EFFECT OF RADIATION POLARIZATION ON THE RESULT OF RECONSTRUCTION OF GROUND SURFACE REFLECTION COEFFICIENTS IN VISIBLE AND NEAR IR-RANGE

Anna V. Zimovaya¹, Mikhail V. Tarasenkov¹, Vladimir V. Belov^{1,2}

¹V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia ²Tomsk State University, Tomsk, Russia

Abstract

The effect of radiation polarization on the reconstruction of the ground surface reflection coefficient in the visible and near-IR ranges is estimated. The analysis shows that in the short-wave part of the visible range neglect of polarization creates significant errors.

Keywords: optical radiation transfer in the atmosphere, atmospheric correction of satellite images, light polarization, Monte Carlo method

ВЛИЯНИЕ ПОЛЯРИЗАЦИИ ИЗЛУЧЕНИЯ НА РЕЗУЛЬТАТ ВОССТАНОВЛЕНИЯ КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ В ВИДИМОМ И БЛИЖНЕМ ИК-ДИАПАЗОНЕ

Зимовая А.В. ⁽¹⁾, Тарасенков М.В. ⁽¹⁾, Белов В.В. ⁽¹⁾⁽²⁾

¹ Институт Оптики атмосферы им. В.Е. Зуева СО РАН, Томск ² Национальный исследовательский Томский государственный университет, Томск

Оценивается влияние поляризации излучения на восстановление коэффициента отражения земной поверхности в видимом и ближнем ИК-диапазоне. Анализ показывает, что в коротковолновой части видимого диапазона ее неучет создает существенные погрешности.

Ключевые слова: перенос оптического излучения в атмосфере, атмосферная коррекция спутниковых изображений, поляризация света, метод Монте-Карло.

Введение. Данные о коэффициентах отражения земной поверхности в видимом и ближнем ИК-диапазоне длин волн имеют широкое применение в ряде фундаментальных и прикладных задач, такие как задачи прогноза погоды, климата, природопользования и др. Для корректного восстановления коэффициентов отражения земной поверхности по спутниковым данным следует выполнять качественную атмосферную коррекцию этих данных. Один из способов коррекции состоит в решении уравнения переноса излучения для оценки атмосферных искажений и в их устранении из суммарного принимаемого сигнала.

Алгоритмы атмосферной коррекции развиваются достаточно давно [1-3]. Для экономии времени расчетов при коррекции спутниковых изображений пренебрегают таким свойством излучения, как поляризация. Это можно обосновать тем, что, как показывают многочисленные исследования (например, [4-6]), влияние поляризации достаточно мало и составляет не более 9.5% от суммарного принимаемого излучения [6, С. 128, 133]. Однако неучет влияния поляризации может вносить некоторую погрешность в расчеты интенсивности принимаемого излучения, а, следовательно, вносить погрешности и в результаты атмосферной коррекции. Как показали наши оценки для случая наблюдения в надир [7], неучет поляризации при восстановлении коэффициентов отражения слабоотражающих поверхностей способен привести к значительным погрешностям и даже к отрицательным значениям коэффициента отражения на длинах волн λ =0.4-0.55 мкм. Далее речь пойдет об анализе влияния поляризации для направлений отличных от надира и анализе причин поведения погрешности, создаваемой неучетом поляризации.

Постановка задачи, алгоритм решения и тестирование алгоритма. Задача рассматривалась в следующей постановке (рис. 1). На некотором расстоянии от поверхности Земли H_d располагается пассивная спутниковая система, которая наблюдает изображение точки земной поверхности в направлении ω_d . Предположим, что атмосфера представляет собой набор однородных по высоте слоев, ограниченных сферическими поверхностями. Оптические характеристики атмосферы задаются генератором оптических моделей на основе LOWTRAN-7 [8]. На Землю в направлении ω_{sun} падает параллельный поток солнечного излучения. Поверхность Земли будем считать однородной и отражающей излучение по закону Ламберта. Требуется оценить степень влияния поляризации на результат восстановления коэффициента отражения земной поверхности.

Если область на земной поверхности, откуда в оптическую систему приходит основная часть излучения, мала, то можно использовать однородное приближение. В таком случае ко-эффициент отражения определяется как [3]:

$$r_{surf(i)} = \frac{Q_i}{E_0 + \gamma Q_i},\tag{1}$$

где

$$Q_i = \frac{I_{sun(i)} - I_{sun(i)}}{I_{surf(i)} + T_i},$$
(2)

где $T_i = \frac{\exp(-\tau_i)}{\pi}$; I_{sum} – суммарная интенсивность излучения, зарегистрированная приемником при наблюдении *i*-го пикселя; I_{sun} – солнечная дымка; I_{surf} – поверхностная дымка; τ – оптическая толщина от наблюдаемой точки на земной поверхности до приемной системы; γ – вклад однократно отраженного от земной поверхности излучения; E_0 – освещенность Земли Солнцем.

Рис. 2. Зависимость суммарной интенсивности излучения I_{sum} от косинуса угла приемника μ_d . 1 – без учета поляризации для $\varphi=0^\circ$, 2 – с учетом поляризации для $\varphi=0^\circ$, 3 – результаты из [9] для $\varphi=0^\circ$, 4 – без учета поляризации для $\varphi=90^\circ$, 5 – с учетом поляризации для $\varphi=90^\circ$, 6 – результаты из [9] для $\varphi=90^\circ$, 7 – без учета поляризации для $\varphi=180^\circ$, 8 – с учетом поляризации для $\varphi=180^\circ$, 9 – результаты из [9] для $\varphi=180^\circ$.

Для расчета величин E_0 , γ , I_{sun} , I_{surf} использовались программы на основе метода Монте-Карло с учетом поляризации излучения. В части программ (для E_0 и I_{sun}) моделирование траекторий фотонов производилось по сопряженной схеме.

Для тестирования разработанных программ выполнялись расчеты суммарной интенсивности принимаемого излучения для условий, описанных в [9]. Расчеты выполнялись программами без учета поляризации, описанными в [3] и с учетом поляризации, разработанные в рамках данной работы, для следующих условий: молекулярная непоглощающая атмосфера, оптическая толщина атмосферного слоя $\tau = 1$, косинус зенитного угла Солнца $\mu_{sun} = 0.6$, солнечная постоянная $\pi S_{\lambda} = \pi Bm/m^2$, коэффициент отражения земли $r_{suf} = 0.8$, приемник расположен на верхней границе атмосферы, косинус зенитного угла приемника $\mu_d = 0.02$ -1.0, азимут между направлением на Солнце и на приемник $\varphi = 0^{\circ}$, 90° , 180° . Требуется найти суммарную интенсивность принимаемого излучения. Результаты тестовых сравнений приведены на рис. 2. Из рисунка видно, что значения, полученные в [9, С.337] отличаются от значений, полученных нами с учетом поляризации не более чем на 1,6%. Отличие значений без учета поляризации от [9] составляет не более 8,9%. Таким образом, полученные результаты полностью согласуются с результатами [9]. Следовательно, разработанные нами алгоритмы для расчета компонент излучения с учетом и без учета поляризации, формирующих принимаемый спутниковой системой сигнал, работают верно.

Результаты численных расчетов. Задача рассматривается для следующих условий. В приземном слое атмосферы (до 5 км) в качестве матрицы аэрозольного рассеяния используется модель дымки H [10]. Для слоев выше 5 км используются аэрозольные индикатрисы рассеяния из [8] и поляризация не учитывается. Рассмотрим следующие оптико-геометрические условия: длина волны $\lambda=0.4$, 0.45, 0.55 и 0.85 мкм, метеорологическая дальность видимости $S_M = 10$ и 50 км, зенитный угол Солнца $\theta_{sun} = 0^\circ$, 15° , 30° , 45° , 55° , 60° , 70° , 80° , зенитный угол оптической оси приемника $\theta_d = 0^\circ$, $30^\circ, 45^\circ$, 55° , 60° , азимут $\varphi = 0^\circ$, 90° , 180° , высота приемника $H_d = 100$ км. Коэффициент отражения земной поверхности $r_{surf} = 0.1$. Это значение было выбрано как пример слабоотражающей поверхности. Для этих условий был выполнен расчет суммарной интенсивности принимаемого излучения земной поверхности без учета поляризации. Результаты представлены на рис. 3 в виде разности восстановленных и заданных коэффициентов отражения для длин волн $\lambda=0.4$, 0.55 мкм и $S_M = 50$ км.

Из полученных результатов следует, что наблюдается сложное поведение Δr_{suf} в зависимости от положения Солнца и приемной системы (Рис. 3). Для объяснения поведения введем величины:

$$\Delta E_0 = \widetilde{E}_0 - E_0, \ \Delta I_{sun} = \widetilde{I}_{sun} - I_{sun}, \ \Delta I_{surf} = \widetilde{I}_{surf} - I_{surf}, \ \Delta \gamma = \widetilde{\gamma} - \gamma$$
(3)

где E_0 , I_{sun} , I_{sunf} , γ – величины, полученные с учетом поляризации, а \tilde{E}_0 , \tilde{I}_{sunf} , $\tilde{\gamma}$ – величины, полученные без учета поляризации. Погрешности рассматриваемых величин не превышали 1%.

Из (1)-(2) получим:

$$r_{surf} = \frac{1}{\frac{E_0}{\frac{I_{sum} - I_{sun}}{T + I_{surf}}} + \gamma_1}}, \quad \widetilde{r}_{surf} = \frac{1}{\frac{E_0 + \Delta E_0}{\frac{I_{sum} - I_{sun} - \Delta I_{sun}}{T + I_{surf} + \Delta I_{surf}}}}.$$
(4)

Тогда

$$\Delta r_{surf} = \tilde{r}_{surf} - r_{surf} = \frac{1}{\frac{E_0 \left(T + I_{surf}\right) \left(1 + C_1\right) \left(1 + C_2\right)}{\left(I_{sum} - I_{sun}\right) \left(1 - C_3\right)} + \gamma_1 \left(1 + \frac{\Delta \gamma_1}{\gamma_1}\right)} - r_{surf},$$
(5)

где

$$C_1 = \frac{\Delta E_0}{E_0}, \ C_2 = \frac{\Delta I_{surf}}{T + I_{surf}}, \ C_3 = \frac{\Delta I_{sun}}{I_{sum} - I_{sun}}$$
(6)

Для слабоотражающих поверхностей влияние величины γ мало, кроме того эта величина не зависит от положения Солнца и приемной системы, поэтому в рамках анализа поведения Δr_{surf} можно приближенно считать, что $\gamma \approx 0$. Тогда (5) преобразуется к виду:

$$\Delta r_{surf} = \widetilde{r}_{surf} - r_{surf} \approx r_{surf} (1 - C_3) \left(\frac{1}{1 + C_1} \right) \left(\frac{1}{1 + C_2} \right) - r_{surf}$$
(7)

Рис. 3. Зависимости Δr_{surf} от θ_{sun} для фиксированных значений θ_d . а $-\lambda=0,4$ мкм, $\varphi=0^\circ$; б $-\lambda=0,55$ мкм, $\varphi=0^\circ$; в $-\lambda=0,4$ мкм, $\varphi=90^\circ$; г $-\lambda=0,55$ мкм, $\varphi=90^\circ$; д $-\lambda=0,4$ мкм, $\varphi=180^\circ$; е $-\lambda=0,55$ мкм, $\varphi=180^\circ$. Кривая 1 соответствует $\theta_d=0^\circ$, $2-\theta_d=30^\circ$, $3-\theta_d=45^\circ$, $4-\theta_d=55^\circ$, $5-\theta_d=60^\circ$. Из (7) видно, что поведение Δr_{surf} зависит от множителей $\frac{1}{1+C_1}$, $\frac{1}{1+C_2}$ и $1-C_3$. Чем дальше каждый из множителей от 1, тем сильнее влияние C_1 , C_2 и C_3 соответственно и больше по модулю значение Δr_{surf} . Поэтому достаточно рассмотреть поведение этих множителей. Для примера рассмотрим следующие ситуации: $\lambda=0,4$ мкм, $S_M=50$ км, $\theta_d=60^\circ$, $\varphi=0^\circ$ и $\lambda=0,55$ мкм, $S_M=50$ км, $\theta_d=60^\circ$, $\varphi=180^\circ$ (рис. 4). Из рисунка 4 видно, что поведение Δr_{surf} для рассматриваемых ситуаций задает главным образом множитель (1-C₃), т.е. основное влияние при неучете поляризации оказывает величина I_{sun} . Для всех рассмотренных ситуаций также были рассчитаны значения величин $1-C_3$, $\frac{1}{1+C_1}$ и $\frac{1}{1+C_2}$. Проведенный анализ этих результатов также показывает основное влияние величины I_{sun} при неучете поляризации.

Заключение. Проведенные исследования показывают, что для направлений наблюдения приемной системы вблизи надира или низкой мутности атмосферы влияние поляризации нужно учитывать при $\lambda \le 0.55$ мкм, но для высокой мутности атмосферы и значительных отклонений от направления в надир поляризацию нужно учитывать для всего рассматриваемого диапазона. При этом погрешность Δr_{surf} при $r_{surf} = 0.1$ для длин волн 0.4-0.85 мкм будет лежать в диапазоне $-0.03 \le \Delta r_{surf} \le 0.02$ для низкой мутности атмосферы (метеорологическая дальность видимости S_M=50 км) и в диапазоне $-0.14 \le \Delta r_{surf} \le 0.07$ для высокой мутности атмосферы (метеорологическая дальность видимости S_M=10 км).

Наблюдается сложное поведение погрешности Δr_{surf} от взаимного положения Солнца и приемной системы. Анализ причин поведения показывает, что основной величиной, которая формирует погрешность и определяет ее функциональное поведение, является величина

$$C_3 = \frac{\Delta I_{sun}}{I_{sum} - I_{sun}}.$$

Работа выполнена при частичной поддержке РФФИ (гранты №16-31-00033-мол_а, №15-07-06811-а, №15-01-00783-а).

ЛИТЕРАТУРА

- [1] Reinersman P.N., Carder K.L. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect // Applied optics. 1995. V. 34, №21. pp. 4453-4471.
- [2] Белов В.В., Тарасенков М.В. Статистическое моделирование функции размытия точки в сферической атмосфере и критерий выделения зон изопланарности изображений // Оптика атмосферы и океана. 2010. Т.23, №5. С. 371-377.
- [3] Кожевникова А.В., Тарасенков М.В., Белов В.В. Параллельные вычисления при решении задач восстановления коэффициента отражения земной поверхности по спутниковым данным // Оптика атмосферы и океана. 2013. Т. 26, № 02. С. 172-174
- [4] Михайлов Г.А., Назаралиев М.А. Расчеты поляризации света в сферической атмосфере методом Монте-Карло // Физика атмосферы и океана. 1971. №4. С.385-395.
- [5] Назаралиев М.А., Сушкевич Т.А. Расчеты характеристик поля многократно рассеянного излучения в сферической атмосфере // Изв. АН СССР. Сер. Физ. атмосф. и океана. 1975. Т. 11, № 7. С. 705–717.
- [6] Марчук Г.И., Михайлов Г.А., Назаралиев М.А., Дарбинян Р.А., Каргин Б.А., ЕлеповБ.С. Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, Сибирское отделение, 1976. 284 с.

- [7] Zimovaia A.V., Tarasenkov M.V., Belov V.V. Estimate of the effect of polarization account on the reflection coefficient of the Earth's surface for atmospheric correction of satellite data //Proceedings of SPIE - The International Society for Optical Engineering. 2016. V. 10035. P. 1-10
- [8] Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. – ARGL-TR-86-0177. ERP 1010. Hanscom AFB. 1988. MA 01731. 137 p.
- [9] Coulson K., Dave J., Sekera Z. Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering / University of California Press. 1960.
- [10] Дейрменджан Д. Рассеяние электромагнитного излучения сферическими полидисперсными частицами. М.: Мир, 1971. 165 с