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Abstract

Interest in algorithms for community de-
tection in networked systems has in-
creased over the last decade, mostly mo-
tivated by a search for scalable solutions
capable of handling large-scale networks.
Multilevel approaches provide a potential
solution to scalability, as they reduce the
cost of a community detection algorithm
by applying it to a coarsened version of
the original network. The small-scale so-
lution thus obtained is then projected back
to the original large-scale model to obtain
the desired solution. However, standard
multilevel methods are not directly appli-
cable to bipartite network models and the
literature lacks studies on multilevel opti-
mization applied to such networks. This
article addresses this gap and introduces
a novel multilevel method based on one-
mode projection that allows executing tra-
ditional multilevel methods in bipartite
network models. The approach has been
validated with an algorithm that solves the
Barber’s modularity problem. It attained
improved runtime performance, whilst so-
lution accuracy is shown to be statistically
equivalent to that of the standard method.

1 Introduction

Complex networks are relational structures that
represent many real-world systems composed by
a large number of highly interconnected dynam-
ical units. Many such systems exhibit a natural
bipartite (or two-layer) structure, in which the set
of units (known as vertices) is split into two dis-
joint subsets (layers) and connections (known as
edges) are established between units placed in dif-
ferent layers. Document-word (Rossi et al., 2016),

protein-ligand (Jeong et al., 2000) and actor-movie
(Watts and Strogatz, 1998) networks are a few ex-
amples of real-world bipartite networks.

Community structures, defined as groups of ver-
tices densely connected to each other within a
group, but sparsely connected to other groups,
are an important and frequent property of many
such networks. Vertices that belong to the same
community usually share common properties and
play similar roles in a network system. Therefore,
the identification of a community structure in net-
worked systems contributes to a better understand-
ing of their topological structure and dynamical
processes (Fortunato, 2010). For instance, in bi-
ological domains, communities in a protein net-
work typically correspond to proteins that share a
single specific function (Mahmoud et al., 2014).
Furthermore, the increasing interest in identify-
ing community structures in bipartite networks
(Dormann and Strauss, 2013; Thébault, 2013; Lar-
remore et al., 2014; Dormann and Strauss, 2014;
Alzahrani and Horadam, 2015; Beckett, 2016) is a
strong indicator that is a promising research topic.

Community detection algorithms aim at subdi-
viding a set of vertices into k communities for
minimizing the number of edges connecting ver-
tices placed in different communities. This is
a hard combinatorial optimization problem, in
which the goal is to optimize a given cost function,
such as modularity (Girvan and Newman, 2002).
As the number of possible network states can be
exponential, it becomes unfeasible to search for an
optimal solution on large-scale networks.

To overcome this problem, researchers have re-
sorted to multilevel approaches, in which: i. an
original network is continuously reduced through
a collapsing of vertices and edges (coarsening
phase); ii. an initial community structure is ob-
tained on the coarsest network (solution phase);
and iii. the initial solution is successively pro-
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jected back over the inverse sequence of coars-
ened networks, until the original network (projec-
tion and refinement phase).

Many multilevel community detection algo-
rithms have been developed for handling unipartite
or one-mode networks. Some studies introduced
multilevel community detection methods for spe-
cific types of networks; for instance, Abou-Rjeili
and Karypis (Abou-Rjeili and Karypis, 2006) con-
sidered networks that exhibit a power-law de-
gree distribution and Valejo et al. (Valejo et al.,
2014c,b,a) explored properties of social networks,
as high transitivity and assortativity. Other con-
tributions focused on the application of multilevel
optimization for improving the modularity mea-
sure (Djidjev, 2008; Schuetz and Caflisch, 2008;
Ye et al., 2008; Noack and Rotta, 2009; Rotta and
Noack, 2011; Djidjev and Onus, 2013; Lasalle and
Karypis, 2015). Furthermore, many authors in-
vestigated parallel paradigms to improve the per-
formance of coarsening and refinement phases
(Baños et al., 2004; Banos et al., 2004; Trifunovic
and Knottenbelt, 2004b,a; Erciye et al., 2005;
Schweitz and Agrawal, 2007; Walshaw and Cross,
2007; LaSalle and Karypis, 2013; Lasalle and
Karypis, 2015).

However, the above-mentioned approaches are
not directly applicable to bipartite networks, since
standard coarsening methods rely on collapsing
pairs of connected vertices, assuming that all ver-
tices are of the same type. In bipartite networks,
vertices in different layers are not connected and
should not be collapsed. Coarsening bipartite net-
works requires collapsing pairs that belong to the
same layer (represent entities of the same type)
and are not connected by edges.

This article addresses this gap and introduces
a novel one-mode projection-based multilevel
method that enables applying standard coarsening
algorithms to bipartite networks. Tests conducted
on a large set of synthetic network models have
shown that it can be combined with a community
detection method, yielding good speedup with no
significant loss in solution quality.

The remainder of the paper is organized as
follows: Section 2 reviews some basic concepts
on networks and provides a brief overview of
standard multilevel approaches; Section 3 intro-
duces the proposed multilevel formulation for bi-
partite networks and its implementation; Section 4
presents results from an empirical study on a large

synthetic test suite; finally, Section 5 summarizes
the results and discusses potential applications and
future work.

2 Fundamentals

This section describes the terminology and funda-
mental concepts required to understand the pro-
posed solution.

2.1 Basic definitions
A unipartite network is given by GpV,E,!q,
where V “ tv1, v2, ..., vnu is the set of
vertices, E “ te1, e2, ..., eku is the set of
edges connecting vertices, such that ei “
pv, uq “ tpu, vq “ pv, uq | u, v P V u and ! “
tw1, w2, ..., wku is the set of weights, so that each
wi P R is associated with a corresponding edge ei.
Two vertices are said to be neighbors if they are
connected by at least one edge.

A bipartite network is given by GpV,E,!q,
V is partitioned into two sets V1 and V2 so that
V1 X V2 “ H, V1 “ tu1, u2, . . . , unu is a set
(or layer) of vertices, V2 “ tv1, v2, . . . , vmu is an-
other set of vertices and E “ te1, e2, ..., eku is the
set of edges connecting vertices from different lay-
ers, i.e. for all pu, vq P E, u P V1 and v P V2 and
E Ñ V1 x V2. Similarly, ! “ tw1, w2, ..., wku is
the set of edge weights. Figure 1 illustrates a bi-
partite network.

Figure 1: A bipartite network.

Bipartite networks can be transformed into uni-
partite networks through one-mode projections
(Newman, 2001; Opsahl, 2010; Padrón et al.,
2011). Application of a one-mode projection to
a bipartite network generates two unipartite net-
works, one for each layer, G1 and G2, so that
vertices with common neighbors are connected by
edges in their respective projection. Figure 2 illus-
trates the result of applying a one-mode projection
to the simple bipartite network shown in Figure 1.
Figures 2(a) and 2(b) show, respectively, the one-
mode projections of V (i.e., G1) and U (i.e., G2).

If two vertices share more than a single common
neighbor, their connection in the unipartite projec-
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Figure 2: Unipartite networks G1 and G2 resulting
from a one-mode projection of the bipartite net-
work in Figure 1.

tion should reflect this topology. In weighted uni-
partite projections, the number of common neigh-
bors between two vertices is assigned as their edge
weight, as illustrated in Figure 3 for a particular
pair of projected vertices.

1 2 3

4 5

4

5

3

Figure 3: Example of a weighted projection: ver-
tices 4 and 5 are connected by an edge of weight
3, as they share three common neighbors.

2.2 Multilevel optimization
Multilevel optimization reduces the number of op-
erations required to solve a combinatorial prob-
lem. Common applications in the literature in-
clude partitioning and community detection algo-
rithms in networks. The rationale behind the mul-
tilevel strategy is to execute a complex optimiza-
tion algorithm, that can not be executed on a very
large network, on a reduced version of this net-
work which requires a much smaller number of
operations. The results obtained in the smaller net-
work are then projected back to get the solution
relative to the original network.

Let us consider a unipartite network
G0pV0, E0,!0q and assume its size (in terms
of edges and vertices) prevents the execution of a
target algorithm. A multilevel approach could be
applied as follows (Karypis and Kumar, 1998):

Coarsening phase. Network G0 is transformed
into a sequence of smaller networks
G1, G2, ..., Gm. The size of the vertex set
is reduced in each subsequent network, i.e.,
|V0| ° |V1| ° |V2| ° ... ° |Vm|.

Initial solution phase. The target algorithm is
applied to network Gm. As |Vm| is suffi-
ciently small, the target algorithm can be run
in feasible time. In the present study, the tar-
get is a community detection algorithm.

Uncoarsening phase. The solution obtained
in the coarsest network Gm is projected
back, through the intermediate levels
Gm´1, Gm´2, ¨ ¨ ¨ , G1, until it is obtained in
the network G0.

The coarsening phase is an iterative process that
constructs a sequence of reduced versions of the
initial network G0. The vertices of a network Gi

are collapsed into super-vertices to obtain a net-
work Gi`1. Edges incident to the original vertices
are joined to obtain the edges incident to a super-
vertex. The coarsening process is split into two
phases, namely matching and coarsening.

In the matching phase, edges, or vertex pairs,
are selected to collapse. Once an edge in Gi has
been collapsed, its incident vertices are joined into
a super-vertex. Any vertex from Gi with no in-
cident edge selected is inherited by Gi`1. In the
present study, we employed two matching meth-
ods introduced by Karypis and Kumar (1998),
namely:

Random Matching (RM). In this approach ver-
tices are visited in a random order. If a ver-
tex v has not been matched yet, one of its
unmatched neighbors is selected. If such a
vertex u exists, the pair pv, uq is included
in the matching set, otherwise v remains un-
matched. Although it may yield poor results,
RM has complexity Op|E|q.

Heavy edge matching (HEM). This approach
minimizes the edge-cut by selecting a max-
imal matching formed by the edges with
heavier weights. Similarly to RM, vertices
are also visited in random order. However,
unlike RM, vertices v and u are matched if
edge pv, uq has maximum weight over all
valid edges incident to v. Although HEM
does not guarantee that the matching ob-
tained has maximum weight, it yields better
results than RM with equivalent asymptotic
complexity.

Next, the coarsening phase starts and a coarser
network Gi`1 can be created directly from the
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matching by joining each pair of matched vertices
into a single super-vertex (sV ). Edges incident to
sV , called super-edges, are obtained by joining the
edges incident to vertices tu, vu P Vi. The weight
of the resulting super-edge is given by the sum of
the weights of all edges incident to tu, vu P Vi.

The target algorithm (community detection, in
our case) is then evaluated in the coarsest network
Gm to obtain an initial solution. As |VM | † |V0|,
the algorithm converges faster and generates an
initial solution in feasible time.

In uncoarsening phase, the initial solution is
successively projected back to G0. At each level,
each super-vertex sv “ tu, vu P Vi`1 is expanded
to its original vertices in Vi, i.e. u and v, and the
solution is projected through the intermediate lev-
els Gm´1, Gm´2, ..., G0. For each decomposed
sv P Vi`, its original vertices tu, vu P Vi are
assigned to the same community of their parent
sv P Gi. Figure 4 illustrates this process: super-
vertex sv “ t4, 5u (Figure 4(a)) is expanded to its
original vertices 4 and 5, which are assigned to the
same community of sv.
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Figure 4: Super-vertex sv formed by vertices 4 and
5 is expanded and both vertices are assigned to the
same community of sv.

3 Proposal
This section introduces a multilevel community
detection method that handles bipartite networks.
Standard methods do not consider vertices of dif-
ferent types, whereas in bipartite networks, lay-
ers usually represent different types of entities that
should be handled independently. Therefore, typi-
cal coarsening methods, such as RM or HEM, are
not directly applicable. Nonetheless, they can be
applied to a projection of G, P “ GV , GU , since
in a one-mode projection all vertices are of the
same type. Weighted one-mode projection meth-
ods enable applying any standard coarsening algo-
rithm to bipartite networks after a transformation
process. We rely on this concept to introduce a
multilevel community detection method applica-
ble to bipartite networks.

Algorithm 3.1 summarizes the implementa-
tion of the proposed one-mode projection-based
multilevel community detection (OPM). It com-
prises the phases of coarsening (lines 1-6), com-
munity detection (line 7) and uncoarsening (lines
8-10). The inputs are the initial bipartite network
G “ pV,E,�,!q, a maximal number of levels
L “ tLi | Li P r0, ns Ä Zu 6 |L| “ 2 and a
reduction factor for each layer rf “ trfi | rfi P
p0, 0.5s Ä Ru 6 |rf | “ 2.

The bipartite network initially undergoes a one-
mode projection transformation, being split into
two unipartite networks G1 and G2. The coarsen-
ing process is then applied to each unipartite net-
work (line 3), level by level, until each one has
been reduced by the desired factor. The process
comprises a matching step (line 4) and a coarsen-
ing step (line 5). In this study, we have adopted the
aforementioned coarsening and matching methods
HEM and RM (Karypis and Kumar, 1998).

An initial community structure Sl is then ob-
tained on the coarsest bipartite network Gl, at
level l (line 7). As Gl and Sl are, respectively,
the input and output (Sl representing the commu-
nity structure of network Gl), different algorithms
for community detection can be considered. De-
pending on the settings of the coarsening phase,
the coarsest bipartite network can be very small,
so that computationally expensive algorithms can
be employed with limited impact on overall per-
formance. Finally, in the subsequent uncoarsen-
ing phase (lines 8-10), solution Sl is projected
back to G0 through the space of intermediate solu-
tions Sl´1, Sl´2, ..., S1, S0 (line 9). Following the
guidelines proposed by Karypis and Kumar (1998)
for the uncoarsening process, solution Sl is con-
structed from Sl`1 simply by assigning vertices
tu, vu P Vl to the same community of their par-
ent super-vertex sV P Vl`1.

4 Experimental Results and Analysis

In order to evaluate the proposed solution, we
implemented OPM and investigated whether it
could yield solutions of quality statistically equiv-
alent to that of a standard community detection ap-
proach, whilst increasing its scalability to larger
networks.

Beckett (Beckett, 2016) recently introduced the
LPAwb` algorithm, which maximizes Barber’s
modularity through label propagation in weighted
bipartite networks and has competitive perfor-
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Algorithm 3.1: OPM: One-mode projection-based multilevel community detection
Input:

bipartite network : G “ pV,E,�,!q
maximal number of levels : array L “ tLi | Li P r0, ns Ä Zu 6 |L| “ 2
reduction factor for each layer : array rf “ trfi | rfi P p0, 0.5s Ä Ru 6 |rf| “ 2

Output:
solution S

1 for i P t1, 2u do
2 while (l § Li) or (layer is as small as desired) do
3 G

i
l – projection(Gl, i);

4 M – matching(G

i
l , rfi);

5 G

i
l`1 – coarsening(G

i
l , M);

6 increase l;

7 Sl – community detection in Gl;
8 while l ‰ 0 do
9 Sl´1 – uncoarsening(Gl´1, Gl, Sl);

10 decrease l;

Return: S

mance relative to the state-of-the-art methods for
community detection. However, it is a compu-
tationally costly algorithm prohibitive for large-
scale networks.

We employed our proposed framework to create
a multilevel implementation of LPAwb` (from
now on identified as the OPM algorithm) that
adopts HEM or RM as the coarsening methods,
i.e. OPMhem and OPMrm, respectively. Both
were executed with parameters rf “ 0.5 and L “
r1, 2, 3s in a set of 15 synthetic weighted bipartite
networks, identified as R1-R15. The synthetic net-
works were obtained by a community model de-
scribed by (Beckett, 2016) that creates networks
with unbalanced and randomly positioned com-
munity structures and different community sizes.
We generated networks of sizes n “ |V1 ` V2|
within the range r1, 000, 15, 000s at increments of
1, 000, with the number of communities set to
0.01 ˚ n. Edge weights were randomly assigned
from a skewed negative binomial distribution and
noise was introduced in the connection patterns by
rewiring a percentage of edges between and within
the communities.

The performance was measured with the nor-
malized mutual information (NMI), which com-
pares a solution found by a particular algorithm
with a reference solution (Labatut, 2013), and the
execution times were also measured. Experiments
were conducted in a 8-core Linux machine with

3.7 GHz of CPU and 64 GB RAM. The algorithm
was implemented in Python with igraph library1.
We report average values obtained from 30 execu-
tions for algorithms that rely on random strategies.

Table 1 shows the accuracy values measured by
NMI on the 15 synthetic networks. The highest
values are shown in bold and values equal to or
higher than those of the baseline solution are high-
lighted with a gray background. The best per-
formances were achieved by OPMhem with one
level of coarsening (L “ 1) on 11 out of the 15
networks. The baseline community detection al-
gorithm LPAwb` yielded the best performance
in 3 networks, whereas the worst results were ob-
tained with OPMrm for (L “ 1). In one of on the
15 synthetic networks, OPMhem and LPAwb`
were equivalent.

Indeed, the random strategy RM yields very
poor accuracies, which renders its application un-
feasible in real contexts. However, the greedy
strategy HEM yielded accuracy values similar to
those of LPAwb`. Furthermore, limited coarsen-
ing levels (mainly L “ 1) yielded higher accuracy
values, whereas accuracy decreases as the coars-
ening level (L “ 3) increases. For L “ 3 the
extensive collapsing of vertices tends to blur the
boundaries between adjacent communities. The
effect of parameter L depends on network size, i.e.

1available from http://igraph.org/python/
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Algorithm Dataset

Name LevelsrLs R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

LPAwb` 0 0.918 0.926 0.983 0.972 0.964 0.99 0.984 0.999 0.999 0.985 0.989 0.996 0.995 0.987 0.992

OPMhem 1 0.991 0.987 0.985 0.984 0.991 0.99 0.985 0.992 0.991 0.995 0.99 0.991 0.992 0.991 0.993

OPMhem 2 0.973 0.985 0.981 0.982 0.989 0.987 0.989 0.989 0.988 0.989 0.989 0.988 0.989 0.990 0.991

OPMhem 3 0.873 0.952 0.960 0.966 0.963 0.971 0.972 0.975 0.972 0.975 0.973 0.974 0.975 0.976 0.976

OPMrm 1 0.312 0.358 0.409 0.412 0.407 0.414 0.442 0.462 0.448 0.462 0.468 0.483 0.483 0.502 0.498

OPMrm 2 0.146 0.169 0.147 0.135 0.158 0.171 0.157 0.162 0.150 0.150 0.150 0.161 0.148 0.152 0.161

OPMrm 3 0.1 0.119 0.119 0.098 0.105 0.105 0.090 0.079 0.082 0.069 0.078 0.099 0.084 0.082 0.072

Table 1: NMI accuracy values of the OPM variants and baseline LPAwb` in 15 synthetic networks.

Algorithm Dataset
sum

Name LevelsrLs R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

LPAwb` 0 14 96 308 904 2782 2800 7146 5925 9197 56119 66729 75990 97392 224032 302442 851876
OPMhem 1 3 14 43 127 326 540 973 1933 2989 6983 9628 13695 18473 22875 36439 115041
OPMhem 2 2 6 21 51 106 139 296 396 854 2215 3112 3776 5442 6826 10538 33780
OPMhem 3 1 6 13 33 60 55 80 128 264 818 1604 1889 2351 2863 3769 13934

OPMrm 1 8 57 124 220 419 476 780 1484 1991 5660 9619 13127 11291 17691 19202 82149
OPMrm 2 4 25 40 58 103 150 146 179 345 1005 1626 1873 1902 1950 2041 11447
OPMrm 3 3 16 28 33 49 67 64 83 194 712 754 849 870 890 903 5515

sum 35 220 577 1426 3845 4227 9485 10128 15834 73512 93072 111199 137721 277127 375334 1113742

Table 2: Absolute runtime (seconds) of OPM implementations and baseline LPAwb` in each network.

differences in algorithm accuracy are likely to de-
crease as network sizes increase, which suggests
that higher values of L might be adopted when
handling larger networks.

A Nemenyi post-hoc test (Demšar, 2006) was
applied to the results in Table 1 to detect statisti-
cal differences in the performances of the different
algorithms. The results are shown in Figure 5 for
(a) L “ 1, (b) L “ 2 and (c) L “ 3. The critical
difference (CD) is indicated at the top of each di-
agram and the methods’ average ranks are placed
on the horizontal axes (better ranked on the left).
A black line connecting algorithms indicates no
significant difference has been detected between
them. The critical value of F-statistics with 2 and
28 degrees of freedom and at 90% is 2.50 for all
diagrams.

When L “ 1 (Figure 5(a)), OPMhem was
ranked best, followed by LPAwb` and OPMrm.
Furthermore, no statistically significant difference
was observed between OPMhem and LPAwb`.
For L “ 2 (Figure 5(b)), OPMhem and LPAwb`
were ranked first, and no statistically significant
difference was observed between them. Finally,
for L “ 3 (Figure 5(c)) LPAwb` was ranked
first, with a statistically significant difference be-

tween OPMhem and OPMrm.

(a) L “ 1

(b) L “ 2

(c) L “ 3

Figure 5: Nemenyi post-hoc test applied to the re-
sults from LPAwb` and two OPM variants.

The scalability of OPM was also assessed con-
sidering its performance on each individual net-
work. Table 2 shows the absolute execution times
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(in seconds) of the algorithm in each network - val-
ues refer to average times relative to 30 executions.

The longest execution time of LPAwb` was
302,442 seconds (time to process the largest net-
work, R15) and the shortest was 14 seconds (time
to process the smallest one, R1). The most expen-
sive OPMhem (L “ 1) consumed 36,409 seconds
in R15 and 3 seconds in R1. Therefore, OPMhem

run 8.3 to 4.6 times faster than LAPwb`, relative
to their maximum and minimum execution times,
respectively. The maximum and minimum times
of the least expensive OPMrm (L “ 3) were
903 seconds and 3 seconds, respectively. There-
fore, OPMrm runs 335 to 14 times faster than
LAPwb`.

5 Conclusions

This article has introduced an approach that en-
ables using the multilevel paradigm for scaling a
community detection algorithm to handle large-
scale bipartite networks. While previous multi-
level methods consider only unipartite networks,
our one-mode projection-based multilevel method
enables handling bipartite networks with standard
coarsening algorithms.

Tests on a large suite of synthetic networks have
shown that this solution yields results with ac-
curacy comparable to that of standard methods,
demanding considerably shorter execution times.
We tested two popular matching strategies for
coarsening, namely HEM and RM. RM yielded
expressive speedups or even improved the asymp-
totic convergence, but with poor results regarding
accuracy, which prevents its practical application.
However, HEM achieved rather good approxima-
tion in terms of accuracy and acceptable speedups,
e.g., execution times over 8 times shorter as com-
pared to the standard method.

Some issues that deserve further investigation
include: using refinement strategies in the un-
coarsening process and parallel or distributed
paradigms to further increase scalability, as well
as further exploring how the choice of rf , the
reduction factor parameter, impacts accuracy and
speedups.
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