
A compiler for stratified Datalog programs:
preliminary results?

Bernardo Cuteri and Francesco Ricca

DeMaCS, Università della Calabria, Rende (CS), Italy
{cuteri,ricca}@mat.unical.it

Abstract. Deductive databases originated from the confluence between
logic programming and databases. The core language of deductive data-
bases is Datalog, which has recently found a renewed interest and new
applications in several real-world problems. The evaluation of Datalog
is traditionally implemented in monolithic systems that are general-
purpose in the sense that they are able to process an entire class of
programs. In this paper, we follow a different approach; we present a tool
that is able to compile a given (non-ground) Datalog program, possibly
with stratified negation, into a problem-specific executable implemen-
tation. Preliminary results show the performance benefits that can be
obtained by a compilation-based approach.

Keywords: Compilation, Stratified programs, Deductive databases

1 Introduction

Deductive databases allow to manipulate data declaratively by means of logic
programming. The target language of this work is Datalog [4, 12]: a simple,
yet flexible logic programming language which is at the core of most deductive
database systems. Datalog is sufficiently expressive to model many practical
problems, and it recently found new applications in a variety of emerging do-
mains such as data integration, information extraction, networking, program
analysis, security, and cloud computing [6]. The evaluation of Datalog programs
is traditionally performed by systems that are general-purpose in the sense that
they are able to process an entire class of programs. In this paper, we follow a dif-
ferent approach; we consider a compilation strategy for the evaluation of Datalog
programs. Moreover, we consider an extension of Datalog that includes stratified
negation and allows the representation of a striclty larger class of problems. This
language is also called stratified Datalog.

A Datalog program with stratified negation [4] P is a set of rules of the
form Head :−Body, where Body is a conjunction of possibly negated literals,
and Head is an atom. A literal is either a positive or a negative atom, while

? Partially supported by the Italian Ministry for Economic Development (MISE) un-
der project “PIUCultura - Paradigmi Innovativi per l’Utilizzo della Cultura” (n.
F/020016/01-02/X27)”.

an atom is either a propositional variable or a n-ary predicate p with a list of
terms t1, ..., tn. A term is either a constant or a variable. If a variable appears
in the head of a rule or in a negative literal, it must then appear also in some
positive literal of the same rule (safety), and recursion trough negation is not
allowed (stratification). Programs are virtually split into two distinct parts: the
intensional part (i.e. the set of possibly non-ground rules) that describes the
problem, and the extensional part (i.e. the set of ground facts) that represent
an instance of the problem. As an example, the following program models the
well-known Reachability problem:

reaches(X,Y) :- edge(X, Y).

reaches(X,Y) :- edge(X,Z), reaches(Z,Y).

Facts of the form edge(i,j) for each arc (i,j) model the input graph. It is
custom in the logic programming community to refer to the instensional part as
the encoding, and to the extensional part as the instance. In applications, it is
common to use the same uniform encoding several times with different instances.

A general-purpose system (often needlessly) processes the same encoding ev-
ery time a new instance is processed. By compiling the encoding in a specialized
procedure, one can wire it inside the evaluation procedure so that one does not
have to process it every time. Moreover, specialized evaluation strategies can be
adopted on a per-rule basis possibly increasing evaluation performance.

Datalog represents the kernel sub-language of Answer Set Programming
(ASP) [2]. Notably, the grounder modules of ASP systems are based on algo-
rithms for evaluating stratified Datalog programs [7], and, basically, any mono-
lithic ASP system is also an efficient engine for this class of programs.

Actually, the idea of compiling Datalog programs is not new [1, 4, 8]; however,
a new complexity-wise optimal compilation-based approach has been recently
proposed in [11]. There, Liu and Stoller describe a method for transforming
Datalog programs (with rules having at most two literals in the body) into
efficient specialized implementations.

We extend the approach in [11] in order to handle rules with bodies of any
size, stratified negation and inequalities. Moreover, we implemented a concrete
system entirely developed in C++. In our prototype implementation, both the
compiler and its output (the compiled logic programs) are written in C++.

To assess the k of our tool, we performed an experimental analysis where we
compare our implementation against existing general-purpose systems capable
of handling stratified logic programs.

2 Compilation of stratified logic programs

In this section, we first overview the evaluation strategy adopted by our system,
and then we present the compilation strategy by means of an example.

Evaluation strategy. Stratified logic programs are evaluated in our approach
by following the classical bottom-up schema [12]. Basically, rules are applied

Algorithm 1 Reachability compiled program

1: . . . {Data structures initializations and facts reading}
2: while Wedge 6= ø do {Evaluation of rule (1)}
3: edge = Wedge.pop()
4: Redge.insert(edge)
5: EdgeZMap.insertKeyV alue({edge[1]}, {edge[0]})
6: Wreaches.insert({edge[0], edge[1]})
7: end while
8: while Wreaches 6= ø do {Evaluation of rule (2)}
9: reaches = Wreaches.pop()

10: Rreaches.insert(reaches)
11: for X : edgeZMap.at(reaches[0]) do
12: Wreaches.insert({X, reaches[1]})
13: end for
14: end while
15: while Wvertex 6= ø do {Evaluation of rule (3)}
16: vertex = Wvertex.pop()
17: Rvertex.insert(vertex)
18: if not Rreaches.contains({2, vertex[0]}) then
19: Rnoreaches.insert({vertex[0]})
20: end if
21: end while
22: Model = Redge ∪Rreaches ∪Rvertex ∪Rnoreaches

starting from the known facts to deduce new facts until no new information
can be derived. The notion of dependency graph of the input program is used
both to improve efficiency of the evaluation and to determine a correct order of
evaluation of rules in presence of negation. More in details, given program P the
dependency graph DG =< V,E > of P has a vertex p ∈ V for each intensional
predicate p, and a (direct) edge of the form (b, h) ∈ E whenever b occurs in
the body and h in the head of a rule of P . Edges are labeled as negative if the
body literal is negated. The dependency graph is, then, partitioned into strongly
connected components (SCC)s. A SCC is a maximal subset of the vertices, such
that every vertex is reachable from every other vertex. We say that a rule r ∈ P
defines a predicate p if p appears in the head of r. For each strongly connected
component (SCC) of DG, the set of rules defining all the predicates in C is called
the module of C. The dependency graph yields a topological order [C1], ..., [Cn]
over the SCCs: for each pair (Ci, Cj) with i < j, there is no path in the de-
pendency graph from Ci to Cj . Program modules corresponding to components
are evaluated by following a topological order. If two predicates do not belong
to the same SCC it means that they do not depend on each other, thus their
defining rules can be evaluated separately (possibly increasing evaluation perfor-
mance). Since, by definition, stratified programs admit no negative edge inside
any SCC (i.e. no loop can contain a negative edge), an evaluation performed
according to a topological order ensures a sound computation of the semantics
of programs with negation. Since the rules of a program module (possibly) need

to be processed several times, the evaluation of modules is optimized employing
the semi-näıve evaluation technique [12]. Basically, at each iteration n, only the
significant information derived during iteration n− 1 is used.

Compilation by example. The strategy described above is quite standard,
and it is employed also by general-purpose implementations. In our approach the
same strategy is used to produce a specialized implementation. In the following,
we exemplify how the compilation of a program module is done in our system.
Consider once more the program PGR that models the Reachability problem
with an extra rule to derive all vertices that do not reach vertex 2:

(1) reaches(X,Y) :- edge(X, Y).

(2) reaches(X,Y) :- edge(X,Z), reaches(Z,Y).

(3) noReach(Y) :- vertex(Y), not reaches(2,Y).

The dependency graph analysis basically ensures that the rule (3) is evaluated
after rule (1) and (2). Then , the core part of the compilation process applied to
PGR, in pseudo-code is presented in Algorithm 1. There, Wedge, Wreaches and
Wvertex denote working sets while Redge, Rreaches, Rvertex and Rnoreaches
denote result sets (cfr.[11]). Working sets and result sets are implemented in
efficient indexed data structures that provide associative access and efficient
insertions and deletions of ground atoms. In the example, we first loop on the
working set of predicate edge which was previously loaded with facts. In every
iteration, we retrieve and remove an element from the working set (pop) and
we insert it in the result set. At line 5 we insert an edge atom into an auxiliary
map (note that, attributes in atom variables, such as edge, are accessed in the
example by position, where the first attribute has index 0). Auxiliary maps are
used to index predicate ground atoms that appear in the body of some rule and
might be involved in join operations with other predicates of the same body. In
our example, rule (2) induces an indexing of predicate edge on attribute Z. At
line 6, we derive an instance of reaches because of rule (1) and we insert it in
its working set. After the edge loop completes, we can loop on Wreaches and
once again we retrieve and remove an atom from the working set and we insert
it into the result set. At this point (line 11) we loop over joining edge atoms
retrieved from the auxiliary map EdgeZMap. Inside the loop, we generate the
head ground atom and we insert it in Wreaches. In the last loop (line 15), we
iterate over vertex ground atoms and we add into Rnoreaches all vertices that
do not reach vertex 2 because of rule (3). Note that we do not need an extra
auxiliary map for reaches because we can directly use Rreaches instead. Finally,
the model of the program is given by the union of all result sets.

We remark that, there are tasks involved in the evaluation of programs that
are carried out by the compiler and do not appear in the execution code. For
instance, the computation of SCCs and the individuation of which data struc-
tures are needed in the evaluation. Thus, the product of the compilation does
not have to perform such tasks because they are done only once and for all in the
compilation process, while a general-purpose solver has to deal with such tasks
once for every instance. At low level, another advantage, comes from the possi-

Problem solutions

...

Problem instances

...

Model n Facts n

Model 1

Compiled program

Compiler

Facts 1

Encoding
(problem description)

Fig. 1. Datalog compiler architecture.

bility to declare data structures as variables and exploit direct access (reducing
pointers dereferencing), which results in faster C++ code.

Datalog Compiler. The compiler is written in C++ and the output is first
written in C++ and then compiled into an executable program (using standard
C++ compilers). Figure 1 shows a high-level architecture of Datalog compilation
and evaluation as designed in our system. The resulting executable program can
be run on any instance of the compiled logic program.

3 Experimental analysis

To assess the potential of our tool, we performed an experimental analysis where
we compared our system against existing general-purpose systems that can eval-
uate stratified logic programs by using bottom-up strategies, namely: Clingo [5],
DLV [9] and I-DLV [3]. Clingo and DLV are two well-known ASP solvers, while
I-DLV is a recently-introduced grounder. Even though the target language of

Table 1. Average execution times in seconds and number of solved instances grouped
by solvers and domains, best performance outlined in bold face.

compiled Clingo DLV I-DLV

Benchmark Inst. Time Sol. Time Sol. Time Sol. Time Sol.

LargeJoins 23 272 22 418 21 263 21 258 21
Recursion 21 139 21 331 20 444 21 332 21
Stratified negation 5 109 5 154 5 255 5 88 5

Totals 49 197 48 352 46 343 47 273 47

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

s)

Solved Instances

Compiled
Clingo

DLV
I-DLV

Fig. 2. Overall performance: Cactus plot of the execution times.

such systems is ASP they can also be considered as rather efficient implemen-
tations for stratified logic programs. The experimental analysis has been carried
out on benchmarks from OpenRuleBench [10], which is a well-known suite for
rule engines. The execution times reported for our system include compilation
times to provide a fair comparison with general-purpose tools.

Results are summarized in Table 1 and in Figure 2. By looking at the table,
we observe that our tool solves more instances than any alternative on the over-
all, and is the fastest on average in Large Joins and Recursion sets. In Stratified
negation, our tool is on par with the others in terms of solved instances, but is
slower on average than I-DLV . This might be explained by the fact that there
are still some optimizations, such as join reordering, that general-purpose sys-
tems adopt, but we did not consider yet in our prototype implementation. An
aggregate view on the results is reported in Figure 2 showing that our tool per-
forms well on the overall. For completeness, we report that compilation required
2.6s on average (over all benchmarks). This performance is acceptable given that
compilation is intended as a one-time process in our approach.

4 Conclusions and future works

In this paper, we presented a new compiler for stratified Datalog programs.1 The
prototype takes as input a stratified Datalog program and generates a specialized
implementation for a given program. Experimental results are very encouraging.
Ongoing work concerns the improvement of data structures generated by our

1 The tool can be downloaded from http://goo.gl/XhZXWh.

compiler and the inclusion of other known optimization techniques used by ASP
grounders [7]. Since, notably, the grounder modules of ASP systems are based
on algorithms for evaluating stratified Datalog programs and we are obtaining
promising results for Datalog, we then expect to be able to obtain similar im-
provements by applying compilation to the grounding of ASP programs. As for
future works, we aim at applying compilation-based techniques to the instanti-
ation of ASP programs.

References

1. Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The deductive database system
LDL++. TPLP 3(1), 61–94 (2003)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

3. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I -dlv: The new intelligent grounder
of dlv. In: AI*IA. LNCS, vol. 10037, pp. 192–207. Springer (2016)

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer
(1990)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP 2016 TCs. pp. 2:1–2:15 (2016)

6. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an inter-
active tutorial. In: Proceedings of SIGMOD 2011. pp. 1213–1216. ACM (2011)

7. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer
set programming. AI Magazine 37(3), 25–32 (2016)

8. Kifer, M., Lozinskii, E.L.: On compile-time query optimization in deductive
databases by means of static filtering. ACM TDS 15(3), 385–426 (1990)

9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

10. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the perfor-
mance of rule engines. In: Proceedings of WWW 2009. pp. 601–610. ACM (2009)

11. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 21:1–21:38 (2009)

12. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Sci-
ence Press (1988)

