
PRACTIONIST:
a Framework for Developing BDI Agent Systems

Vito Morreale∗, Susanna Bonura∗, Giuseppe Francaviglia∗,
Michele Puccio∗, Fabio Centineo∗, Giuseppe Cammarata∗,

Massimo Cossentino†, and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo

I. THE FRAMEWORK

In this abstract we give a brief overview of the PRACTION-
IST framework, which supports programmers in developing
BDI agents and is built on top of JADE [1], a widespread
platform that implements the FIPA1 specifications. Therefore,
our agents are deployed within JADE containers and their main
cycle is implemented by means of a JADE cyclic behaviour
(figure 2).

Fig. 1. PRACTIONIST over JADE and Prolog.

A PRACTIONIST agent is a software component endowed
with the following elements (figure 2):

• a set ofperceptionsand the correspondingperceptorsthat
listen to some relevant external stimuli;

• a set of beliefs representing the information the agent
has got about both its internal state and the external
environment;

• a set ofgoals the agent wishes or wants to pursue. They
represent some states of affairs to bring about or activities
to perform and will be related to either its desires or
intentions (see below);

• a set ofgoal relationsthe agent uses during the deliber-
ation process and means-ends reasoning;

• a set ofplansthat are the means to achieve its intentions;
• a set ofactions the agent can perform to act over its

environment; and
• a set ofeffectorsthat actually execute the actions.

As shown in figure 2, PRACTIONIST agents are structured
in two main layers: the framework defines the execution logic
and provides the built-in components according to such a logic,
while the top layer includes the specific agent components to
be implemented, in order to satisfy system requirements.

1http://www.fipa.org

Fig. 2. Components of PRACTIONIST agents.

Therefore, a developer who wants to design an agent has to
develop(i) the Goals the agent could pursue,(ii) the means
(a set of plans, i.e. thePlan Library) to pursue such goals or
to react to the stimuli coming from the environment,(iii) the
Perceptorsto receive such stimuli,(iv) the Actions the agent
could perform and the correspondingEffectors, and(v) the set
of beliefs and rules (Belief Base) to model the information
about both its internal state and the external world (details on
beliefs are given in [2]).

In the following section we give an overview of how to pro-
gram some of agent components, with reference to the paper
”Reasoning about Goals in BDI Agents: the PRACTIONIST
Framework”, presented at the WOA 2006 [3].

II. I MPLEMENTING AGENT COMPONENTS

The concepts and the examples given in this section refer to
the tileworld demonstrator, which is a multi agent system with
two types of agents, i.e. an agent that manages the environment
and player agents.

4



Several simulation parameters can be altered at run time,
such as the appear rate and the life cycle of holes, tiles
and obstacles. These information was represented by beliefs
2 about the state of the environment represented through the
following predicates:

• gridSize(width: X, height: Y)represents the size of the
grid, in terms of width and height,

• holeBirth(rate: X) and holeLifecycle(rate: X)represent
the frequency of holes’ birth and their mean life cycle,

• tileBirth(rate: X) and tileLifecycle(rate: X)represent the
frequency of tiles’ birth and their mean life cycle,

• obstacleBirth(rate: X)andobstacleLifecycle(rate: X)rep-
resent the frequency of obstacles’ birth and their mean life
cycle,

• agent(name: X)represents other active player agents.
The framework provides the support to let agent make

meta-level reasoning. In other words, each player agent, by
reasoning on above information, will be able to select the
optimal strategy to increase its score. For example, the plan
FindTileInAmplitudePlanimplements a depth search behavior,
while the planFindTileRandomicallyPlanimplements a ran-
dom search strategy. Thus these plans are used by the player
to find a tile in several circumstances.

Analogously, agent beliefs about its state refer to the fol-
lowing predicates:

• position(xPos: X, yPos:Y)represents the position of the
player agent,

• score(value: X)represents the current score of the player,
• hold(obj: tile) states that the player agent holds a tile.
On the base of such beliefs, some goals are defined as well.

As an example, theHoldTile is a state goal that succeeds when
hold(obj: tile) is believed true by the agent for the sametile.
Thus, in theAchieveTilePlan, the player agent has to identify
a tile within the grid to satisfy theHoldTile goal and then hold
such a tile by executing the action of picking it up.

The player agent is endowed with theTakereffector, which
triggers and executes the pick up action and updates the
environment status and its internal state. The agent is also
provided with other effectors (e.g.Mover, Releaser, etc.) to
be able to perform other actions, such as moving itself in the
grid and releasing holding tiles.

Finally, the cognitive system of the agent includes a set
of perceptors that receive stimuli from the environment. As
an example, the player agent is equipped with the perceptors
TileLifeCyclePerceptor, HoleBirthPerceptor, etc. to be able to
perceive changes from the environment about tiles’ birth rate,
the obstacles’ life cycle, and so forth.

III. PRACTIONIST AGENT INTROSPECTIONTOOL

(PAIT)

The framework also provides developers with the PRAC-
TIONIST Agent Introspection Tool (PAIT), a visual integrated

2In PRACTIONIST beliefs can be about either predicates or other be-
liefs (expressed by the operatorBel). Moreover, predicates can be ex-
pressed by specifying the role of their arguments, i.e.predicate(role1 :
element1, role2 : element2, ..., roleN : elementN).

Fig. 3. The PRACTIONIST Agent Introspection Tool (PAIT).

monitoring and debugging tool, which supports the analysisof
the agent’s state during its execution. In particular, the PAIT
can be suitable to display, test and debug the agents’ relevant
entities and execution flow. Each of these components can
be observed at run-time through a set of specific tabs (see
figure 3); the content of each tab can be also displayed in an
independent window.

All the information showed at run-time could be saved
in a file, providing the programmer with the opportunity of
performing an off-line analysis. Moreover, the PAIT provides
an area for log messages inserted in the agent source code,
according to the Log4j approach. The usage of this console
and the advantages it provides are described in more details
in [4].

ACKNOWLEDGMENTS

This work is partially supported by the Italian Ministry
of Education, University and Research (MIUR) through the
project PASAF.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” in Proceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[2] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino,and S. Gaglio,
“PRACTIONIST: a new framework for BDI agents,” inProceedings of the
Third European Workshop on Multi-Agent Systems (EUMAS’05), 2005,
p. 236.

[3] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M.Cossentino,
and S. Gaglio, “Reasoning about goals in BDI agents: the PRACTIONIST
framework,” inProceedings of Joint Workshop “From Objects to Agents”,
2006.

[4] V. Morreale, S. Bonura, F. Centineo, A. Rossi, M. Cossentino, and
S. Gaglio, “PRACTIONIST: implementing PRACTIcal reasONIng syS-
Tems,” in Proceedings of Joint Workshop “From Objects to Agents”,
2005.

5


