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Abstract. Recently, the area of passive remote sensing of agricultural fields 
has been developing fast. The prices of RPAS (remotely piloted aircraft 
system) equipment has gone down and new suitable sensors are coming into 
markets while simultaneously new and free relevant satellite data has become 
available. One of the most used applications for these methodologies is to 
calculate the relative biomass as a basis for additional nitrogen fertilization. In 
this work, we study the difference of biomass estimations based on Sentinel-2 
imagery, tractor implemented commercial measurement system, a low-cost 
RPAS equipment with commercial software and a hyperspectral imaging 
system implemented in a professional RPAS system in fertilization planning. 
Our study revealed that while there was a 23 % spatial variation in our test 
field’s yield, the relative biomass estimations for fertilization planning during 
the growing season varied 22 % on average although they were visually very 
alike.  
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1   Introduction 

The core idea of precision farming is to spatially and timely optimize the farming 
inputs to maximize the farming outcomes while reducing the environmental stress. 
Nitrogen fertilizers are one of the core inputs in plant production. An insufficient 
dosage of the nitrogen fertilizer for cereal crops can decrease the yield and quality of 
the yield. Excess of nitrogen causes a risk of a flattening of the growth causing yield 
losses. Also unused nitrogen in the soil leaches to the environment throughout the 
growing period and after.  

Already developed precision nitrogen application methods for crops utilize an 
optical sensing of the growth status during the growing season to determine how 
much additional nitrogen is needed in different areas of a field. Sensing may take 
place from satellites, aircrafts, RPAS’s (remotely piloted aircraft system), working 
machinery or handheld devices. Recently there has been a fast development in this 
area of passive remote sensing and the productization is in progress. The prices of 
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RPAS equipment have gone down and new sensor technologies are coming into 
markets. Also new, free and relevant satellite technology has become available for 
the environmental mapping. In Europe, the new Sentinel-2 satellites are providing 
useful data several times per week with up to 10 x 10 meter accuracy. 

One of the most common applications for these methodologies in agriculture is to 
calculate relative biomass as a basis for additional nitrogen fertilization. Typically, 
these sensing systems compare a red and near infrared wavelengths by measuring a 
normalized difference vegetation index (NDVI) or its variants. Then an implemented 
decision support system (DSS) produces an estimate for the required nitrogen 
fertilization need. This DSS system requires calibration information about crop’s 
remaining nitrogen needs and responsiveness according to the predicted yield 
potential (Raun et al., 2005, Lukina et al., 2001) being important factor for the 
nitrogen fertilization. Data from other sources are usually combined with remote 
sensing as inputs to decision support systems for determining nitrogen application 
rates (Shanahan et al. 2008; van Evert et al. 2012, Kaivosoja et al., 2013). 
Hyperspectral imaging for example was found to be a promising method for 
agricultural purposes (Bareth et al. 2015) and obtaining separate biomass and 
nitrogen content (Honkavaara et al. 2013, Pölönen et al. 2013) for additional 
fertilization need determination. 

In practice, the basic NDVI maps indicate the amount of green mass in the field. 
However, the method is not able to differentiate situations of a low growth density 
with high nitrogen content from those of high growth density and a low nitrogen 
content. Thus, generating nitrogen fertilization plans based only on NDVI map might 
not be the best solution in all of the cases so many supporting optical methodologies 
has been developed. Pena-Yewtukhiw et al. (2015) found out that even the sensor 
output difference of 0.05 NDVI units could strongly affect the resulting nitrogen rate 
prescription, depending on the selected algorithms. Also image mosaics that are 
mandatory with RPAS sensing may create large radiometric errors that effect on 
spectral vegetation indices (Rasmussen et al. 2016). 

Dong et al. (2015) presented 28 chlorophyll-related vegetation indices suitable to 
be applied with Sentinel-2 data and by simulation studies; they found out that 
incorporating red-edge reflectance (around 700nm) improved the estimates for 
assessing vegetation growth rate and predicting crop productivity. Also, Hunt et al. 
(2017) noted that assessing red-edge detection could make a difference in 
determining nitrogen applications to potato. In their study, they did not found RPAS 
beneficial to the WorldView-2 satellite data. The case is similar with the Sentinel-2 
imagery in Europe since the resolution of the red edge is coarser. 

That is also what current commercial solutions support. The tractor implemented 
YARA N-Sensor five spectrometer detects the wavelengths of 550nm, 650nm, 
700nm, 710nm and 840nm (Varco, 2010). The gained economic benefits of this 
tractor implemented solution have been around 5 % (Nissen, 2012). Typically drone 
installed Parrot Sequoia multispectral camera measures the wavelengths of RGB, 
550nm, 660nm, 735nm, 790nm. The most accurate wavelengths of Sentinel-2 
satellite are 490nm, 560nm, 665nm, 842nm with 10 meter spatial resolution and 
705nm, 740nm, 783nm, 865, 1610nm, 2190nm with 20 meter spatial resolution. In 
Finland, the average field size is less than 4 hectares which makes it difficult to 
exploit coarser data efficiently. 
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Many new technologies are coming available, but since the productization for 
agricultural purposes is continuously developing, the farmers are somewhat left alone 
on how to really apply them and how to get the best benefits out of them and which 
methods would be the most suitable for their purpose.   

This paper has three research questions: 1) how much there is typically variation 
in a Finnish field, meaning that how much we should typically adjust the amount of 
fertilizers? 2) How much there is variation of relative biomass estimations based on 
different remote sensing data obtained for the same purpose? 3) What is the effect of 
the determined variations in contrast to experimental but logical precision 
fertilization application variations? The main goal is to demonstrate in real 
conditions, how much difference there are in biomass estimations in contrast to 
actual fertilization task variations.  

2   Material and methods 

The test area was about 20 ha cereal crop field in southern Finland in Vihti, sowed at 
29 May 2016. The overview picture of the field during the 2016 crowing season is 
presented in a Fig. 1. The field was evenly treated although a 12 meter wide not 
treated stripe was left in the middle of the field to have a bare soil reference.  
 

 
 

Fig. 1. A slant view of the test field showing the high biomass area in the left size and the not 
seeded stripe in the middle, (date 16.7.) 

First, to have a concrete knowledge about variations in our field, we analyzed our 
combine harvester data to measure the yield variation in the selected test field and in 
the fields nearby. We analyzed the yield data of barley and wheat from the years 
2015, 2014, 2013.  In total, 20 harvestings with an average field plot size of 6.4 ha. 
Those fields were evenly threated (no precision farming) and the harvesting was 
done with Sampo Comia C4 combine harvester with Ceres 8000 yield monitor, 
which logged position and filtered yield data with 5 Hz interval. We filtered out less 
than 900kg/ha measurements and exceptionally high yield values from the yield data. 
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Next, we calculated a variance for each harvesting operation. To study the effect 
of combine harvester measurement system effect, we added a separate moving 
average of five for the logged data.  

Next we studied different remote sensing data. Fig. 2. presents relative biomass 
maps based on different remote sensing technologies: a professional UAV 
(unmanned aerial vehicle) with FPI (Fabry Perot Interferometer)-hyperspectral 
camera, consumer level Phantom 4 UAV with RGB-camera, a tractor implemented 
Yara N-sensor and Sentinel-2 satellite image. More detailed descriptions of data 
processing of these data are presented by Näsi et al. (2017). These maps represented 
the starting point of this work. The middle part in the N-Sensor map (Fig. 2.) was not 
measured due to low amount of biomass. 

  

 
 

Fig. 2. Relative biomass estimations based on professional UAV with FPI-camera, consumer 
level Phantom 4 drone with RGB-camera, tractor implemented Yara N-sensor and Sentinel-2 
satellite image. 

Our next step was to use the different source data to produce precision nitrogen 
fertilization tasks without additional data. We used farmer knowledge to heuristically 
adjust the tasks in a similar manner. All remote sensing data that was used with our 
calculations are presented in the following list, including a name of data, 
measurement instrument and platform, classification type and imaging date in 2016. 

 
• Tractor: Yara-N-sensor measurements, internal classification, driving, date 

16.7. 
• Satellite1: Sentinel-2 satellite, NDVI classification, image date 2.6. 
• Satellite2: Sentinel-2 satellite, NDVI classification, image date 9.7. 
• proUAV FPI (Fabry-Pérot interferometer) hyperspectral camera, NDVI 

classification, imaging date 4.7. 
• rgbUAV1: Phantom 4, stock RGB camera, classification VARI Visible 

Atmospherically Resistant Index (G-R)/(G+R-B) (Gitelson et. al 2002) with 
DroneDeploy software, 16.7. 

• rgbUAV1task: rgbUAV1 data classified with DroneDeploy, 16.7. 
• rgbUAV2: 16.7. Phantom 4, stock RGB camera, VARI classification with 

DroneDeploy software, 16.7.,  constantly changing cloud cover 
• Yield Map: Yield map based on combine harvester point data and surface 

fitting by using inverse distance weighting (5 m circle search distance and 
weighting power of 1), 23.9. 
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All the different tasks were planned in order to have three different fertilization 
levels: 20 kg/ha, 30 kg/ha and 40 kg/ha according to farmer’s understanding of the 
additional fertilization need. Three levels were selected to be practical with present 
farm machinery: there are always some delays and inaccuracies with precision 
adjustments, so it is not practical to adjust the machinery continuously. These 
fertilization tasks were calculated as 1 m grid maps. Then we compared these maps 
to accurately located biomass samples taken during the growing season (Näsi et al. 
2017). We used 18 samples out of total 36 samples having the most homogenous 
surroundings around them. Then we also calculated the correlation between biomass 
amount and nitrogen content from the vegetation samples to see their correlation. 
 

To evaluate the effect of the usage of other data sources, we demonstrated possible 
task variations by applying previous yield maps, vegetation samples, farmer’s know-
how and commercial software for data. We selected four different cases which were 
as follows: 

 
1. Previous yield maps and Sentinel-2 data 9.7. First, we evenly balanced and then 

summed three consecutive yield maps. Next we scaled the final map values by 
using farmer’s heuristic knowledge. The parameters were: min 0.4, Max 1.6, 
Mean 1.07, Std. deviation 0.19. Then we used this to multiply the Sentinel-2 
NDVI-map. Then we applied contouring method to generate four application 
rate levels, and finally farmer decided the actual fertilization amounts. 

2. Consumer UAV with RGB-camera (Phantom 4), Dronedeploy vegetation 
classification (VARI) and farmer estimates for actual fertilization amounts. 

3. NDVI classification from professional UAV with FPI camera. We used 
supervised K-means teaching based on vegetation samples (nitrogen content) 
including 36 samples from all around the field (Näsi et al. 2017) and categorized 
into four classes by the farmer (none-now-med-high. We used it to supervise 
proUAV data to four classes. Then actual fertilization amounts were decided 
according to farmer’s knowledge.  

4. Consumer UAV (Phantom 4) with RGB-camera, VARI calculated with 
DroneDeploy software, added with farmer teaching (polygons drawn by the 
farmer including wanted nitrogen input) by using K-means methodology. In this 
study, the farmer drew the wanted fertilization amounts on top of a plain RGB-
map. Then these areas were used to teach the VARI raster map. Finally, the 
contouring method was applied as in other cases. 

 
We used 0-10-20-30 kg/ha fertilization steps for these data, because these other 

data suggested lower fertilization rates and it would not have be reasonable to 
compare these with the first classification results. 
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3   Results 

The average of the yield amount variances in our fields was 32.7 %. Our test field 
yield had a variance of 23.3 %, the histogram is presented in Fig. 3. By applying the 
moving average, the variance was lowered only by 0.5 percentage points. This is 
indicating at least a 30 % variance in yields on average in our test fields in Finland. 
The total yields of our fields were 4.6 t/ha on average and the average variance was 
1.8 t/ha. During the summer 2016, our test field had an exceptionally low yield on 
average. 

 

 
Fig. 3. Test fields yield histogram (yield amount and number of measurement points) 

 
The different fertilization tasks based only on the remote sensing data are 

presented in a Fig. 4. Together with a relevant yield map that was harvested more 
than two months later. Table 1. compares these different maps by showing the 
average difference between application rates: if A=20kg/ha and B=30kg/ha, A 
compared with B is 10/20=0.5 different and B compared with A is 10/30=0.33 
different.  On average, the difference between calculated application rates was 22%. 
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Fig. 4. Fertilization tasks based on remote sensing data and the final relative yield map  
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Table 1.  Difference between calculated application rates 

  rgb2 Sat2 Tractor proU rgb1t rgb1 Sat1 
rgbUAV2 0.00 0.17 0.41 0.18 0.21 0.22 0.29 
Satellite2 0.18 0.00 0.39 0.20 0.21 0.19 0.26 

Tractor 0.30 0.28 0.00 0.25 0.25 0.23 0.21 
proUAV 0.17 0.19 0.33 0.00 0.17 0.17 0.28 

rgbUAV1task 0.19 0.19 0.30 0.16 0.00 0.17 0.19 
rgbUAV1 0.19 0.17 0.28 0.16 0.17 0.00 0.21 
Satellite1 0.24 0.21 0.23 0.24 0.17 0.19 0.00 

 
            

The correlations between biomass samples (18 spots) and calculated application 
rates with different methods are presented in Fig. 5. The tractor data had the highest 
correlation of 0.63.  The correlation between biomass and nitrogen based on 
vegetation samples is also presented being -0.19.  
 
 

 
Fig. 5. Correlation between vegetation sample biomass and determined application rates 

Next we present the demonstrative task maps, which combined other data to 
remote sensing, with the following early presented methodologies: 

 
1. Previous yield maps and Sentinel-2 data 
2. Consumer UAV with RGB-camera, Dronedeploy classification and 

farmer’s nitrogen level estimates 
3. NDVI classification from professional UAV with FPI camera, teaching 

with vegetation samples  
4. Consumer UAV with RGB-camera, RGVI-index and farmer teaching 
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The nitrogen fertilization tasks were clearly deviating. The following Fig. 6. 
illustrates the different generated tasks.   

 

Fig. 6. Different fertilization tasks based on remote sensing and external data 

4   Discussion and conclusions 

Our test fields had the 30% yield variation in average so there is huge potential in 
precision farming activities. All the tested remote sensing methods managed to 
estimate the relative differences of biomass. The optimal timing for the additional 
fertilization would have been in the middle of July, and even the Sentinel-2 NDVI-
map in early June estimated visually correctly the relative biomass. However, when 
developed into precision fertilization tasks, the relative biomass estimations produced 
a 22 % variation in an average, when the planned fertilization was 20kg/ha - 30kg/ha 
- 40kg/ha in all the cases, including the aim to produce similar looking maps. 
Similarly, Pena-Yewtukhiw et al. (2015) stated that even a slight difference in the 
single task generation parameter could produce a remarkable difference in the end. 
Also in our measurements, the correlations to the biomass samples were low. 

When other parameters were used for task generations, the differences were large 
even when based on visual estimations. The main difference between images 2 and 4 
in Fig. 6 is that in image 4, the farmer decided the effective area for the fertilizer, 
while in the image 2 the area was decided by the RGVI difference. The optimistic 
attitude of the farmer can be seen as the application rate is higher in the image 2 
(Fig.4.). 

The visual study of Fig. 4. shows that Sentinel-2 data from 2.6. and 9.7. are giving 
very similar information. This is indicating that these NDVI-level differences can be 
spotted even in a very early stage of growth. 

The N-sensor values in Table 1. Were lower than others and were suggesting less 
fertilization. This was true according to our true vegetation samples and the yield 
map, there were mostly enough nitrogen resources for the plant. The N-sensor data 
(Tractor) had the highest correlation to the biomass samples. So without concrete 
relations, the RPAS and satellite data were exaggerating the nitrogen need.  

When the hyperspectral imagery was used only for the biomass estimations as we 
did, there were no significant advantages seen. We assume that the usage of a 
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multispectral camera would have similar results here. In both cases, additional 
estimations such as vegetation nitrogen content estimations would be essential. 

As the main conclusion of this work, there is a large variation within cereal fields 
in Finland, the relative difference was easy to determine with different remote 
sensing methods, but there is huge step needed to use these biomass variations in a 
consistent way. Just picking up a drone or a free satellite image would possibly not 
give a sufficient knowledge for additional fertilization. 

We should also note that the yield of our test field was low and the areal 
differences between crops were very similar during the entire growing season. These 
factors can be very different in different years when there is for example lack of 
water, so the very generalizing conclusions of the goodness of the relative biomass 
estimations cannot be drawn.   
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