

not only to adapt the parameterization of a certain algorithm to meet the requirements 

of execution time versus quality of results, but also to choose the most appropriate 

algorithm and respective parameterization taking into account the availability of several 

distinct algorithms of different natures. 

This paper thus proposes a CBR based approach that, given the problem 

characteristics and requirements, and considering an historic CB log of past executions 

of each algorithm to solve the energy resource optimization problem with different 

settings, suggests the most appropriate algorithm to apply and the respective 

parameterization. A problem-driven approach is applied in the retrieve and revise 

phases, considering the specificities of the different considered variables, and a fuzzy 

logic based approach [10, 11] is used in the revise phase to adapt the solutions to the 

requirements of the new problem, namely considering the balance between execution 

time and quality of results. 

After this introductory section, section 2 describes the CBR approach proposed in 

this paper. Section 3 presents the experimental findings of the application of the 

proposed approach to a historic CB log of previous executions done by the authors’ 

research team. Finally, section 4 presents the most relevant conclusions of this work. 
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2 Proposed CBR approach 

In this problem, each historic case contains the set of information that is presented 

in Table 1. The process for which the CBR is oriented refers to choosing the method to 

use in the problem characterized with different parameters expressed in Table 1. There 

are 3 types of classification: type A indicates the parameters used for assessing the 

similarity between case studies, type B indicates the parameters used to determine the 

quality of each algorithm, and type C are the output parameters. The ID refers to the 

identification of each case study. The ORS problem contains the type of objective 

function, where 1 means single-objective optimization problem and 2 corresponds to 

multi-objective optimization problem. The ORS function parameter refers to which is 

the ORS problem for the corresponding case study, as can assume 4 states: 1 means 

minimizing the cost, 2 is minimizing the cost and GHG emissions, 3 is minimizing the 

cost and demand difference, and 4 is minimizing the cost and voltage deviation. 

Table 1. Case structure 
Type of parameter Designation 

 ID 

A (Similarity) 

A1 
ORS problem 

ORS function 

A2 

Period 

Bus 

No. DG quadratic 

EVs 

Congestion power (kW) 

B (Quality) 
Objective function 

Execution time (s) 

C (Decision) 
Algorithm  

Parameters 

The Period refers to the number of periods of the ORS problem, e.g. 24 hourly 

periods. The Bus parameter corresponds to the number of buses that compose the 

distribution network of the case study. This parameter influences the execution time of 

the algorithms. The No. DG quadratic refers to the number of DG units using the 

quadratic function for their operation cost. The parameter EVs indicates the number of 

electrical vehicles used in each case study. The Congestion power refers to the average 

amount of congestion power of the case study. All these parameters are used by the 

CBR systems to choose the similar cases. The ORS problem and ORS function 

parameters have a distinct classification of A1, because they are firstly used to filter the 

cases that were solved for similar ORS problems, i.e. it is mutually exclusive: either a 

past case is of the same type as the case to be solved or not. On the other hand, all the 

other Similarity (type A) parameters, are classified as A2, which means that the 

similarity between past and current case can be calculated and represented by a value 

(in this case as a percentage of similarity for each of these parameters). 

The type B parameters are those that enable determining the quality of the results. 

The Objective function indicates the objective function result obtained by the 

algorithm. In the case of multi-objective problems, both objective functions are stored 

in this parameter. Execution time contains the time that the algorithm took to solve the 

ORS problem for the corresponding case study. These two parameters are used to select 

the best algorithms after the CBR approach obtains the similar historic cases by 

analyzing the type A parameters. 
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Once the quality of the solutions (type B) of the similar cases (type A) is assessed, a 

decision is made on which methods and respective parameterizations are the most 

adequate (using the type C parameters). The Algorithm parameter is the name of the 

algorithm used to solve the case study. Parameters contains the parameters used in each 

algorithm to solve the historic case, as can be seen in Table 1. These two last parameters 

are type C, because they contain the information on which algorithm and parameters 

were used to solve the problem. After describing the content of each parameter in the 

historic cases, the different phases of CBR system is describe in following steps. 

2.1 Retrieve  

Analyse the A1 parameters for selecting the cases containing the same type of 

problem (ORS problem) and type of function (ORS function). Each historic case is 

filtered according to the value of the ORS problem parameter, given by equation (1).  

𝐹𝐻𝐶
1 = {

𝐻𝐶𝑗  , 𝐻𝑗(𝐴1(𝑖)) = 𝐶𝑆(𝐴1(𝑖))

0 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

∀𝑗 ∈ {1,…𝑁𝐻𝐶}; 𝑖 = {𝑂𝑅𝑆 𝑝𝑟𝑜𝑏𝑙𝑒𝑚} 

(1) 

Where, FHC
1  contains the historic cases that were filtered by equation (1). The terms 

HC and CS correspond to the historic case and current case study, respectively. The 

index j refers to the ID of each historic case, while index i corresponds to ORS problem 

parameter. NHC refers to the total number of historic case studies in the database. 

Then, the historic cases filtered as (FHC
1 ) are also filtered if they have the same value 

for the ORS function, by equation (2). 

𝐹𝐻𝐶
2 = {

𝐹𝐻𝐶(𝑗)
1 , 𝐹𝐻𝐶(𝑗)

1 (𝐴1(𝑖)) = 𝐶𝑆(𝐴1(𝑖))

0 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∀𝑗 ∈ {1,… ,𝑁𝐻𝐶
𝐹1}; 𝑖 = {𝑂𝑅𝑆 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛} 

(2) 

Where, FHC
2  contains the historic cases that were filtered by equation (2), and index 

i corresponds to ORS function parameter. NHC
F1  corresponds to the total number of 

historic cases filtered in (1). The historic cases with ORS problem equal to 2 (multi-

objective problems) that have ORS function equal to 2, 3 or 4, i.e. minimizing the cost 

and other competitive objective, are all considered for a current case study with the 

same ORS problem and containing the same information for the ORS function 

parameter (2, 3 or 4). The idea with this condition is to separate problems with distinct 

objective function.  

Determine the cases that are similar to the current one through the use of A2 

parameters. For each historic case (FHC(j)
2 ) the similarity percentage of each A2 

parameter (PHC(j)
A2(i)

) is calculated by equation (3). 

𝑃𝐻𝐶(𝑗)
𝐴2(𝑖) =

{
 
 

 
 
𝐹𝐻𝐶(𝑗)
2 (𝐴2(𝑖))

𝐶𝑆(𝐴2𝑖)
, 𝐶𝑆(𝐴2(𝑖)) ≥ 𝐹𝐻𝐶(𝑗)

2 (𝐴2(𝑖))

𝐶𝑆(𝐴2𝑖)

𝐹𝐻𝐶(𝑗)
2 (𝐴2(𝑖))

, 𝐹𝐻𝐶(𝑗)
2 (𝐴2(𝑖)) ≥  𝐶𝑆(𝐴2(𝑖))

 

∀𝑗 ∈ {1,… ,𝑁𝐻𝐶
𝐹2}; ∀𝑖 ∈ {1, … ,𝑁𝐴2} 

(3) 
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where, NHC
F2  is equal to the number of historic cases filtered in previous step by equation 

(2), while NA2 corresponds to the total number of A2 parameters. The similarity 

percentage is calculated by dividing the value of each A2 parameter (A2(i)) between the 

historic and current cases (or vice versa - allowing avoiding similarities over than 

100%). Then, the average similarity is determined, which corresponds to the similarity 

percentage of each historic case, and is given by equation (4) 

𝑃𝐶𝐻𝐶(𝑗) =
1

𝑁𝐴2
×∑𝑃𝐻𝐶(𝑗)

𝐴2(𝑖)

𝑁𝐴2

𝑖=1

 

∀𝑗 ∈ {1,… ,𝑁𝐻𝐶
𝐹2}; ∀𝑖 ∈ {1, … ,𝑁𝐴2} 

(4) 

For a current case with parameters (e.g. Period, Bus or EVs) very close to a historic 

one, the similarity percentage of each historic case j (PHC(j)) will tend to 100%. Finally, 

filter the historic cases with a similarity percentage (PHC(j))  higher or equal to 75%. 

𝑆𝐶𝑗 = {
𝐹𝐻𝐶(𝑗)
2 , 𝑃𝐻𝐶(𝑗) ≥ 0.75

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∀𝑗 ∈ {1,… ,𝑁𝐻𝐶
𝐹2} 

(5) 

Where, set SCj contains all the similar cases. 

2.2 Reuse 

Extract the algorithms that are used in the similar historic cases and their quality 

parameters (type B of Table 1). The same algorithms with different parameters can be 

considered multiple times, if it is used in multiple similar cases. Steps 3, 4 and 5 are 

only applied if there is any similar historic case study, otherwise, the CBR systems will 

select all the algorithms that can solve the chosen ORS problem. 

First, filter the algorithms with different parameterization that were used to solve the 

similar cases, as described in equation (6). 

𝑀𝑒𝑡ℎ𝑜𝑑 = 𝑆𝐶𝑗(𝐶(𝑖)) 

∀𝑗 ∈ {1,… ,𝑁𝐻𝐶
𝐹2}; 𝑖 = {𝑀𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦; 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠} 

(6) 

Where, index i indicates the parameters of type C from Table 1. Second, the average 

execution time (B parameter) of all cases solved by the same algorithm and 

parameterization (equation (6)) is determined, because the same algorithm and 

parameterization might be used by multiple similar cases, which is given by (7). 

𝑇𝑖𝑚𝑒𝑀𝑒𝑡 =
1

𝑁𝑆𝐶
𝑀𝑒𝑡  ∑ 𝑆𝐶𝑗(𝐵(𝑖))

𝑗 ∈ 𝑆𝐶𝑀𝑒𝑡

 

∀ 𝑀𝑒𝑡 ∈ {1, … ,𝑁𝑀𝑒𝑡}; 𝑖 = {𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒} 

(7) 

Where, 𝑆𝐶Met refers to the set of all similar cases that were solved by the same 

algorithm and parameterization with index Met. NSC
Met contains the number of similar 

cases solved by the same algorithm and parameterization with index Met. NMet refers to 

the total number of algorithms with different parameterization in  (6). 

Finally, the average objective function (type B parameter) of all cases solved by the 

same algorithm and parameterization is also calculated using the previous equation (7). 

These values are stored in variable FunMet. Before applying this equation, the objective 

function values are normalized, because the cases can have objective function values 
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with different magnitudes. The number of considered historical cases is crucial, because 

with many cases this process can become heavy and slow, so a good historical cases 

selection (retain phase) is important. 

2.3 Revise 

Choose the most appropriate algorithms to solve the current case study through the 

use of a fuzzy method. The variables TimeMet and FunMet, determined in previous step, 

are used by the fuzzy method. First, create the membership function (𝜇𝑇𝑖𝑚𝑒) related to 

time (efficiency), which is represented in Fig. 1. 

 
Fig. 1. Membership function of efficiency  

The membership function has dynamic intervals to be adapted to every case study. 

The membership function starts at the minimum Time among all methods equation (7) , 

the second value of this function is the maximum time defined by the VPP in the input 

data, which is represented as MaxTime. The maximum Time occupies the other extreme 

of the membership function. The remaining values (y3, y4, y5, y6 and y7) are 

proportionally distributed between the MaxTime and the maximum time. The TimeMet 

equation (7) of each method Met is classified based on this membership function, which 

indicates how much far the Time is from the MaxTime (i.e. NEGATIVE, VERY 

SMALL, SMALL, MEDIUM, BIG or VERY BIG). 

Secondly, the membership function (μFun) related with objective function 

(effectiveness), is created, which is represented in Fig. 2. 

 
Fig. 2. Membership function of effectiveness 

This membership function also has dynamic intervals, as it starts with the minimum 

Fun among all methods, while the maximum Fun is placed in the other extreme of the 

function. Just like the previous one, the remaining values are proportionally distributed 

between the minimum and maximum Fun. The FunMet is be classified based on this 
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membership function, which also indicates how far the FunMet of each method Met is 

from the minimum Fun. 

Then, select the algorithms considering the 𝜇𝑇𝑖𝑚𝑒 and μFun classifications by 

equation (8). 

𝑀𝑒𝑡ℎ𝑜𝑑 = {

𝑀𝑒𝑡ℎ𝑜𝑑𝑀𝑒𝑡, 𝜇𝑀𝑒𝑡
𝑇𝑖𝑚𝑒 = 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸

𝑀𝑒𝑡ℎ𝑜𝑑𝑀𝑒𝑡 ,
𝜇𝑀𝑒𝑡
𝑇𝑖𝑚𝑒 = {𝑉𝐸𝑅𝑌 𝑆𝑀𝐴𝐿𝐿; 𝑆𝑀𝐴𝐿𝐿}

𝜇𝑀𝑒𝑡
𝐹𝑢𝑛 = {𝑉𝐸𝑅𝑌 𝑆𝑀𝐴𝐿𝐿; 𝑆𝑀𝐴𝐿𝐿}

 

∀ 𝑀𝑒𝑡 ∈ {1, … ,𝑁𝑀𝑒𝑡} 

(8) 

The methods with 𝜇𝑇𝑖𝑚𝑒 equal to NEGATIVE, which means an execution time 

below the MaxTime, are accepted to solve the current case, without considering their 

effectiveness classification (μFun). The other methods with a time slightly higher than 

MaxTime, which have VERY SMALL and SMALL efficiency classification (𝜇𝑇𝑖𝑚𝑒), 

are accepted if they also have an objective function close to the minimum, which are 

VERY SMALL and SMALL classifications for the effectiveness membership function 

(μFun). All methods that are classified as bigger are automatically excluded, since their 

execution time is too big to useful for the considered problem or the results quality is 

too low (big difference from the best methods).  

Finally, the fuzzy confusion matrix, which joins the two membership functions 

(𝜇𝑇𝑖𝑚𝑒 and μFun), is applied to take actions regarding the methods with VERY SMALL 

and SMALL classifications. Basically, these methods are changed in terms of their 

parameterization to reach a lower execution. The amount of these changes will be given 

by the fuzzy confusion matrix, which can be consulted in the fuzzy confusion matrix 

presented in Table 2. This enables to consider methods that would be excluded because 

they are above MaxTime, but have good objective function results.  

Table 2. Fuzzy confusion matrix for small and very small classifications of 

effectiveness and efficiency 
Efficiency Classification Effectiveness Classification Action to take 

VERY SMALL 
VERY SMALL Very small reduction 

SMALL Small reduction 

SMALL 
VERY SMALL Small reduction 

SMALL Big reduction 

2.4 Retain 

Evaluate the possibility of storing the results of the current case study in the database 

of historic cases. Determine the similarity of the current case study (PCS) by applying 

the equations (4) and (5), include the current case in the database of historic cases, if its 

similarity percentage is lower or equal to 95%, defined as equation (9). 

𝐻𝐶 = {
𝐶𝑆, 𝑃𝐶𝑆 ≤ 0.95
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (9) 

A current case with a percentage higher than 95% is not adding new value to the 

historic cases, since it is only bringing useless information to the processed. 
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3 Results 

This section presents the experimental findings concerning the application of the 

proposed methodology to a new case. 21 previous cases are considered in the CB, which 

refer to different executions of several algorithms with different parameterizations, to 

different variations of the ORS problem. The new case is defined by the next 

conditions: {ID=_; ORS problem=1; ORS function=1; Period=24; Bus=37; No DG 

quadratic= 3; EV’s=2000 and Congestion power= 730}, B and C parameters present in 

Table 1 will be find by CBR methodology. 

To carry out the CBR process, the new case must contain all elements of group A 

(Similarity). Table 3 shows the results of the different methods selected by the 

equations corresponding to the group of similarities. Please refer to [8] for a detailed 

description of the optimization methods shown in the last column of Table 3. 

The results of equations (1), (2), (4) and (5) are related to the retrieve process, and 

equation (6) is already the initial phase of the reuse process, where similar cases are 

identified. As can be seen, the cases filtered by the ORS problem and ORS function are 

the same (20 cases). By applying the calculation of the total similarity (equation (5)) 4 

cases are excluded, being 16 cases considered similar to the new case.  

Table 3. Results similarity  
Equation (1) - case ID Equation (2) - case ID Equation (4) Equation (5) Equation (6) 

1 1 0,4842822 X - 

2 2 0,2817593 X - 

4 4 0,9922183  RSA 

5 5 0,9953471  HSA 

6 6 0,9956742  ERS2A 

7 7 0,995853  PERS2A 

8 8 0,9958794  SADT 

9 9 0,9942107  GA 

10 10 0,9928798  PSO 

11 11 0,9953506  PERSGA 

12 12 0,9953364  PERSPSO 

13 13 0,9956334  GADT 

14 14 0,995663  PSODT 

15 15 0,9960788  MINLP 

16 16 0,9613657  PERS2A 

17 17 0,9615992  SADT 

18 18 NaN X - 

19 19 0,9988149  PERS2A 

20 20 0,9998657  SADT 

21 21 NaN X - 

Table 4 presents the efficiency classification, as result of the efficiency fuzzy 

variable, and the effectiveness classification of the application of each of the selected 

methods to the selected cases. In Table 4, the 16 similar cases are filtered by method, 

and may have different configurations within the same method. In this case, the average 

of these configurations (execution time and objective function) is made. In Table 4, 12 

methods are present which means that there are repeated methods. Being that PERS2A 
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and SADT repeated three times. The values are sorted by execution time value, in an 

ascending order. The fuzzy results related to the value of the objective function, i.e. the 

effectiveness of each method and respective parametrization in solving the previous 

problem identified as similar to the new case. Table 4 also presents the decision results, 

which are a direct output from the confusion matrix that combines the fuzzy results for 

efficiency and effectiveness of each method. 

Table 4. Efficiency and effectiveness results 

Method 
Equation 

(7) Time (s) 

Equation (7) 

Objective 

function 

Confusion Matrix Type of 

modification 
Efficiency Effectiveness 

ERS2A 54,1 23944,94 NEG.* - 

RSA 174,28 24375,45 NEG.* - 

PERS2A 189,43 25415,76 NEG.* - 

SADT 393,4367 25446,97 NEG.* - 

PERSPSO 482,88 23986,35 
VERY 

SMALL 
VERY SMALL 

Very small 

reduction 

PSODT 544,11 23946,32 
VERY 

SMALL 
VERY SMALL 

Very small 

reduction 

PSO 550,91 24291,86 
VERY 

SMALL 
SMALL Small reduction 

HSA 598,35 23985,04 
VERY 

SMALL 
VERY SMALL 

Very small 

reduction 

PERSGA 635,67 23984,61 
VERY 

SMALL 
VERY SMALL 

Very small 

reduction 

GADT 673,47 23949,94 
VERY 

SMALL 
VERY SMALL 

Very small 

reduction 

GA 1731,54 24125,38 - - Excluded 

MINLP 94941,85 23895,53 - - Excluded 

*Equation (8)  

In Table 4 are expressed the decision results obtained by the CBR system. As it can 

be seen, if the classification in the efficiency process is Negative, the method will be 

accepted without any change. On the other hand, if the classification is any other, the 

value of the objective function is analyzed, the classifications medium, big and very 

big, are excluded at the beginning. The confusion matrix is only executed for the 

methods classified as very small and small. The result of the confusion matrix gives the 

type of modification that is required to execute so that the given method can obtain an 

execution time value lower than the one defined as MaxTime by 400 seconds.  

By applying the rules of the fuzzy processes, the possible methods to solve the 

problems went from 12 to 10, and the MINLP and GA were excluded. The ERS2A, 

RSA, PERS2A and SADT methods were accepted without any change. The remaining 

methods are subjected to a certain type of change to be performed, which regards the 

adaptation of the method’s parameterization, e.g. using a smaller number of iterations 

or a smaller number of particles in the PSO to achieve faster results.  

4 Conclusions 

This paper presented a CBR methodology to support the choice of the methods to 

use in solving the energy ORS problem. The proposed method includes a fuzzy based 

process to determine the changes in parameterization that should be applied to each 

method that is considered promising to solve a new case with specific characteristics. 
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It is clear that this method brings advantages when compared to a manual process, 

because choosing manually hardens the effectiveness of the choice, and the time spent, 

e.g. in the choice of parameters. 

The performance of CBR systems is highly correlated with the number of cases that 

it imbues. Even so, the presented results suggest as final result a considerable number 

of methods to solve the problem, all of which with expected small execution times and 

good quality of results for the envisaged problem. This means that the presented 

methodology was effective in the selection and classification of the methods. The 

modifications to be performed in the methods, as result from the fuzzy process, enlarge 

the scope of possible methods to be applied, as rather than excluding such methods for 

being just a bit slower or presenting a bit worst quality of results than other methods, it 

still considers the most promising ones as possible solutions, subject to a degree of 

changes that would make them suitable to solve the problem as well.  

As future work, it is intended to develop a method for deciding which parameters to 

modify to obtain the given value of maximum execution time, according to the results 

of the fuzzy process. It is also proposed to apply decision trees in the process of retrieve. 

Finally, the process of reviewing can be enhanced with the help of an expert, in order 

to build an expert system to perform the revision of the changed parameters. 
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