
An Event Extraction System via Neural Networks
Alapan Kuila

Indian Institute of Technology Kharagpur
alapan.cse@iitkgp.ac.in

Sudeshna Sarkar
Indian Institute of Technology Kharagpur

sudeshna@cse.iitkgp.ernet.in

ABSTRACT
In this paper we describe the IIT KGP team’s participation in the
Event Extraction task at FIRE 2017. We have developed an event
extraction system which can extract event-phrases from tweets
written in Indian language scripts along with Roman script. We
designed our system on Hindi language and then used the same
system for Malayalam and Tamil languages. We have submitted two
systems one uses pipelined architecture another uses non-pipelined
architecture. In case of pipelined architecture we first identify the
tweets which contain event inside it and then extract the event-
phrase from those tweets. In case of non-pipelined system all the
tweets are directly pass to the event extraction system. Though
conceptually simple, non-pipelined approach gives better result
than pipelined approach and achieves F1-score of 50.01, 48.29 and
51.80 on Hindi, Malayalam and Tamil dataset respectively.

1 INTRODUCTION
Event Extraction from unstructured text is one of the most impor-
tant and problematic task in Information extraction and natural
language processing. Event extraction deals with automatic extrac-
tion of events depicting accidents, crime, natural disasters, political
events etc. from various newswires, discussion forums, social media
texts. Most of the existing event extraction systems [2, 8, 14] deals
with English texts where main objective is to detect event trigger
words and to classify those trigger words among predefined event
classes [11, 14]. Though there exists several successful works for
English language such as ACE, TAC1 evaluation tracks but there
is no such standard event extraction tool for Indian Languages.
The Event extraction task at FIRE 2017 aims to identify and extract
events from newswires and social media text specifically tweets.
The tweets are written in three Indian language scripts: Hindi,
Malayalam and Tamil along with romanized script. Unlike typical
event extraction systems[8, 14] where the objective is to detect the
trigger words from sentences and classify the words to a predefined
event types, the FIRE 2017 shared task on event extraction deals
with extraction of event-phrase (which depicts any event) from
the given tweets. In this paper, we present the system we devel-
oped for this event extraction task at FIRE 2017 which deals with
event extraction from newswires and social media text in Indian
languages.

2 RELATEDWORK
Many approaches have been taken to extract events from text.
Judea and Strube,2015 formulated the event extraction problem
as frame-semantic parsing [4]. McClosky et al.,2011 [12] uses de-
pendency parsing to extract events. Previously researchers use
feature based approach to extract events [3, 9, 18]. But features
are domain dependent and needs huge linguistic knowledge [15].

1https://tac.nist.gov/2017/KBP/

To overcome the difficulties of complicated feature engineering
and domain dependency, researchers use neural network approach
for event classification [2, 11, 14]. But all these works deal with
English language and principle objective of these tasks is to detect
the trigger word in the text which indicate an event. Some of these
papers also identify the arguments related to these event trigger
and their corresponding roles in the events [2, 14, 18].

3 TASK DEFINITION
Event extraction task at Fire 2017 requires participants to detect
event-phrase from given tweets. In the training set tweets are writ-
ten in three Indian languages:Hindi,Malayalam andTamil along
with romanized script. The objective is to detect the phrase within
the tweet which depicts events such as natural disasters(floods,
earthquakes etc), man made disasters (accidents, crime etc), politi-
cal events (inaugurations by political leaders, poltical rallies etc),
cultural/social events (Seminars, Conferences, light music events
etc).

4 DATASETS
Dataset contain tweets written in both Indian languages and Ro-
man script. Three Indian languages are: Hindi, Malayalam and
Tamil. Training dataset contains two file for each language. One file
contains all the tweets obtained using the Twitter API. Another an-
notation file contains event phrases extracted from tweets present
in previous file. Each line in the annotation file contains: tweet-id,
user-id, Event phrase of the tweet, index where this phrase starts
in the tweet string, string length of the event phrase. Test file con-
tains only the tweets with corresponding tweet-id and user-id. The
details of the training and test dataset is depicted in the Table 1.

Table 1: Dataset description: number of tweets

Language Training data No of events
in annotation
file

Test
data

Hindi 1024 402 4451
Malayalam 2218 674 5173
Tamil 3843 1109 5304

5 SYSTEM DESCRIPTION
In this section we describe our event extraction system. We have
experimented with two types of event extraction systems: 1. Non-
pipelined approach 2. Pipelined approach. We have used neu-
ral networks as the main technique in both the cases.



5.1 Preprocessing
The training file contains tweets which are written in mainly Indian
language script with some Romanized script. Some of the tweets
are ending with urls. To avoid data sparseness problem we have
replaced all the urls with a unique token. Event annotation file
contains some event phrases which are taken from same tweets
and indicate same event and the words contained in those event-
phrases are more or less same. We have omitted those redundant
event-phrases.

5.2 Run1: Non-pipelined approach
In case of non-pipelined approach we have formulated the event
extraction problem as sequence labelling problem. For every token
in the input tweet we have tagged thewordwith ’0’ or ’1’ i.e. ’outside
event-phrase’ or ’inside event-phrase’ respectively. And for this
task we have used a combination of convolution neural network [7]
along with bidirectional LSTM [16]. In order to prepare the input to
the convolution layer we have made a fixed sequence length which
is same as maximum tweet length and also used padding for shorter
sentences with a special token when necessary. We have used an
embedding layer in the neural network to transform each token into
a real valued vector [13, 17]. And then the sequence of real valued
vectors is fed to the neural networkmodel. Themain neural network
architecture employed here is a combination of convolution neural
network(CNN) [7] followed by a bidirectional LSTM [16]. Input
to the convolution layer is a matrix of size n ∗m where n is the
sequence length and m is the dimensionality of the word vector.
CNN pass the input matrix representation through a convolution
layer with a fixed filter length and filter size. And then without
using any pooling layer we have again passed the output of the first
convolution layer to the second convolution layer with another
fixed filter length and size keeping the sequence length same as
input sequence length. Now this internal representation is of size
n ∗mc wheremc is the dimension of internal vector representation.
This internal vector representation is fed to a bidirectional LSTM
with one hidden layer. The output of the bidirectional LSTM layer is
followed by a softmax layer to compute the probability distribution
over the possible tags of ’0’ or ’1’ for each token in the sequence.

W1

Out

0/1 0/1 0/1 0/1

W2 W3 Wn

Convolution layer

Word Embedding

Two back to back convolution layer

Feature vector representation

LSTM LSTM LSTM LSTM

LSTMLSTMLSTM LSTM

Out Out Out

Forward LSTM

Backward LSTM

Output Layer

Softmax layer

Tag Sequence

Input

Figure 1: Event-extraction architecture

5.3 Run2: Pipelined approach
It is noticed in the training corpus that approximately 40% of the
tweets contains event phrases. So it is vacuous to check all the
tweets for extracting event phrase. From this intuition we have
employ ed an event classification module before the event extrction
module, depicted in non-pipelined approach. In case of pipelined
approach first events are classified as event-tweet and without
event-tweets. Tweets which are classified as event-tweets by our
classification module are fed to the event extraction module. Other
tweets which are classified as without event-tweets are discarded
and are not fed to the event-extraction module. The classification
module is similar to [5] [6] where authors have done sentence
modelling and sentence classification using convolution neural
network.

input tweets Cleaned Tweets Tweets containing events

Tweet classification

event extraction model

output:Run2

Preprocessing

Figure 2: Block diagram of pipelined apprach

5.3.1 Tweet Classification. Here we have used a convolution
nueral network(CNN) based architecture for tweet classification. As
the tweets are of different length so padding is applied to make them
of fixed size. Now these padded sequences are fed to an embedding
layer to convert the tokens into a fixed size real-valued vectors.
Then the sequences of fixed size vectors are fed to a convolution
layer followed by maxpooling layer. The internal representation
again fed to a combination of convolution layer followed by a pool-
ing layer. The model uses multiple filter size to get multiple features.
Now the output is fed to a fully connected softmax layer which
gives the probability distribution over two classes: event-tweet
or without event-tweet. The performance of Tweet-classification
module is reported in Table 2.

Conv layer Pooling Layer Concatination

Conv and Pooling layer

Softmax layer0

1

W1

W2

W3

W4

W5

P

P

Input Tweet

Filter size=3,4,5 Feature maps

P: padding token

Tweet Classification
0: Tweet without event
1: Event-tweet

Contextual feature vectors

Figure 3: Tweet Classification Module

Eventually the tweets classified as event-tweets are fed to the
event extraction module described in non-pipelined section. The

2



architecture of event extraction module in pipelined approach is
same as non-pipelined approach. The only difference is that in
case of pipelined approach at the training time we use only those
tweets which contains events. Tweets which contains no event are
discarded from training data.

Event extraction module will give the event span(i.e. the event
phrase) within the tweets.

Table 2: Tweet classification accuracy

Language Precision(%) Recall(%)
Hindi 82.92 64.15
Malayalam 86.08 62.26
Tamil 83.33 63.69

5.4 Postprocessing
The event phrase which depicts events inside a tweet consists of
cosecutive word sequences. So after sequence tagging if there exist
’0’s inside sequence of ’1’s then first ’1’ is taken as the strating point
of event-phrase and the last ’1’ in the sequence indicates the ending
of event-phrase. All the tokens inside the boundary are cosidered
as event-pharase. We use this heuristic to maintain the constraint
that all the event-phrases consists of consecutive tokens.

5.5 Parameters and training
Event extraction model used in pipelined and non-pipelined ap-
proach uses same architecture and hyperparameters. Regarding
embeddings we have used 100 dimensions for word embedding in
the word embedding layer. The first convolution layer uses filter
size of 3 and number of filters usedmf = 30. In second convolution
layer the filter size is 4 and number of filtersmh = 20. The bidi-
rectional LSTM layer uses one hidden layer with hidden layer size
60. For event classification we have used CNN based classification
approach which uses word embedding of size 100. These vectors are
randomly initialized and fed to the embedding layer. We have em-
ployed filter size of {3, 4, 5} with 20 filters for each filter size for the
convolution operation. Finally, we have trained the neural network
models using adam optimizer with suffled minibatches, dropout
rate=0.5, backpropagation for gradient calculation and parameter
modification.

6 RESULT AND ERROR ANALYSIS
Table 3 shows the performance of event extraction in all three
languages using both pipelined and non-pipelined approach. While
examining the result in each languge we have found that non-
pipelined system has given better F-score than pipelined approach.
In Hindi dataset Pipeline system acquire F-score of 40.35 but in
non-pipelined approach the F-score is 50.01. For Malayalam the F-
score in Pipelined and non-pipelined approach are 47.17 and 48.29
respectively which are comparable. But in Tamil non-pipelined
system whose F-score is 51.80 beats pipelined system (F-score:
44.01). Error propagation in pipelined approach may be responsible
for this low performance of pipelined system. The performance of
tweet-classification module directly influenced the event extraction
system in pipelined approach. It is also obvious from the Table.

3 that the precision is very much low in both pipelined and non-
pipelined system. We will investigate on our model to improve the
precision score.

Table 3: Result on the final test set[P: Precision, R: Recall]

Language Run1 Run2
P R F-sore P R F-score
(%) (%) (%) (%) (%) (%)

Hindi 36.58 79.02 50.01 31.42 56.37 40.35
Malayalam 32.98 90.20 48.29 39.98 57.50 47.17
Tamil 43.16 64.77 51.80 39.73 49.33 44.01

7 CONCLUSION AND FUTUREWORK
We have taken two strategies for event extraction. In case of non-
pipelined approach we have classified each word with tag ’0’ or ’1’
indicating inside event phrase or outside event-phrase. But there
are many tweets which do not indicate any event. So in pipelined ap-
proach first we have detected those tweets which contain any event
and then identify the span of the event inside the tweet. The accu-
racy of the pipelined approach depends on accuracy of the tweet
classification module. So we will try to improve the performance
of tweet-classification module. In our experiment the number of
training tweets are very low. If more training data could be used
the event extraction accuracy may increase. In future we will try to
increase the performance of the event extraction system by using
more training data and other advanced strategies [1, 10].

REFERENCES
[1] Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao. 2017. Automatically

Labeled Data Generation for Large Scale Event Extraction. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers. 409–419.
https://doi.org/10.18653/v1/P17-1038

[2] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, Jun Zhao, et al. 2015. Event
Extraction via Dynamic Multi-Pooling Convolutional Neural Networks.

[3] Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaom-
ing Zhu. 2011. Using cross-entity inference to improve event extraction. In
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1. Association for Computational
Linguistics, 1127–1136.

[4] Alex Judea and Michael Strube. 2015. Event Extraction as Frame-Semantic
Parsing.. In * SEM@ NAACL-HLT. 159–164.

[5] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014).

[6] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. 1746–1751. http://aclweb.org/anthology/D/
D14/D14-1181.pdf

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[8] Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event Extraction via Structured
Prediction with Global Features.. In ACL (1). 73–82.

[9] Shasha Liao and Ralph Grishman. 2010. Using document level cross-event in-
ference to improve event extraction. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, 789–797.

[10] Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun Zhao. 2016. Leveraging
FrameNet to Improve Automatic Event Detection. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August

3

https://doi.org/10.18653/v1/P17-1038
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


7-12, 2016, Berlin, Germany, Volume 1: Long Papers. http://aclweb.org/anthology/
P/P16/P16-1201.pdf

[11] Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017. Exploiting Argument
Information to Improve Event Detection via Supervised Attention Mechanisms.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
1789–1798. https://doi.org/10.18653/v1/P17-1164

[12] David McClosky, Mihai Surdeanu, and Christopher D. Manning. 2011. Event
Extraction As Dependency Parsing. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies -
Volume 1 (HLT ’11). Association for Computational Linguistics, Stroudsburg, PA,
USA, 1626–1635. http://dl.acm.org/citation.cfm?id=2002472.2002667

[13] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities
in continuous space word representations.

[14] Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grishman. 2016. Joint Event
Extraction via Recurrent Neural Networks.. In HLT-NAACL. 300–309.

[15] Thien Huu Nguyen and Ralph Grishman. 2015. Event Detection and Domain
Adaptation with Convolutional Neural Networks.

[16] M. Schuster and K.K. Paliwal. 1997. Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc. 45, 11 (nov 1997), 2673–2681. https://doi.org/10.1109/78.650093

[17] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, 384–394.

[18] Bishan Yang and Tom M. Mitchell. 2016. Joint Extraction of Events and Entities
within a Document Context. CoRR abs/1609.03632 (2016). arXiv:1609.03632
http://arxiv.org/abs/1609.03632

4

http://aclweb.org/anthology/P/P16/P16-1201.pdf
http://aclweb.org/anthology/P/P16/P16-1201.pdf
https://doi.org/10.18653/v1/P17-1164
http://dl.acm.org/citation.cfm?id=2002472.2002667
https://doi.org/10.1109/78.650093
http://arxiv.org/abs/1609.03632
http://arxiv.org/abs/1609.03632

	Abstract
	1 Introduction
	2 Related Work
	3 Task definition
	4 Datasets
	5 System description
	5.1 Preprocessing
	5.2 Run1: Non-pipelined approach
	5.3 Run2: Pipelined approach
	5.4 Postprocessing
	5.5 Parameters and training

	6 Result And Error Analysis
	7 Conclusion and future work
	References

