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Abstract. Autonomous systems are a promising alternative for effectively 
executing agricultural field management strategies. Unmanned Ground 
Vehicles perform farming activities on custom agricultural fields, using real-
time navigation. The aim of this study is to provide a software tool for 
optimizing accuracy and efficiency in precision farming activities, hence 
leading to improved farming output, while dynamically addressing operational 
and tactical level uncertainties. This paper contributes to the operations 
research field by allowing the application of simulated results direct to the 
guidance of a physical vehicle. Unlike existing sophisticated tools, the 
developed navigation mechanism is user-friendly and highly customizable at 
outdoor navigation.  
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1   Introduction 

The paper focuses on the real-time scheduling and control of Unmanned Ground 
Vehicles (UGVs) designed to perform precision farming activities on custom 
agricultural fields, under the occurrence of any geomorphological and environmental 
uncertainties. More specifically, the aim of this study is to provide a software tool for 
the real-time navigation of UGVs in agricultural fields to optimize accuracy and 
efficiency in precision farming activities, hence leading to improved farming output, 
while dynamically addressing operational and tactical level uncertainties. 

Research that motivates the integration of the UGV's ramifications onto the SC 
ecosystem in general is not sufficient (Bechtsis et al., 2017) and this is also projected 
to the agricultural sector. In traditional agriculture, farmers’ lack of accuracy and 
lack of proper feedback leads to: (i) loss of situation awareness (Walker et al., 2008), 
(ii) vigilance decrement (Finomore et al., 2009), (iii) complacency (Kaber and 
Endsley, 2004), and (iv) skill degradation and human errors (Billings, 1996). In this 
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regard, semi- or fully-autonomous vehicles that are controlled by computers (Ho et 
al., 2012) are being used to address such difficulties and increase agricultural 
operations efficiency (Zheng et al., 2016). More specifically, autonomous systems 
are a promising alternative for effectively executing agricultural field management 
strategies and agricultural operations considering that UGVs: (i) provide business 
intelligence with real-time feedback on field’s parameters, (ii) can better handle 
throughput volatility, (iii) can optimally operate autonomously on a 24/7 shift with 
reliable performance, (iv) save energy compared to conventional man-driven farming 
vehicles, (v) promote the smart agriculture vision, and (vi) increase safety at the field 
level. 

Despite the evident benefits of UGVs in agriculture, the application of 
autonomous mechanization in the sector is challenged by inherent factors including 
both field geometry and morphology particularities (Bochtis and Sørensen, 2009), 
and environmental uncertainties like volatile weather conditions and encounters with 
random objects and obstacles (Bochtis et al., 2014). This calls for automated systems 
with scheduling and control intelligence capabilities that evaluate alternative 
navigation decisions based on real-time feedback including field’s and crops’ states 
assessed through real-time data (Wulfsohn et al., 2012). However, existing systems 
have not been able to overcome problems such as low resolution maps, low 
positioning accuracy, low grade process automation and incorrect or incomplete 
measurements. 

The aim of this paper is to present an engineering-driven system for the 
scheduling and control of agricultural UGVs with the objective of executing 
precision farming activities in an optimal manner, form an intra-logistics field 
operations perspective. The research principle relies on the basic hypothesis that an 
agricultural field presents obstacles (both random and static) that a UGV should 
detect and recalculate an optimal pathway to perform its farming tasks. A key 
theoretical contribution in the existing body of literature is the proposition of a UGV 
software tool for the real-time field recognition that guides the vehicle to execute its 
precision farming activities whilst allowing for a better usage of resources and 
potentially a better harvest. 

The remainder of the manuscript is organized as follows. In Section 2 we provide 
the system description, along with the required input and operational data, and the 
field monitoring process. In Section 3, we discuss the key findings of the simulation 
tool in a conceptual field. Finally, in Section 4 we wrap-up with conclusions and 
limitations, while we further outline beyond state-of-the-art applications of the 
proposed system in the agricultural sector. 

2   System Description 

The proposed simulation system aims to navigate an UGV in custom agricultural 
fields to perform related precision farming activities (e.g. seeding, spraying, and 
fertilizing). The proposed system basically comprises of an information system that 
consists of the following: (i) field layer representing the landscape and the static 
objects (obstacles, trees), (ii) simulation layer which includes the action agents – 
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representing the UGV whose task is to perform precision farming activities, (iii) 
message layer – representing the continuous transactions between the system nodes 
to produce and manage raw data, and (iv) application layer which handles all the 
vehicles activities including the action scheduler and the data acquisition block – 
determining, prioritizing and optimally scheduling the optimal navigation pathway of 
the UGV in the field based on encounters with obstacles and any particular 
geomorphological characteristics. 

From a farm’s geometrical area perspective, the devised system regards the most 
common area coverage practice which involves a set of parallel field-work tracks, or 
trips, which starts at one boundary of the field and terminates at the opposite 
boundary (Bochtis et al., 2012). In the exemplar demonstrator case under study, we 
consider a set of five -equidistant- parallel tracks. An overview of the system 
components as well as their inter-connections and related processes is presented in 
Fig. 1. 
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Fig. 1. Overview of the system components and related inter-connections. 

2.1   Simulation Model Development 

At the proposed research paper the Robot Operating System (ROS) is used to 
simulate an autonomous vehicle’s farming activities. The model’s layout is created at 
the Gazebo simulation tool; for optimized path tracking, the inherent ROS 
Simultaneous Localization And Mapping (SLAM) procedure informs the UGV's 
movement. 

ROS is powerful and robust software with numerous third-party compatible tools 
and relies on an extensive community of users and researchers that support it. A 
significant number of ready to use outdoor robotic systems are compatible with ROS. 
Indicatively, the Husky research robot developed by Clearpath 
(https://www.clearpathrobotics.com/) and the Thorvald multipurpose agricultural 
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vehicle by SAGA robotics (https://sagarobotics.com/) are two well-established 
examples. Simulation, on the other hand, offers a test bed for developing algorithms 
and testing different UGV properties on various fields (Farinelly et al., 2016). ROS 
allows researchers to elaborate their ideas and safely simulate them at a lab level, 
before testing them on the field. 

2.2   Field and Operational Level Parameters 

2.2.1   Field Representation 

Initially, a 3-dimensional (3-D) coordinate system is assigned to the field. The 3D 
world model is the simulation environment of the robot. Gazebo offers the tools for 
building the facility layout of the robot's world and the user can add texture, color 
and even objects. Fig. 2 depicts the experimental five-row crop cultivation field. The 
model’s layout was created at the Gazebo simulation tool using the extensible 
markup language and the Digital Elevation Model (DEM) for a 3-D representation of 
the terrain. By convention Gazebo platform uses the right-handed coordinate system, 
with X- and Y-axes in the plane, and Z-axis increasing with the altitude. 
 

 
Fig. 2. The reference geomorphology of the experimental agricultural field. 

2.2.2   Field-Specific Data 

Field-specific data are associated with the direct field attributes, including: 
• Field boundaries – The vehicle navigates in a pre-specific region in order to map 

the field's layout. Field boundaries should be introduced either directly by passing 
the absolute coordinates of the field's boundaries to the system or indirectly by 
means of specific physical landscape morphology (hills with intense slope around 
the field). 

• Field coordinates – The field includes the crop lines and several physical 
obstacles (rocks, trees and hills). The map creation process identifies the field's 
layout and the vehicle can navigate to specific coordinates using a global 
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optimum path. The start and end points of each field-work track can be passed as 
arguments to the system. 

• Potential obstacles – The vehicle identifies potential obstacles as a result of the 
field area scanning procedure, after sending the original signal the vehicle 
interprets the signals’ feedback of any spatially distributed obstacles to relative 
map coordinates. 

• Driving direction – This regards the direction of the parallel field-work tracks and 
is obtained using the field's map. 

2.2.3   Operation-Specific Data 

Operation-specific data include the width between the field-work tracks and the 
width of the action agent. The conceptual UGV is programmed to be equipped with a 
light detection and ranging (LiDAR) sensor that is further developed, programmed 
and tested at the 3-D agricultural field. The two-dimensional LiDAR sensor, with a 
180-degree scanning angle, uses a laser meter which identifies distributed points in 
the field that may represent trees or obstacles, and calculates the relative points’ 
distance thus informing the ROS about the corresponding X- and Y-axes coordinates. 
In case a linear distribution of points is recognized, then the ROS recognizes a field-
work track of planted trees. As the UGV navigates in the field (Fig. 3), the scanning 
angle changes resulting in a vast amount of the information generated via the LiDAR 
sensor resulting in the full representation of the field and obstacles. A local pathway 
is constantly updated as the UGV tries to contend with the global prescheduled path. 

In order to maintain a safety distance from the identified trees and obstacles, the 
global cost-map takes into account the UGV's size and the identified points are 
inflated by the inscribed radius of the UGV. The global path creation is performed by 
the ROS and an inter-row global optimal path is followed for the scheduled activities 
at the working shift. The final mapping of the field’s layout is used by ROS to 
calculate a special matrix for finding the optimized path from a single point to the 
other (global cost-map) and create the global UGV’s navigation pathway in the field. 
 

 
Fig. 3. Inflated layout with ROS global and local path generation. 

The developed algorithm reads sensor’s input from the UGV to detect the 
landscape in real-time and gradually creates the mapping of the overall field’s layout 
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(Fig. 4). The created map is periodically saved as a snapshot of the working process 
in the file system structure. Each file is continuously compared using image 
processing techniques with previews file sequences in order to determine the end of 
mapping procedure. The optimized map is identified and used as an input for the 
creation of the global cost map and the robots movement. More specifically, Fig. 4 
provides the starting image of the mapping procedure where the UGV first activates 
the LiDAR sensor to transmit signals into the field’s layout until the entire 
agricultural field is mapped. At the starting point, the LiDAR signals are represented 
by gray that are used to identify the uncharted area, gradually forming the visible 
areas. The linearly distributed black points indicate the field tracks and the obstacles’ 
contour. The boundary of the scanned area is produced from the 3-D terrain altitude 
differences. 

 
Fig. 4. Inflated layout with ROS global and local path generation. 

3   Results 

The simulation results demonstrate that with the proposed software system 
farming tasks can be scheduled step-by-step, with extreme accuracy, as the vehicle 
passes through the trees’ field tracks. For crop line planting, irrigation and weeding 
the X-, Y-, Z-axes coordinates of the landscape are pre-programmed and are 
imported to the UGV’s schedule. Fig. 5 indicates the real-time SLAM of the UGV at 
the field level as the LiDAR sensor constantly scans for possible real-time collisions. 
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Fig. 5. UGV’s navigation with real-time SLAM. 

4   Conclusions 

The paper contributes to sustainable precision farming operations by providing a 
software tool for the real-time scheduling and control of UGV vehicles’ navigation in 
custom agricultural fields under possible uncertainties. Sustainability parameters are 
addressed at economic (optimize performance and increase production), 
environmental (optimize energy consumption on UGVs and equipment at operational 
level), and social (increase safety levels at field level, improve ergonomics for human 
workers) levels. Overall, this research makes contextual/business environmental 
elements of operational management into more dominant elements of an operational 
system. More specifically, the low computational time requirements of the 
underlying process allow for the implementation of the proposed system as a real-
time tool in agricultural operations. The developed system can be extended to capture 
multi-criteria optimization aspects to promote agricultural supply chain sustainability 
from a cradle-to-grave perspective. 

Finally, the system is prone to be tested in real field conditions with the use of a 
custom or a commercial UGV robot. In order to make the transfer to the real world 
the vehicle should be equipped with the proper sensors (lidar sensors, depth cameras, 
inertial sensors etc) and could either be a simple ROS node that exchanges 
information with the ROS core platform or a complete ROS enabled platform (with 
an embedded pc) that performs all the necessary computations. 
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