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Abstract. Creutzfeldt-Jacob Disease (CJD) is a rapidly progressive,
uniformly fatal Transmissible Spongiform Encephalopathy. Sporadic CJD
(sCJD) is the most common form of CJD. Electroencephalography (EEG)
is one of the main methods to perform clinical diagnosis of CJD, mainly
because of Periodic Sharp Wave Complexes (PSWCs). In this paper,
we propose a new numerical coefficient and some network motifs, which
characterize the presence of PSWCs in an EEG tracing. Furthermore,
network motifs are able to detect what the most active and/or connected
brain areas are in the tracing segments with PSWCs.

1 Introduction

Creutzfeldt-Jacob Disease (CJD) is a rapidly progressive, uniformly fatal Trans-
missible Spongiform Encephalopathy (TSE). It is characterized by the accumu-
lation of a variant of the host encoded cellular prion protein in the brain [14].
CJD became well known to common people some years ago because one of its
variants, known as vCJD, has been linked to the transmission of the causative
agent of the bovine spongiform encephalopathy (BSE) to the human population,
mainly in United Kingdom. Sporadic CJD (hereafter, sCJD) represents the most
common form of CJD. An early and reliable diagnosis of CJD is extremely im-
portant to exclude other, potentially treatable, causes of rapidly progressive
encephalopathies. However, the early diagnosis of this disease is complicated
by the extreme heterogeneity of its clinical presentation. Electroencephalogra-
phy (hereafter, EEG) has always been, and still is, one of the main methods
to perform clinical diagnosis of neurological diseases in general [7], and of CJD
in particular. In fact, in the EEG of patients with sCJD, it is often possible to
observe three-phase periodic spikes with sharp waves known as “Periodic Sharp
Wave Complexes” (hereafter, PSWCs). More specifically, PSWCs were reported
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to occur in the EEG tracings of about two-thirds of patients with sCJD. For
this reason, they were included in the World Health Organization diagnostic
classification criteria of sCJD [14, 13].

In the past, approaches to investigating PSWCs in the EEGs of patients
with sCJD were mainly based on signal processing [14, 1, 12, 6]. By contrast, to
the best of our knowledge, no network analysis based approach to investigating
the CJD phenomenon has been previously proposed in the literature. Neverthe-
less, network analysis has been largely exploited in the investigation of brain,
especially in those application scenarios where brain connectivity is extremely
important [8]. For instance, in [9, 2], network analysis has been used to inves-
tigate Alzheimer’s disease, whereas, in [10, 5], it has been employed to analyze
Epilepsy. Since in sCJD (as well as in all the neurodegenerative diseases) the
investigation of the connection level of the brain areas is extremely important,
we argue that network analysis could play a key role in this research context. In
this paper, we aim at providing a first contribution in this setting. Indeed, we
propose a network analysis based approach to characterizing PSWCs in EEGs of
patients with sCJD. Here, the term “characterizing” means two things, namely:
(i) finding (if possible) a quantitative coefficient - that we call connection coef-
ficient - capable of distinguishing the EEG tracing segments with PSWCs from
the ones without PSWCs, and (ii) finding (possible) network motifs characteriz-
ing the presence (or, conversely, the absence) of PSWCs in an EEG tracing. In
our opinion, these two contributions are worthwhile. Indeed: (i) A numeric coef-
ficient can help to recognize PSWCs when they start to appear, thus allowing a
much earlier diagnosis of sCJD. Furthermore, in the future, in presence of much
more sophisticated electroencephalographs with 256 electrodes, the human eye
could experiment much more difficulties in finding PSWCs. (ii) Motifs represent
a further indicator of the presence of PSWCs. Furthermore, they could provide
a characterization of the behavior of brain areas in presence of PSWCs. For
instance, they could denote what the brain areas most connected and/or most
active are in presence of PSWCs. This is, probably, the most important contri-
bution of our approach because this information cannot be directly derived by
a human expert.

This paper is organized as follows: in Section 2, we present some support
data structures. In Section 3, first we illustrate our connection coefficient, then
we introduce our concept of motif and, finally, we present our approach to motif
extraction. Finally, in Section 4, we draw some conclusions.

2 Basic Support Data Structures

The EEGs to perform our investigation were provided by three different Italian
centers (i.e., University “Magna Graecia” of Catanzaro, Neurologic Institute
“Carlo Besta” of Milano, and Neurologic Institute of the University of Catania).
They regard a group of ten patients with sCJD examined in the last 15 years



in these three centers6. We segmented each EEG at disposal in such a way as
to separate the tracing segments with PSWCs from those without PSWCs. As
a consequence, for each EEG, we had several tracing segments, which could be
grouped in two distinct sets, namely, those containing PSWCs and those not
containing PSWCs.

Formally speaking, let EEGSet be the set of EEGs at our disposal, let eeg
be an EEG of EEGSet. Starting from eeg, it is possible to define a network N
(resp., N ) representing the set of segments of eeg with PSWCs (resp., without
PSWCs). Specifically: N = ⟨V,E⟩ and N =

⟨
V,E

⟩
. Here, V is the set of the

nodes of N and N . Each node vi ∈ V corresponds to an electrode. In our EEGs,
the electrodes were applied by following the 10-20 system. As a consequence,
|V | = 19. E (resp., E) is the set of the edges of N (resp., N ). Each edge eij ∈ E
connects the nodes vi and vj . It can be represented as eij = (vi, vj , wij). Here,
wij is a measure of “distance” between vi and vj , which is an indicator of their
disconnection level. Actually, each measure representing this feature could be
adopted in our model. In the experiments described in this paper, we adopted
the Permutation Disalignment Index (PDI) between vi and vj , which is a new
metric of cross-randomness between channels in multivariate electrophysiological
time-series [3].

In order to make our model more “user-friendly” and “expressive” and, at the
same time, more capable of discriminating strong and weak connections between
brain areas, we decided to construct two new networks, namely Nπ and Nπ,
obtained fromN andN by removing the edges with an “excessive” weight and by
coloring the other ones on the basis of their weight. More specifically, blue edges
denote strong connections (i.e., small weights), red edges represent intermediate
ones and, finally, green edges indicate weak connections. Due to space limitations,
we cannot report the technical details concerning the construction ofNπ and Nπ.

In Figure 1, we report the colored networks Nπ and Nπ for a patient with
sCJD. The disposal of the nodes in the networks reflects the 10-20 system, even if
they are rotated 90 degrees clockwise. Observe how the filtering of the edges with
the highest distance, along with the coloration of the other ones on the basis of
the closeness of the corresponding nodes, make this model very expressive. The
trends emerging from these figures have been confirmed in all the other EEGs
at our disposal. In particular, we observe that: (i) for a specific EEG, Nπ has
more edges than Nπ; furthermore, the edges of Nπ are generally stronger than
the ones of Nπ; (ii) in both networks, the strongest edges can be found in the
occipital area of the skull.

6 We are aware that the number of patients under examination is low. However, this is
due to the fact that sCJD is a very rare disease and, consequently, it is very difficult
to collect data about it.



Fig. 1. Colored Networks Nπ and Nπ for the patient CJD 10. Node labels reflect the
electrode names in the 10/20 system

3 PSWC Characterization

3.1 Connection Coefficient

As pointed out in the Introduction, one of the main features to investigate in neu-
rodegenerative patients is the connection level of brain areas. This feature is also
relevant in the problem we are facing. In fact, in the literature, it was shown that,
in presence of PSWCs, brain areas are more connected than in absence of them
[11]. Furthermore, in Section 2, we have seen that the networks corresponding
to the tracing segments with PSWCs are generally more and stronger connected
than the networks corresponding to the tracing segments without PSWCs.

In network analysis, one of the most important (and, at the same time, simple
and basic) tools for investigating network connection is the concept of clique.
We recall that, given a network, a clique of dimension k represents a totally
connected subnetwork with k nodes. On the basis of this reasoning, a quantitative
coefficient for discriminating the networks corresponding to the tracing segments
with PSWCs from the ones associated with the tracing segments without PSWCs
could highly benefit from cliques.

In particular, this coefficient should take the following considerations into
account: (i) Both the dimension and the number of cliques are important as
connectivity indicators. (ii) The concept of clique is intrinsically exponential; in
other words, a clique of dimension n + 1 is exponentially more complex than a
clique of dimension n.

Due to space limitations, we do not report here the technical description of
connection coefficient. However, in Table 1, we report the values ccNπ and ccNπ

of this coefficient for Nπ and Nπ , along with the percentage of decrease observed
when passing from ccNπ to ccNπ

, for all the patients at our disposal.
From the analysis of these tables we can draw two important results. In fact:

– ccNπ is always higher than ccNπ
except for the patient CJD 19 for whom the

two coefficients have the same value. However, Nπ19 and Nπ19 are associated



Patient ccNπ
ccNπ

ccNπ
− ccNπ

ccNπ

CJD 02 66064 24640 -62.70%
CJD 04 20864 13312 -36.20%
CJD 05 69632 43008 -38.24%
CJD 08 196672 51712 -73.71%
CJD 09 49664 25856 -47.94%
CJD 10 20736 9728 -53.09%
CJD 13 12288 5376 -56.25%
CJD 16 9721 9216 -5.19%
CJD 19 524288 524288 0%
CJD 22 164352 78080 -52.49%

Table 1. Values of ccNπ , ccNπ
and

ccNπ
− ccNπ

ccNπ
for all the patients at our disposal

with a very particular EEG. Indeed, Nπ19 is totally connected and, therefore,
has only a unique clique coinciding with it.Nπ19 , instead, is totally connected
except for only one edge; as a consequence, it has only two cliques, each
consisting of 18 nodes.
As a consequence, we can say that connection coefficient is really a quantita-
tive parameter capable of distinguishing the tracing segments with PSWCs
from the ones without PSWCs.

– The values obtained for ccNπ and ccNπ
confirm the previous results presented

in the literature about the fact that brain areas are more connected to each
other in presence of PSWCs than in absence of them [11].

3.2 Motifs

Motifs were already investigated and exploited in past approaches adopting net-
work analysis. In those scenarios, motifs are considered as “patterns of intercon-
nections occurring in complex networks at numbers that are significantly higher than
those in randomized networks” [4] . In our approach, we use motifs in a completely
different fashion. Indeed, we do not examine a unique complex network to find
patterns frequently repeated therein. By contrast, we search for patterns ap-
pearing frequently in the networks corresponding to the tracing segments with
PSWCs and being absent in the networks corresponding to the tracing segments
without PSWCs, thus characterizing the former segment typology against the
latter, and vice versa.

As will be clear in the following, our approach to deriving motifs exploits the
support data structures introduced in Section 2, along with a further support
network, strongly based on the clique concept, which we call clique network. The
clique network CN (resp., CN ) corresponding to Nπ (resp., Nπ) and to the set
C (resp., C) of the cliques of CN (resp., CN ), is defined as CN = ⟨CV,CE⟩ and
CN = ⟨CV ,CE⟩. Here: (i) CV represents the set of the nodes of CN ; there is
a node vi ∈ CV for each node vi ∈ V . A weight wi is associated with vi; it
represents the number of cliques of C in which vi is involved; (ii) CE represents
the set of the edges of CN . There is an edge (vi, vj , wij) ∈ CE if the edge (vi, vj)
is present in at least one clique of C. wij denotes the number of cliques of C in
which (vi, vj) is present; (iii) CV and CE are analogous to CV and CE, but



Motifs

Cz-Fz-P4 Fz-P4-Pz Fz-O2-P4 F4-O2-T6 C4-F4-T6 F4-P4-T6
Cz-Fz-Pz F7-P3-Pz Cz-Fz-O2 F7-O2-P3 Fz-O2-Pz P4-T3-T4
F7-Pz-T5 F7-Pz-T3 F7-O2-Pz F7-O1-Pz F7-O2-T5 F7-O2-T3
F7-O1-O2 Pz-T3-T4 T3-T4-T5 T3-T4-T6 O2-T3-T4 O1-T3-T4

Table 2. The basic motifs extracted by our approach

for C, instead of for C. The edges of CN and CN can be “colored” in a way
analogous to the edges of Nπ.

After having introduced clique networks, we define more restrictive colored
networks and clique networks by removing green edges from the networks defined
previously. Specifically, we defineNππ,Nππ, CN ππ and CN ππ. We also define the
sets NSetπ (resp., NSetπ, NSetππ, NSetππ, CNSetππ, CNSetππ) comprising
all the networks Nπ (resp., Nπ, Nππ, Nππ, CN ππ, CNππ) associated with the
EEGs of EEGSet. Finally, let t be a generic triad. We call noccπ (resp., noccπ,
noccππ, noccππ, cnoccππ, cnoccππ) the number of occurrences of t in NSetπ
(resp., NSetπ, NSetππ, NSetππ, CNSetππ, CNSetππ).

After having defined all support data structures and parameters, we are able
to describe our motif extraction approach. It consists of two main steps, the
former devoted to the extraction of basic motifs and the latter conceived to
the construction of derived ones. Preliminarily, it is necessary to specify what
is a basic motif in our context. Specifically: let t be a totally connected triad of
NSetπ. If: (1) t is present frequently in NSetπ and is absent in NSetπ, and (2)
this trend is confirmed (also only to a lesser extent) for NSetππ and NSetππ and
also for CNSetππ and CNSetππ, then t is a basic motif. In particular, t is a motif
characterizing the tracing segments with PSWCs against the ones without PSWCs.

In order to quantify the concept of “frequently”, we define a threshold thf =
αf · |NSetπ|7. In this case, Condition (1) becomes (noccπ ≥ thh) ∧ (noccπ = 0),
whereas Condition (2) becomes (noccππ > noccππ) ∧ (cnoccππ > cnoccππ).

In a dual fashion, it is possible to define the basic motifs associated with
NSetπ and characterizing the tracing segments without PSWCs against the ones
with PSWCs. In the following, we indicate by Mπ (resp., Mπ) the set of motifs
extracted starting from the triads of NSetπ (resp., NSetπ). In an analogous
way, it is possible to derive the basic motifs of the sets Mππ, Mππ, CMππ and
CMππ, obtained starting from the triads of NSetππ, NSetππ, CNSetππ and
CNSetππ. The basic motifs derived by our approach are reported in Table 2.

Once basic motifs have been extracted and a first version of Mπ, Mπ, Mππ,
Mππ, CMππ and CMππ has been obtained, it is possible to construct derived
(and, possibly, much more complex and significant) motifs starting from them.

Our approach to constructing new derived motifs starts from the already
known ones. It uses nodes common to two or more known motifs as “junction
points”. Formally speaking, let m1 = ⟨V1, E1⟩ and m2 = ⟨V2, E2⟩ be two motifs
of Mπ such that V1 ∩ V2 ̸= ∅. Then, it is possible to construct a candidate

7 We experimentally set the value of αf to 0.30.



Fig. 2. The most significant motifs characterizing the tracing segments with PSWCs

motif as the union of m1 and m2: m12 = ⟨V1 ∪ V2, E1 ∪E2⟩. Once m12 has been
constructed, analogously to what we have seen for basic motifs, it is necessary
to evaluate noccπ, noccπ, noccππ, noccππ, cnoccππ and cnoccππ

8. If, for these
parameters, conditions (1) and (2) presented above hold, then m12 can be added
to Mπ, i.e., Mπ = Mπ ∪ {m12}. Clearly, the addition of a new motif in Mπ

could lead to the possibility that new candidate motifs are constructed. As a
consequence, the enrichment process of Mπ is iterative and terminates when,
during an iteration, no new motif is added to Mπ. In an analogous fashion, the
derived motifs of Mπ, Mππ, Mππ, CMππ and CMππ can be extracted.

In Figure 2, we report the most significant derived motifs extracted by our
approach. The motif on the left derives from the tracing segments with PSWCs.
It indicates that, in presence of PSWCs, the most active areas of the human brain
reside in its right part. The other two motifs derive from the tracing segments
without PSWCs. They indicate that, in absence of PSWCs, the most active areas
of the human brain reside in its left part (motif on the center) and in its occipital
part (motif on the right).

4 Conclusion

In this paper, we have proposed a network analysis based approach to charac-
terizing PSWCs in EEGs of patients with sCJD. We have also introduced a new
form of network motifs, well suited for this application context.

Clearly, this paper is only a first attempt of applying network analysis to
characterize specific aspects of sCJD. In the future, we plan to investigate this
possibility in more depth. As an example, the component of our approach per-
forming motif extraction could be enriched in several directions. Furthermore,
our approach does not currently perform analyses in the sub-bands α, β, δ and
θ of an EEG; adding this feature could be extremely useful, in particular for the
sub-band δ, which was proven to play a relevant role in the analysis of sCJD [14].
The ultimate goal of our research efforts could be a complete network analysis
based decision support system, which can help a human expert in identifying
patients with sCJD as early as possible starting from their EEGs.

8 Clearly, for derived motifs, noccπ, noccπ, noccππ, noccππ, cnoccππ and cnoccππ refer
to the number of occurrences on motifs, instead of on triads.
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