
Schema Profiling of Document Stores?

Enrico Gallinucci, Matteo Golfarelli, and Stefano Rizzi

DISI — CINI, University of Bologna, Italy

Abstract. In document stores, schema is a soft concept and the doc-
uments in a collection can have different schemata; this gives designers
and implementers augmented flexibility but requires an extra effort to
understand the rules that drove the use of alternative schemata when
heterogeneous documents are to be analyzed or integrated. In this paper
we outline a technique, called schema profiling, to explain the schema
variants within a collection in document stores by capturing the hidden
rules explaining the use of these variants; we express these rules in the
form of a decision tree, called schema profile, whose main feature is the
coexistence of value-based and schema-based conditions. Consistently
with the requirements we elicited from real users, we aim at creating
explicative, precise, and concise schema profiles; to quantitatively assess
these qualities we introduce a novel measure of entropy.

Keywords: NoSQL, Schema Discovery, Decision Trees

1 Motivation and Outline

Recent years have witnessed an erosion of the relational DBMS predominance to
the benefit of DBMSs based on alternative representation models (e.g., document-
oriented and graph-based) which adopt a schemaless representation for data.
Schemaless databases are preferred to relational ones for storing heterogeneous
data with variable schemata and structural forms; typical schema variants within
a collection consist in missing or additional attributes, in different names or
types for an attribute, and in different structures for instances. The absence of a
unique schema grants flexibility to operational applications but adds complexity
to analytical applications, in which a single analysis often involves large sets of
data with different schemata. Dealing with this complexity requires a notable
effort to understand the rules that drove the use of alternative schemata, plus
an integration activity to identify a common schema to be adopted for analysis
—which is quite hard when no documentation is available.

In this paper we outline a technique to explain the schema variants within a
collection in document stores by capturing the hidden rules explaining the use
of these variants. We call this activity schema profiling. Schema profiling can
be used for instance when trying to decode the behavior of an undocumented
application that manages a document-base, or to support analytical applications

? This work was partly supported by the EU-funded project TOREADOR (contract
n. H2020-688797).

{	 	 "Ac&vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "UserID"	 :	 23,	
	 	 	 	 	 	 "Age"	 :	 42	
	 	 	 	 }	
}	

Ac&vityType	

CardioOn	 User	

BPM	 User.Age	

Ac&vityType=“Run” Ac&vityType=“Walk”

CardioOn=true CardioOn=false ∃	

s2 s3 s4 s5

∃	

s1

“Bike”

s3 s1
∃	

∃	

{	 	 "Ac&vityType"	 :	 "Run",	
	 	 	 "Dura&on"	 :	 10,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 80	
}	

{	 	 "Ac&vityType"	 :	 "Run",	
	 	 	 "Dura&on"	 :	 20,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 	
}	

{	 	 "Ac&vityType"	 :	 "Run"	
}	

{	 	 "Ac&vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "Name"	 :	 "Jack",	
	 	 	 	 	 	 "Age"	 :	 61	
	 	 	 	 }	 	
}	

{	 	 "Ac&vityType"	 :	 "Walk",	
	 	 	 "Dura&on"	 :	 60	 	
}	

{	 	 "Ac&vityType"	 :	 "Bike",	
	 	 	 "Dura&on"	 :	 130	 	
}	

v1 v2

v3

v4

v5 v6

v7

d1
d2

d3

d4

d5
d6

d7User.Age≤60 User.Age>60

Fig. 1. A schema profile in the physical fitness domain

that query a document store following either a schema-on-write or schema-on-
read approach [2].

A schema profile should describe the rules for assigning a document to a
schema based on the document features; hence, modeling a schema profile as a
classifier is a natural choice, which also allows the existing literature on classi-
fication to be reused. More specifically, since users need a comprehensible and
compact representation of schema profiles, among the different types of classifiers
we focus on decision trees.

Straightly reusing traditional decision trees for schema profiling would mean
classifying documents based on the values of their attributes only. However,
this would often lead to trees where a single rule explains different schemata,
which would yield an imprecise information. To address this issues, in our ap-
proach documents are also classified using schema-based conditions related to
the presence or absence of attributes. Consider for example Figure 1, showing
a portion of a schema profile built in the domain of physical fitness to describe
a collection of documents generated by training machines. Each internal node
in the tree is associated with a document attribute a and can express either a
value-based condition (white box; each outgoing arc is related to one or more
values of a, e.g., User.Age < 60) or a schema-based condition (grey box; the
two outgoing arcs represent the presence or absence of a in the document, e.g.,
∃BPM). Each path in the tree models a rule; it leads to a leaf (represented as a
circle) that corresponds to a schema found for the documents that meet all the
conditions expressed along that path (document examples are shown in dashed
boxes). So, for instance, schema s1 is used in all the documents for which either
ActivityType = “Bike”, or ActivityType = “Walk” and field User is not present.

Another drawback of traditional decision trees is that they often give several
rules for the same class. While this may be correct for some specific collections
(e.g., schema s1 in Figure 1 appears in two leaves, i.e., it is explained by two
different rules), in general we wish to keep the number of rules to a minimum

{	 	 "Ac&vityType"	 :	 "Run"	 ,	
	 	 	 "Dura&on"	 :	 108	 ,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "Notes"	 :	 null	 ,	
	 	 	 "Details"	 :	 	
	 	 	 {	 	 "MusicTracks"	 :	 [4	 ,	 8]	 ,	
	 	 	 	 	 	 "Comments”:	
	 	 	 	 	 	 [{	 	 "UserID"	 :	 15	 ,	 	
	 	 	 	 	 	 	 	 	 	 	 	 "Comment":	 "Well	 done!"	
	 	 	 	 	 	 	 	 	 }	 ,	 	
	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 16,	
	 	 	 	 	 	 	 	 	 	 	 "Vote"	 :	 "6/10"	
	 	 	 	 	 	 	 	 }]	 ,	
	 	 	 }	 ,	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "UserID"	 :	 23	 ,	
	 	 	 	 	 	 "Name"	 :	 "Jack"	 ,	
	 	 	 	 	 	 "Age"	 :	 42	 ,	
	 	 	 	 	 	 "FacebookID"	 :	 "jack42"	
	 	 	 	 }	
}	

{	 	 …	
	 	 	 "Comments"	 :	 	
	 	 	 {	 	 "type"	 :	 "array"	 ,	
	 	 	 	 	 	 "items"	 :	 	
	 	 	 	 	 	 [{	 	 "type"	 :	 "object"	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 "proper&es"	 :	 	
	 	 	 	 	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 {	 "type"	 :	 "number"	 }	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "Comment"	 :	 {	 "type"	 :	 "string"	 }	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 }	 ,	 	
	 	 	 	 	 	 	 	 	 {	 	 "type"	 :	 "object"	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 "proper&es"	 :	 	
	 	 	 	 	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 {	 "type"	 :	 "number"	 }	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "Vote"	 :	 {	 "type"	 :	 "string"	 }	
	 	 	 	 	 	 	 	 	 	 	 	 }]	
	 	 	 }	 ,	
	 	 	 ...	
}	

Path Type
	
Ac&vityType 	 primi&ve	
Dura&on 	 primi&ve	
CardioOn 	 primi&ve	
Notes 	 primi&ve	
Details 	 object	
Details.MusicTracks 	 array	
Details.Comments 	 array	
User 	 object	
User.UserID 	 primi&ve	
User.Name 	 primi&ve	
User.Age 	 primi&ve	
User.FacebookID 	 primi&ve	
	
	
	
	
	
	

(a) (b) (c)

Fig. 2. A JSON document representing a training session (a), a portion of its JSON
schema (b), and its r-schema (c)

aimed at giving users a more concise picture of schema usage. This is achieved
in our approach by introducing a novel measure called schema entropy that,
together with the classical entropy measure, enables a better assessment of the
quality of a schema profile.

2 From Documents to Schema Profiles

The central concept of a document store is the notion of a document. Following
the most widely adopted format, a document is a JSON object. An object is
formed by a set of name/value pairs called elements. A value can be either a
primitive value (i.e, a number, a string, or a Boolean), an array of values, an
object, or null. A collection D is a set of documents. Arrays have no constraint on
their size and on the type of their values, i.e., an array can simultaneously contain
numbers, strings, other arrays, as well as objects with different structures. Figure
2.a shows a document that represents a training session containing an array of
objects with different schemata (element Comments).

The JSON schema initiative provides the specifications to define the schema
of a document; however, as shown in Figure 2.b, the resulting schemata provide
a complex representation of arrays and are quite verbose. Indeed, the schema
of an array is defined as the ordered list of the schemata of its values, so two
arrays share the same schema only if they contain the same number of values and
these values share the same schemata in the same order. This schema-matching
criterion would add unnecessary burden to our approach —also considering that
the type variability of array elements is less relevant than that of the other
attributes. So we adopt a more concise representation for the schema of a doc-
ument, called reduced schema, which does not enter into the content of arrays,
but simply denotes the presence of an array structure.

Definition 1 (R-Schema of a Document). Given document d, the reduced
schema (briefly, r-schema) of d, denoted rs(d), is a set of attributes, each cor-
responding to one element in d. Attribute a ∈ rs(d) is identified by a pathname,
path(a), and by a type, type(a) ∈ {primitive, object, array}. While path(a) is a
string in dot notation reproducing the path of the element corresponding to a in
d, type(a) is the type of that element (type primitive generalizes numbers, strings,
Booleans, and nulls).

Note that, although r-schemata are defined as sets of attributes, their pathnames
code the document structure (short of the internal structure of arrays).

Example 1. Figure 2 shows a sample document, its JSON schema (as per the
specifications of the JSON schema initiative), and its r-schema. Note how, in
the r-schema, the complexity and heterogeneity of array Comments is hidden in
attribute Details.Comments with generic type array.

To put together the relevant information coded by different r-schemata, for
the documents within a collection D we define a global r-schema that includes
all the distinct attributes that appear in the r-schemata of the documents in D:

Definition 2 (R-Schema of a Collection). Given collection D, we denote
with S(D) the set of distinct r-schemata of the documents in D (where two
attributes in the r-schemata of two documents are considered equal if they have
the same pathname and the same type). The r-schema of D is defined as rs(D) =⋃

d∈D rs(d). Given s ∈ S(D), we denote with |D|s the number of documents in
D with r-schema s.

Based on the concepts introduced above, we can now define schema profiles.

Definition 3 (Schema Profile). A schema profile for collection D is a directed
tree T where each internal node corresponds to some attribute a ∈ rs(D) and
expresses a condition that can be either value-based or schema-based: (i) a node
expressing a schema-based condition has exactly two outgoing arcs, labelled as ∃
and 6 ∃ respectively; (ii) a node expressing a value-based condition has two or more
outgoing arcs, each labelled with a condition over the domain of a. Value-based
conditions can only be expressed on attributes of type primitive. Given node v, we
denote with Dv ⊆ D the set of documents that meet all the conditions expressed
by the nodes in the path from the root to v, with S(Dv) ⊆ S(D) the set of distinct
r-schemata of the documents in Dv, and with |Dv|s the number of documents
with r-schema s ∈ S(Dv) belonging to Dv.

Intuitively, each path in a schema profile models a rule that includes a set of
conditions for selecting one or more r-schemata. We also remark that Definition
3 can accommodate both binary and n-ary trees.

Example 2. Figure 1 shows an n-ary schema profile with two schema-based con-
ditions (User and BPM) and three value-based conditions (ActivityType, Car-
dioOn, and User.Age). In this case, it is D = {d1, . . . , d7} and S(D) = {s1, . . . , s5}.
The schema profile has leaves v1, . . . , v7, with Dv1 = {d1, d2}. Note that docu-
ment d3 belongs to both v2 and v3, since attribute CardioOn is missing.

3 Evaluating Schema Profiles

The first stage of our work has been devoted to elicit user requirements for
schema profiling with reference in two application domains: that of a company
selling fitness equipment, whose documents contain the registration of workout
sessions, and that of a software development company, whose documents contain
the log of the errors generated by the deployed applications. The requirements we
elicited can be summarized as follows: (i) a schema profile should be explicative,
i.e., it should give priority to value-based conditions (which explain the differ-
ence between two r-schemata in terms of the values taken by an attribute) over
schema-based ones (which merely acknowledge this difference); (ii) a schema pro-
file should be precise, i.e., it should accurately characterize each single r-schema
by avoiding mixing documents with different r-schemata in the same leaf of the
tree; (iii) a schema profile should be concise, i.e., it should provide a small set
of rules (a single rule for each r-schema).

Now we can informally state our final goal as that of finding a schema profile
that achieves a trade-off between precision, conciseness, and explicativeness. The
problem can be modeled as a classification one where the documents, properly
extended with schema information, are the objects to be classified according to
the schema labels. Since schema profiles are decision trees, to solve this problem
we have extended the well-known C4.5 algorithm [6]. For space reasons we cannot
give the details of the extension here, so in the following we just discuss how the
above-mentioned requirements can be quantitatively characterized.

3.1 Explicativeness

We consider a schema profile to be explicative if it prefers value-based condi-
tions over schema-based ones, because the latter acknowledge that there is a
difference between two r-schemata but do not really explain its reason. Indeed, a
value-based condition always relates two different attributes (for instance, with
reference to Figure 1, attributes User.Age and UserID); this is because a condi-
tion on the values of an attribute a does not partition the documents based on
the presence/absence of a. Conversely, a schema-based condition on a always
partitions the documents based on the presence/absence of a so, in a sense, it
merely explains itself.

So, to evaluate explicativeness we use the number of schema-based conditions
in the schema profile T : the lower this number, the more explicative T .

3.2 Precision

A distinguishing feature of the classification approaches based on decision trees is
the function they adopt to quantify the “purity” of the leaves where observations
are classified, where a leaf is said to be pure if all its observations share the same
class. The most common function used to this end is entropy [8].

A	
A=“a1” A=“a3”

s1 s4

A=“a2”
B	 B	 B	

s2 s4 s3 s4

B	
B=“b1”

s1 s2

B=“b2”

A	

s3

s4

A	 B	 |Ds|
s1 a1 b1 40
s2 a2 b1 30
s3 a3 b1 20
s4 − b2 10

B=“b1” B=“b2” B=“b1” B=“b2”B=“b2” A=“a1” A=“a3”
A=“a2”

A	

A=“a1” A=“a3”
A=“a2”

B	

B=“b1” B=“b2”

s4s1, s4 s2, s4 s3, s4 s1, s2, s3

TA	 TB	

TAB	 TBA	

s1, s2, s3, s4T0

B=“b1”

Fig. 3. A collection (on the left) and five possible schema profiles (see Example 3)

Definition 4 (Entropy). Let S(D) be the set of distinct r-schemata of the doc-
uments in collection D, and T be a schema profile for D with leaves v1, . . . , vm.
The entropy of T is

entropy(T) =

m∑
j=1

|Dvj
|

|D|
· entropy(vj)

where
|Dvj

|
|D| is the probability of leaf vj, entropy(vj) = −

∑
s∈S(Dv)

|Dvj
|s

|Dvj
| log

|Dvj
|s

|Dvj
|

is the entropy of leaf vj, and
|Dvj

|s
|Dvj

| is the probability of r-schema s within leaf

vj. Leaf vj is said to be pure if entropy(vj) = 0.

Entropy is strictly related to precision: within a schema profile with null entropy,
all the documents included in each leaf share the same r-schema, thus the schema
profile has maximum precision.

Example 3. Let D be a collection with 100 documents, 4 r-schemata s1, . . . , s4,
and two attributes, A and B. The values of the attributes for the different r-
schemata are listed in Figure 3 (symbol “–” means “any value”), together with
five possible schema profiles. A degenerate schema profile T0 made of a single
root node v0 has entropy entropy(T0) = entropy(v0) = 1.85 (because Dv0 ≡ D).
Schema profiles TA and TB have entropy(TA) = 0.46 and entropy(TB) = 1.38,
respectively. Both schema profiles TAB and TBA have null entropy because no leaf
includes multiple r-schemata.

3.3 Conciseness

Entropy is focused on node purity, hence its minimization often leads to split
observations of the same class among several leaves. While this is a secondary
problem in generic classification problems, where the precision of the resulting
model is more important than its readability, it becomes critical in schema pro-
filing since it conflicts with the conciseness requirement. Indeed, in our context,

each r-schema might end up for being explained by a wide set of rules, thus
precluding users from getting a concise picture of schema usage. For instance,
with reference to Example 3, though both schema profiles TAB and TBA have
null entropy, the latter is clearly the one that best represents the collection, with
each r-schema being reached by a single path in the tree.

To evaluate the conciseness of schema profiles, we propose a measure called
schema entropy. Our requirement is to reduce the number of rules provided by
maximizing the cohesion of the documents that share the same r-schema —a
maximally concise schema profile is one where there is a single rule for each
r-schema. So we invert the original definition of entropy to relate it to the purity
of the r-schemata instead of the purity of the leaves: in terms of entropy, a leaf is
pure if it contains only documents with the same r-schema; in terms of schema
entropy, an r-schema is pure if all its documents are in the same leaf. The schema
entropy of a degenerate schema profile where all the documents are included into
a single node (the root) is 0; when documents are split into different leaves, the
schema entropy can never decrease.

Definition 5 (Schema Entropy). The schema entropy of T is

sEntropy(T) = −
∑

s∈S(D)

|D|s
|D|
· sEntropy(s)

where sEntropy(s) =
∑m

j=1

|Dvj
|s

|D|s log
|Dvj

|s
|D|s is the schema entropy of r-schema

s ∈ S(D).

Example 4. With reference to Example 3, it is sEntropy(T0) = sEntropy(TB) =
sEntropy(TBA) = 0 and sEntropy(TA) = sEntropy(TAB) = 0.16. Therefore, if
both entropy and schema entropy are considered, TBA is the best schema profile.

4 Related Work and Conclusions

Early work on schema discovery focused on describing semi-structured data re-
trieved from web pages based on the Object Exchange Model (e.g., [5]). As XML
became a standard for data exchange on the web, work such as [1] emerged to
help software tools in processing XML documents or in integrating data. With
the replacement of XML with JSON, similar issues are now being addressed
aimed at capturing and representing the intrinsic variety of schemata within a
collection of JSON objects. In [3] a unique schema is built for the JSON ob-
jects returned by a single API service, while the union of all the attributes in a
collection of JSON objects is modeled in [4] to measure the heterogeneity of a
collection. In [7], a versioned schema model for a collection of JSON documents
is built by creating a new version of the same attribute for every intensional
variation found in the documents. Finally, in [9] the documents of a collection
are clustered to identify groups of similar schemata; then, the schemata of each
group are summarized into a skeleton, i.e., a tree containing the smallest set of
core attributes according to a frequency-based formula.

In this paper we have outlined an approach to schema profiling for document
stores. The idea is to capture the rules that explain the use of different schemata
within a collection through a decision tree whose nodes express either value-based
or schema-based conditions. Though our approach has some points in common
with the above mentioned ones, its goal is completely different. The ultimate
goal of the previous work is to provide a way to describe the intensional aspects
of the documents, while ours is to explain the schema variants. Besides, no other
approach considers the extensional point of view to describe schema variants.
Finally, while all previous approaches produce in output some form of skeleton
schema, we create a schema profile that classifies schema variants.

We made some experimental tests using both synthetic and real-world col-
lections, with numbers of documents ranging from about 10000 to more than 5
millions, and it turned out that our approach achieves a good trade-off among
precision, conciseness, and expressiveness. Specifically, to assess its accuracy we
compared the schema profiles it delivers with a baseline (for synthetic collec-
tions the baseline is the set of rules used to generate the collection itself, while
for real-world collections it has been provided by the users). For comparisons we
adopt the weighted tree edit-distance (i.e., the length of the cheapest sequence
of node-edit operations that transforms one tree into the other, weighted on
the tree depth), which ranges between 0 and 1.17 for synthetic collections and
between 0 and 1.33 for real-world collections. Finally, in terms of efficiency, we
found that the total time to build a schema profile ranges from a few seconds to
about 3 minutes, depending on the number of documents and on their number
of attributes (on a 64-bits Intel Core i7 quad-core 3.4GHz).

References

1. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. ACM TWEB 4(4), 14
(2010)

2. Dong, X.L., Srivastava, D.: Big data integration. In: Proc. ICDE. pp. 1245–1248
(2013)

3. Izquierdo, J.L.C., Cabot, J.: Discovering implicit schemas in JSON data. In: Proc.
ICWE. pp. 68–83 (2013)

4. Klettke, M., Störl, U., Scherzinger, S., Regensburg, O.: Schema extraction and struc-
tural outlier detection for JSON-based NoSQL data stores. In: Proc. BTW. vol.
2105, pp. 425–444 (2015)

5. Nestorov, S., Ullman, J., Wiener, J., Chawathe, S.: Representative objects: Con-
cise representations of semistructured, hierarchical data. In: Proc. ICDE. pp. 79–90
(1997)

6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
7. Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned schemas from NoSQL

databases and its applications. In: Proc. ER. pp. 467–480 (2015)
8. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mo-

bile Computing and Communications Review 5(1), 3–55 (2001)
9. Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou, J., Wangz, C.: Schema

management for document stores. Proc. VLDB Endowment 8(9), 922–933 (2015)

