
A Heterogeneous Multi-Agent System

for Adaptive Web Applications

Andrea Bonomi, Giuseppe Vizzari

Department of Informatics, Systems and Communication

University of Milan–Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{andrea.bonomi, vizzari}@disco.unimib.it

Marcello Sarini

Department of Psychology

University of Milan–Bicocca

Piazza dell’Ateneo Nuovo 1, 20126 Milan - Italy

sarini@disco.unimib.it

Abstract— A web site presents an intrinsic graph–like spatial
structure composed of pages connected by hyperlinks. This
structure may represent an environment in which agents related
to visitors of the web site are positioned and moved in order
to track their navigation. To consider this structure and to
keep track of these movements allows the monitoring of the site
and of its visitors, in order to support the enhancement of the
site itself through forms of adaptivity, carried out by specific
interface agents. This paper presents a heterogeneous multi-
agent system supporting the collection of information related to
user’s behaviour in a web site by specific situated reactive agents.
The acquired information is then exploited by an application
supporting the proposal of hyperlinks based on the history of
user’s movement in the web site environment.

I. INTRODUCTION

A web site presents an intrinsic graph–like spatial structure

composed of pages connected by hyperlinks. However, this

structure is generally not considered by web servers, which

essentially act as a sort of extended and specific File Transfer

Protocol servers [1], receiving requests for specific contents

and supplying the related data. Several web–based applications

instead exploit the structure of the sites itself to support users

in their navigation, generating awareness of their position. For

instance, many e–commerce sites emphasize the hierarchical

structure linking pages related to categories (and possibly

subcategories), included products and their specific views, and

remind users’ relative position (i.e. links to higher level nodes

in the tree structure). Some specific web–based applications,

mainly bulletin boards and forums (see, e.g., phpBB1), are

also able to inform users about the presence of other visitors

of the web site or even, more precisely, of the specific area of

the site that they are currently viewing. Web site structure and

users’ context represent thus pieces of information that can be

exploited to supply visitors a more effective presentation of

site contents.

Different visitors, however, may have very different goals

and needs, especially with reference to large web sites made

up of several categories and subcategories. This consideration

is the main motivation for the research in the area of adaptive

web sites [2]. The various forms of adaptation may provide

a customization of site’s presentation for an individual user

1http://www.phpbb.com/

or even an optimization of the site for all users. There are

various approaches supporting these adaptation activities, but

they are generally based on the analysis of log files which

store low–level requests to the web server: this kind of file

is generally made up of entries including the address of the

machine that originated the request, the indication of the

time and the resource associated to the request. In order to

obtain meaningful information on users’ activities these raw

data must be processed (see, e.g., [3]), for instance in order

to collapse requests related to various elements of a single

web page (e.g. composing frames and images) into a single

entry. Moreover, this kind of information must be further

processed to detect groups of requests that indicate the path

(web pages connected by hyperlinks) that a user followed

in the navigation. Recent results [4] show that this kind of

analysis, also referred to as web usage mining, could benefit

from the consideration of site contents and structure.

This paper proposes to exploit the graph-like structure of a

web site as a Multi–Agent System (MAS) environment [5] on

which agents representing visitors of the web site (hereafter

user agents) are positioned and moved according to their

navigation. In particular, in this case, the environment is a

virtual structure which allows the gathering of information

on user’s activities in a more structured way, simplifying

subsequent phases of analysis and adaptation of site contents.

Furthermore, part of the adaptivity could be carried out

without the need of an off-line analysis, but could be the

result of a more dynamic monitoring of users’ activities. In

particular, the paths that are followed by users are often related

to recurrent patterns of navigation which may indicate that

the user could benefit from the proposal of additional links

providing shortcuts to the terminal web pages, as a sort of

suggestion to the web site visitor. Index pages may thus be

enhanced by the inclusion of links representing shortcuts to

the typical destinations of the user in the navigation of the

web site. Moreover, links between terminal content pages that

are not provided by the static structure of the site can also be

identified and exploited. Users without a relevant history (and

also anonymous or unrecognized ones) may instead exploit

the paths that are most commonly followed by site visitors.

Moreover such an information could also be communicated

to the webmaster suggesting possible modifications to the

66

Web
page

User
agent

MMASS
node

Fig. 1. The diagram shows a mapping between a web site structure and an
agent environment.

static predefined structure of the site. This approach provides

thus both a support for site optimization, but also for the

customization to specific visitor’s needs and preferences.

The metaphor of a web site as an environment on which

users move in search for information is not new (see, e.g., [6]

but also more recent approaches such as [7]), and its applica-

tion to web site adaptation resembles the emergent, collective

phenomenon of trail formation [8] which can be identified

in several biological systems. However, this proposal provides

more than just gather information on users’ behaviours for sake

of web pages adaptation or navigation support, but exploits

the MAS environment to provide users a means for mutual

perception and interaction. In fact information related to users’

positions on the environment representing the web site can

also be used to supply them awareness information on other

visitors which are currently browsing the same page or area

of the site. Moreover, to keep track of this information allows

the conception of a form of interaction among users that is

based on their positions on the site. Essentially, more than just

showing a user the other registered visitors that are “nearby”

(i.e. viewing the same page or adjacent ones), the system

could also allow to communicate with them. This form of

interaction, in addition to the web page adaptation function,

requires the adoption of a supporting technology that goes

beyond the request/response model.

The overall system architecture requires thus proper in-

terface agents, able to interact with user agents situated in

the previously introduced environment in order to exploit the

acquired information on users’ behaviours. This second type

of agent is totally different from user agents, both from a

modelling point of view and with reference to the supporting

technology. In fact the web interface agent must be active as

long as the related web page is being viewed by a visitor

and it must be able, in collaboration with the rest of the

system, to proactively modify the page to improve the user’s

browsing experience. The overall system architecture includes

thus heterogeneous agents collaborating to achieve this goal.

The following section describes the general framework of

this approach, the mapping between the web site structure and

agents’ environment, while Section III introduces the gath-

ered information on agents’ movement in their environment.

Section IV describes an application providing the exploitation

of this information for the adaptation of web pages, both

for customization and optimization. The adopted technology

supporting the design and development of the related interface

agent is introduced, and discussed with reference to existing

alternatives. A brief comparison of this approach and related

work can be found in Section V, and finally concluding

remarks and future developments will end the paper.

II. SITE STRUCTURE AND REACTIVE USER AGENTS

A web site is made up of a set of HTML pages (generally

including multimedia contents) connected by means of hyper-

links. It is possible to obtain a graph-like structure mapping

pages to nodes and hyperlinks to edges interconnecting these

nodes. This kind of spatial structure could be exploited as an

environment on which user agents related to site visitors are

placed and move according to the related users’ activities. A

diagram showing a sample mapping among a web site and this

kind of structure is shown in Figure 1.

This structure can be either static or dynamic: for instance it

could vary according to specific rules and information stored

in a database (i.e. database driven web sites). However, this

kind of structure (both for static and dynamic web sites)

can generally be obtained by means of a crawler (see, e.g.,

Sphinx [9] and the related WebSphinx project2); then it could

be maintained by having periodic updates.

Given this spatial structure, a multi-agent model allowing

an explicit representation of this aspect of agents’ environment

is needed to represent and exploit this kind of information.

Environments for Multi Agent Systems [10] and situated

agents represent promising topics in the context of MAS

research, aimed at providing first class abstractions for agents

environment (which can be more than just a message transport

system), towards a clearer and more concrete definition of

concepts such as locality and perception. There are not many

models for situated agents, which provide an explicit repre-

sentation of agent’s environment. Some of them are mainly

focused on providing mechanisms for coordinating situated

agent’s actions [11], other provide the interaction among

agents through a modification of the shared environment (see,

e.g., [12], [13]). An interesting approach that we adopted for

this work is represented by the Multilayered Multi Agent

Situated Systems (MMASS) [14] model. MMASS allows the

explicit representation of agents’ environment through a set of

interconnected layers whose structure is an undirected graph

of nodes (also referred to as sites in the model terminology;

from now on we will use the term node to avoid confusion

with web sites). The model was adopted given the similarity

among the defined spatial structure of the environment and the

structure underlying a web site. Moreover, the model defines

a set of allowed actions for agents’ behavioural specification

2http://www-2.cs.cmu.edu/ rcm/websphinx/

67

!"#$%&'()"& !"#$*"&+"&

"+",-)./-01

2&345"-
$*"&+1"-

64-7+"$)"))7',)$17)-

892$"+",-)./-01

6:",-$*"&+"&

;3-3

"+",-)./-01

3:",-<$=>?
@3:"<$

"+",-)./-01 0
'
+
"

=>?

"+",-)./-01

A,-"&B34"$
6:",-

-&345"&$7,+'43-7',
C)"&$=>?D

',$@3:"$"+",-)./-01$

EC)"&$=>?F

Fig. 2. A diagram showing how user actions influence the related reactive user agent through the capture of requests by the Tracker module.

(including a primitive for agents’ movement); for this specific

application, however, the constraint which limits the number

of agents positioned in a node was relaxed. In fact there is no

limit to the number of users that are viewing the same web

page.

Moreover a platform for the specification and execution of

simulations based on the MMASS model [15] was exploited to

implement the part of the system devoted to the management

of agents in their environments. The definition of spatial

structure of the environment was supplied by the previously

introduced crawler, while agents’ movement is guided by

external inputs generated by the requests issued by the related

web site visitor. The general architecture of the system is

shown in Figure 2: the Agent server module is implemented

through the MMASS platform, while the Web server is a

Tomcat servlet container hosting SnipSnap3, a Java-based

weblog and wiki software. The highlighted Tracker module

is a implemented through a Java Servlet, which is invoked by

every page of the site but does not produce a visible effect on

the related web page. The Tracker is responsible for triggering

the creation and the movement of agents related to visitors in

the environment related to the web site structure. In particular,

when a user makes his/her first page request the Tracker is

invoked by the interface agent associated to the page. Then

the Tracker tries to set a cookie on the client including the

session information. If the cookie is accepted, it is possible to

use the session information to identify the user; on the other

hand, requests from clients not accepting cookies will not be

monitored.

The management of agents creation and movement is not as

simple as its intuitive description might indicate. In fact, the

same user could be using different browser pages or tabs to

simultaneously view distinct pages of the site. In other words,

a user might be simultaneously following different trajectories

in his/her web site navigation. In order to manage these

situations, a user can be related to different agents, and his/her

requests must be associated to the correct agent (possibly a

new one). Finally, agents related to finished (or interrupted)

user navigation should be eliminated by the system, storing

3http://snipsnap.org

the relevant part of their state in a persistent way, until the

related user requires again a page of the site. In particular,

remote users’ requests may be divided into two main classes,

according to their effects on the Tracker and Agent server:

• creating a new agent: whenever a new user requires a web

page, the Tracker will invoke the Agent Server requiring

the creation of an agent whose starting position is the

node related to the required page; the same effect is

generated by a request coming from an already registered

user which was not present in the system, but in this case

information related to previous user agents must be re-

trieved in order to determine the new agent’s state; finally,

when an already registered and active user requires a page

that is not adjacent to its current one, a new agent related

to the new browsing activity must also be created;

• generating the movement of an agent: when the viewer of

a page follows one of the provided links, the related web

browser will generate a request for a page that is adjacent

to one of the related agents which must be moved to the

node related to the required page; whenever there are

two or more agents in positions that are adjacent to the

required page, in order to solve the ambiguity and choose

the agent to be moved, the Tracker will invoke the Session

object in which it stores the current URL related to the

viewed page.

The following section will describe how the raw information

that can be gathered thanks to the above described framework

can be processed in order to obtain higher level indications

on users’ behaviours. Since the interface agent collaborates to

the user monitoring process, more details on this topic will

instead be given in Section IV-B.

III. GATHERED INFORMATION: BROWSING TRACES

This system allows to gather and exploit two kinds of

information: first of all situated agents related to web site

visitors have a perception of their local context, both in terms

of relative position, adjacent nodes and presence of other

visitors; second, agents may gather information related to the

paths defined by the browsing activities or the related user in

the site itself.

68

A

1 2

3
4

Trace 1

Trace 2

(a) (b)

1

Trace 2

2

A1

A2

Trace 1

A1

Fig. 3. A diagram describing two traces that are derived by a sequence of
user requests.

There are inherent issues in determining in a precise way the

actual users’ activities on the web site, due to the underlying

request/response model: the only available indications on

these activities can be obtained by requests captured by the

Tracker. In particular, we have an indication of the page that

was required by a user and the time-stamp of the request.

Starting from this raw information the system can try to detect

emerging links, which are hyperlinks that are not provided by

the structure of the site but can be derived by the behaviour

of specific visitors. To this purpose, the concept of trace

was introduced as a higher level information describing the

behaviour of a user. A trace synthesizes a path followed by

a user, from the web page representing his/her entry point, to

a different point of the environment (i.e. another web page)

which may represent an interesting destination. Every agent

related to a visiting user is associated to a temporary trace,

and it may generate several actual traces (also called closed

traces) in the course of its movement in the environment.

Formally a trace is a three-tuple 〈AId, Start,Dest〉, where

AId represents the identifier of the agent to which the trace is

related, while Start and Dest indicate the starting and desti-

nation node related to the browsing sequence which generated

the trace. A new trace is generated when a user enters the

site, triggering the creation of a related agent. The starting

trace has a null value for the destination node. Subsequent

requests by the user generated following hyperlinks will bring

the related agent to an adjacent node, and the the Dest field

of the corresponding trace will be modified in order to reflect

user’s current position. Non trivial traces provide Start and

Dest nodes that are not directly connected by means of a

hyperlink.

There are two relevant exceptions to the basic rule for trace

update, that are related respectively to the duplication of a

trace and to its closing. According to the previously introduced

informal definition, a trace should be coherent in time and

space. In fact, whenever the same user requires simultaneously

two or more different pages he/she is probably following

distinct search trajectories, possibly even related to different

goals. In this case, as previously introduced, the Tracker will

detect this situation and create additional agents that refer to

the same user. Figure 3 shows two sample situations providing

respectively trace duplication and closing: in (a) the user has

chosen to open a hyperlink in a new browser page (request 1)

and then has followed another link in the first browser page

(request 2). According to the previously described Tracker

behaviour, two agents are now associated to the user, and they

are associated to different traces sharing the Start field.

In (b), instead, the user has followed links 1 and 2 from the

starting page, then he/she made a step back (request 3) and

eventually moved to the last known position (request 4). The

step back causes the closure of the temporary trace associated

to the agent (Trace 1 in the Figure), and the creation of a

new temporary one with the same Start field (Trace 2). In

this case the step back may have different interpretations: it

could refer to a negative evaluation of the page contents but it

could also indicate the fact that the user has found what he/she

was searching for. An information that could be exploited to

determine if the Dest field of the trace was interesting for the

user is the time interval between request 2 and 3: for instance,

given ∆td a threshold indicating the minimum time required

to reasonably inspect the content of a specific web page, if

timestamp(3)− timestamp(2) < ∆td then Trace 1 could be

ignored. However, the mere interval between the two requests

is not a safe indicator of the fact that the page was actually

viewed and considered interesting.

In fact, the time spent on a web page is also important in

order to determine when a temporary trace must be closed. In

fact, whenever a user does not issue requests for a certain time

we could consider that his/her browsing activity has stopped,

possibly because he/she is reading the page related to the

Dest field of the trace associated to the related agent. In other

words, every agent has a timer, set to the previously introduced

threshold ∆td, which is set when the agent is created and it

is reset whenever it moves. The action associated to this timer

specifies that its temporary trace becomes closed, and a new

timer is set: the action associated to this second timer caused

the disappearance of the agent from the system, and the storage

of the related state.

It is important to note that even anonymous visitors (i.e. non

authenticated ones) whose clients are accepting cookies, can

be tracked and can thus generate traces, although anonymous

ones. The latter can be exploited for sake of web optimization

but are not relevant for sake of user specific site customization.

User agents provide thus a support to interface agents

by monitoring users’ behaviours and, in this specific case,

selecting relevant traces. Figure 4 shows how the user agents

interact with the interface agents to provide them with relevant

information for page adaptation, but more details on this topic

will be provided by the following section.

IV. THE WEB INTERFACE AGENT

The aim of the Interface Agent is to improve the browsing

experience of a user by adapting the page he/she is currently

viewing to his/her preferences, needs or habits. To do so, it

must be active during the time–span in which the page is

visualized by the browser, and it must be able to dynamically

alter its appearance. To do so, it must also be able to interact

with the previously introduced system to be informed about

past user’s behaviour. In other words the interface agent is

69

!"#$%&'#()#(

*$%#(+,-#&!"#$%

.#/&0(123#(
.#/&'#()#(

'4""#3%51$
&'#()6#%

73#(&!"#$%3

73#(38
/#9,)514(3

Fig. 4. A diagram showing the interaction among an interface agent, the
user agent (in the MMASS environment) and the users’ behaviors database.

a client–side component, “living” in the web browser and

interacting with it in a proactive way, as shown in Figure 4.

In the following sections, we describe the technology

adopted to implement the interface agent, comparing it with

other currently available technologies that could have been

selected to develop this kind of client-side web application.

Then the behaviour of the interface agent is briefly introduced,

focusing on its setting in the overall architecture and on the

adopted strategy for page adaptation.

A. Technologies for Web Interface Agents: Java Applet, Flash

and AJAX

Today there are several technologies suitable to develop

rich client–side web applications, and in particular interface

agents able to “live” in a common web browser. The most

common are Java Applet, Macromedia (now Adobe) Flash and

AJAX. We intentionally chose not to consider recent browser

extensions and plug-ins for the visualization of 3D virtual

environments, and to focus on more traditional forms of web

browser interfaces.

Java Applet4 is the oldest technology used to provide

interactive features to web applications. An applet is a Java

software component that runs in a Web browser using the

Java Virtual Machine. Applets can be included in HTML (or

XHTML) pages in the same way as an image or another

multimedia content, and they are executed in a sandbox, an

infrastructure preventing them from accessing client’s local

data (though there may be exceptions to this principle, and

in particular trusted applets). This kind of approach is very

powerful because applets can exploit all the Java API: they

can, for example, generate complex user interfaces, with a rich

multimedia support (e.g. 3D graphics, sound, movies), or they

can interact with server–side application via Web Services,

Java RMI (Remote Method Invocation) or CORBA. It is

possible to develop very complex applications using common

Open Source Java IDEs (like Eclipse or Netbeans) and run

them in web browser as applets. Though Java Applet can be

a suitable technology for many complex web application, it is

difficult to implement an interface agent with an applet because

of its lack of integration with the web browser. An applet is

in fact confined in a sandbox and cannot manipulate the data

of the page in which it is being executed. For example, an

applet cannot be used to extract all the links of the current

4http://www.sun.com/applets/

user page. Another disadvantage of Java Applet is represented

by the requirements of the Java Runtime Environment: first of

all it is not available by default on all web browsers, moreover

it has a large memory occupation (around 20 Mb) and applets

cannot start until the Java Virtual Machine is running.

Flash5 is a multimedia technology commonly used to create

animations, to build interactive web pages and to develop

client-side web applications. The flash files (called Flash

Movies) run in a virtual machine called Flash Player, that

is available for a wide variety of different browsers, platforms

and devices. The Flash Player is smaller than Java runtime

(less than 1 MB) and it is installed on over 500 million devices

and more than 97% of Internet-enabled desktops6. Moreover,

a Flash Player is embedded in many consumer electronics

devices, like Kodak EasyShare-One digital camera: the user

interface, built using Flash, enables simple navigation during

picture taking and sharing, and includes rich graphical scene

modes. Flash Movies can be programmed with a scripting

language called ActionScript, that is an ECMAScript7–based

programming language, object oriented, loosely–typed and has

a syntax quite similar to C. In contrast with JavaScript (which

is also ECMAScript compliant), ActionScript is compiled

into bytecode which is interpreted by a virtual machine.

ActionScript has a rich API supporting the elaboration of

numbers, strings, XML and graphical element (vectorial and

raster); it allows to play sounds and movies and to interact

with server side application with a fast proprietary protocol

(Flash Remoting8) or the slower SOAP (Simple Object Access

Protocol).

AJAX (shorthand for Asynchronous JavaScript and XML)

is not a technology in itself, but a term that refers to the use

of a group of technologies together [16]. In fact, AJAX is

a combination of JavaScript, DHTML (Dynamic HTML)9,

XML and the Remote Scripting (also described in [16]).

Remote Scripting is used to deliver content dynamically with-

out the need to refresh the page and DHTML is a method

for creating interactive web pages by using a combination

of a markup language (HTML) and a client–side scripting

language (JavaScript): one major use of JavaScript is to write

functions that are embedded in or included from HTML

pages and interact with the Document Object Model (DOM).

Other typical examples of JavaScript usage are: validating web

form input, opening popup window, playing sounds, changing

images size and performing text conversion operation. The

scripts can be embedded in HTML pages or contained in

.js files linked to the web pages. The overall AJAX web

application model, compared to traditional web applications, is

shown in Figure 5. Since JavaScript is an interpreted language,

errors are not detected until the faulty program line is executed.

Another problem of AJAX (and JavaScript in general) are the

5http://www.adobe.com/products/flash/
6NPD Online survey, conducted in April 2006
7http://en.wikipedia.org/wiki/ECMAScript
8http://www.adobe.com/products/flashremoting/
9http://www.w3.org/DOM/faq.html#DHTML–DOM,

http://www.w3schools.com/dhtml/

70

Fig. 5. The traditional web applications compared to the AJAX model. Figure
by J. J. Garrett taken from [16].

differences between different JavaScript engine implementa-

tions, so applications must be tested systematically on the

different target browsers and platforms. Nonetheless, AJAX is

not only a scripting language that supports a rapid prototyping

of web applications but it is also suitable for industry-strength

systems (from WebGIS applications like Google Maps10, to

complex enterprise messaging and collaboration systems like

Zimbra11).

To compare the different technologies, several sample ap-

plications that are available and freely accessible online can be

evaluated. In particular several instant messengers have been

implemented adopting Java Applet, Flash and AJAX technolo-

gies: for instance ICQ2Go!12 is is available both as a Java

Applet and as a Flash application and Meebo13 is developed

with AJAX. Despite all are instant messenger applications, the

user experience is very different: the Java version as ICQ2Go!

has a very long startup time and it requires a huge amount

of memory but it has most functions of the stand–alone ICQ

client application and it is able to communicate with the server

adopting the common ICQ protocol. The new Flash version

of ICQ2Go! and Meebo are comparable in terms of user

experience: both of them start much faster than the ICQ2Go!

applet, but they still have a very good look and feel and

an extensive set of functionalities. However, both the Flash

and the AJAX version required a special server–side wrapper

because they can communicate only with a XML protocol.

After the analysis of the various technologies, we have

chosen to adopt AJAX in order to develop the Interface Agent.

With AJAX, it is possible to create an agent hosted in the web

10http://maps.google.com/
11http://www.zimbra.com/
12http://go.icq.com/
13http://www.meebo.com/

browser that remains alive and active during the visualization

of a web page. So it is possible to go beyond the classic web

request/response model and develop proactive interface agents.

We chose AJAX instead of Flash because it is possible to

develop AJAX applications with Open Source tools (in fact,

only a common text editor is needed). Today, a commercial

IDE is required to build Flash web applications; although

there is an Open Source ActionScript compiler14, the lack of

a proper full–featured Open Source IDE and mature tools for

user interface drawing is a major drawback. Compared to Java

Applet, instead, AJAX is lightweight and better integrated in

the browsing environment: JavaScript functions have a com-

plete control on the page content while applets are confined

in a sandbox. This is a very important feature because the aim

of an interface agent is to interact with the user, so an agent

with more freedom of action over the interface can perform

its task more effectively.

B. The Interface Agent in the Overall Architecture

The interface agent starts its activity when a web page

of the site is loaded into client Web Browser. The first

action performed by the agent is adding to every link of

the page a parameter (called linkfrom) with the URL of the

current page as value. This action permits to identify the

source page of every subsequent request. For example, assume

that current page address is http://host/index.html, the

link Events included in the

page will be rewritten as

Events

Similarly, Events
will be rewritten as

Events

The content of the page is dynamically changed at client-

side by JavaScript DOM (Document Object Model), so the

original page on the server remains intact. DOM will allow

scripts to dynamically access and update the content, structure

and style of current page. The document can be further pro-

cessed and the results of that processing can be incorporated

back into the presented page. The agent doesn’t update every

link of the page, but only the HTTP links to the current site.

So links to other sites, or links to a FTP repository or mail

address remain unchanged.

The next action performed by the interface agent is

to call the tracker. If the current page is called with

the linkfrom parameter, this parameter is passed to the

tracker. The tracker uses this parameter to build the

traces. For example, if the URL of the current page is

events.html?linkfrom=index.html the user’s last page

was index.html. The tracker can add a trace for the current

user from index.html to events.html (or update an existing

one). The tracker doesn’t perform this operation itself, instead

it informs the user agent on the MMASS environment, which

is responsible for adding the trace. Then the interface agent can

14http://www.mtasc.org/

71

!"#$%&'($)*+$"#

,$-).%/01$%

2/%$3+")*+$"#
4&/%)$5'678$9

'):;;)*++%$+'#/%<

;=++$1#3/"1
%$>=$1#?

:$17/"1$)'1
:;;

;=++$1#3/"1
%$>=$1#?

:$17/"1$)'1
:;;

,$-);$%@$%

;=++$1#3/"
);$%@8$#

A%'(B$#
);$%@8$#

A%'(B$%)3"@/('#3/"

*+$"#);$%@$%

Fig. 6. Interface Agent and Foreign Agent interaction with the MMASS user
agent are performed through the Suggestion Servlet.

query the server to obtain the emerging links to be suggested to

the user.Suggestions are in fact generated on the server–side

and are published as an RSS15(Really Simple Syndication)

feed. The agent suggestion request is managed by the user

agent (analogously as for traces). We choose RSS instead of a

proprietary format because this allows foreign interface agents

(other then our interface agent) to interact with the system.

The interface agents loads the RSS by using the

XMLHttpRequest16 class, which allows to perform an asyn-

chronous request to the web server hosting the current web

page and to store the response in a local variable. The

response could be a XML document or plain text. In the

first case, XMLHttpRequest stores the retrieved data in a

DOM-structured object, which can be navigated using the

standard JavaScript DOM access methods and properties, such

as getElementsByTagName() and childNodes[]. The fol-

lowing code is an example of using XMLHttpRequest to asyn-

chronously request the server side page suggestions.jsp:

req = new XMLHttpRequest();

req.onreadystatechange = processReqChange;

req.open("GET", "suggestions.jsp", true);

req.send(null);

In order to find out when the method has finished retrieving

data, a specific event listener must be defined: in this case

the method is processReqChange, reported in the following

code snippet:

function processReqChange() {

if ((req.readyState == 4) && (req.status == 200)) {

// Gets the items from the XML document

var xml = req.responseXML;

var items = xml.getElementsByTagName("item");

// Builds new suggestions

var html = "";

for (item in items) {

var title = getValue(item, "title");

var link = getValue(item, "link");

// Adds a link and a carriage return

html += "" + title + "";

html += "
";

}

// Replaces the content of the suggestions box

document.getElementById("sBox").innerHTML = html;

}

}

15http://www.rssboard.org/rss-specification
16http://www.w3.org/TR/XMLHttpRequest/

This method of the interface agent parses the RSS document

and displays the suggestions in a box in the web page. This

operation is done by using DHTML: the agent searches for

the suggestion box (sBox) in the DOM of the page (which

is a tree representation of the page HTML source) and than

it replaces the content of the suggestion box with the freshly

generated one. The latter is based on RSS suggestions: for

each suggested page (represented as an item in the RSS) the

Interface Agent adds a link to the page and uses the title of the

page as label for the link. The following RSS is a suggestion

example:

<?xml version="1.0" encoding="UTF-8"?>

<rss version="2.0"

xmlns:lintar="http://www.lintar.disco.unimib.it/">

<channel>

<title>Suggested contents for index.html</title>

<link>http://example.com/index.html</link>

<language>en</language>

<pubDate>Wed, 28 Jun 2006 02:28:19 +0200</pubDate>

<ttl>1</ttl>

<item>

<title>Events</title>

<link>http://example.com/events.html</link>

<guid>http://example.com/events.html</guid>

<lintar:usersTraces>75</lintar:usersTraces>

<lintar:onlineUsers>3</lintar:onlineUsers>

</item>

[... more items ...]

</channel>

</rss>

In this example, the first suggested element is the Events

page, whose URL is http://example.com/events.html.

The tags in the lintar namespace are our extension to

the basic RSS: the <lintar:onlineUsers> tag identifies

the number of users currently viewing the page and the

<lintar:usersTraces> tag represent the intensity of foot-

prints on the page, in the spirit of [6]. Footprints are signs

that one or more users have recently viewed the page. This

information is also displayed by the interface agent on the

suggestion box: the number of online users is displayed as

a picture of little red man and the presence of users traces is

represented by corresponding icon. The number of online users

and the intensity of footprints are displayed in a tip box that

it is shown when the mouse arrow is over the picture. It must

be noted that the interface agent does not just provide a “one

shot” behaviour. In fact, when initialized, it sets a timeout for

a cyclical invocation of its main execution cycle by the web

browser. In this specific application, in particular, it is this able

to update and refresh the indication on the presence of other

visitors and footprints on suggested pages. The overall cycle

of interaction between the interface agent and the back end of

the system is illustrated in Figure 6 and a screenshot of the

web page enriched by the interface agent is shown in Figure 7.

C. The Adaptation Strategy

Every MAS agent of the implemented system provide

personalized suggestions about items that user will find in-

teresting, according to the history of the user and to the other

72

!"#$%&#'$(&$'#)*+,(-#.$/,.$"(&$/)0(*,&
/'#$)/10%'#.$23$0"#$0'/)4#'$5"()"$(,$0%',
5(66$7*8#$0"#$'#6/0#.$/+#,0$/))*'.(,+639

!"(&$/'#/$(&$/./10#.$/))*'.(,+$0*$0"#$0'/)#&$0"/0
5#'#$1'#8(*%&63$+#,#'/0#.23/+#,0&$'#6/0#.$0*$0"(&

%&#'&$/,.$*0"#'$8(&(0*'&9
!"#$:,0#';/)#$<+#,0$%1./0#&$0"(&$/'#/$#8#'3$;#5$&#)*,.&9

!"#$=;**01'(,0&=$7#/,&$&*7#*,#$'#)#,063$8(&(0$0"#$1/+#>
0"#$=6(006#$7/,=$7#/,&$/$%&#'$(&$8(&(0(,+$0"#$1/+#9

Fig. 7. A screenshot of a web page adapted according to gathered traces.

users path. These suggesting links have relationship with the

previously introduced traces, which represent behaviors and

movements of a user in a web site: the strategy which is

adopted to select the most relevant traces to be presented to

a given user considers the occurrence of trace generation and

the success rate of the traces that were proposed.

A first element of this strategy is adopted when new users

(or non authenticated ones) enter the site. In this case the user

has no previous history (or it is not possible to correlate the

user with his/her history), and the adopted strategy considers

all stored traces, not considering the user which generated

them. An additional information that is stored with traces

is the number of times that the related trace was effectively

selected and shown to a user and the number of times that

the related link was effectively exploited by a user. This kind

of information allows to obtain an indication of the success

rate of the suggestions that were chosen by the agent, and can

be exploited to select the traces to be shown in the adaptive

block. When the agent has an indication of the user which

issued the request, it may focus the selection activity to those

traces that compose the history of user’s activities in the

web site, in a web customization framework. In fact traces

include an indication of the agent which generated them, and

in turn agents are related to registered users. Moreover, in

order to focus on a specific user’s history but do not waste

the chance to exploit other users’ experiences, just two of the

three available slots for emergent links are devoted to traces

that were generated by that user and one is selected according

to the strategy adopted for anonymous or new users. Because

the time spent on a page had a strong correlation with explicit

interest [17], the adopted strategy uses this information to

refine the proposed suggestions.

An example of page adaptation refers to the adoption of a

recurrent trace leading from the index of the web site to a con-

tent page, that is not directly connected to the index but that is

visited very frequently. This kind of “vertical”17 emerging link

is frequently observed in the prototypal implemetation of the

system, which is installed in a web site presenting information

about a research laboratory as well as information on courses

held by members of the group18. Since the number of students

of some of these courses is very high, they frequently generate

traces connecting the index to the page related to those courses.

These traces represent effective shortcuts allowing to bypass

intermediate index pages related to education activities and

university courses. However, emerging links can also connect

pages deep in the site structure. For example, a page related

to a project might not be explicitly connected to another page

describing a particular modeling approach adopted in that

project, but a user might browse the web site and effectively

discover that page, causing the generation by the system of a

correspondant trace connecting the project and the modeling

approach. This trace might not be extremely relevant to all

visitors of the web site, due to the fact that this navigation

path will probably be not very frequent, but if the visitor is a

registered user the trace could be stored and suggested anyway,

since a number of slots in the adaptive area of the page is

reserved to user–generated emerging links.

This strategy for the exploitation of the gathered and stored

traces, based on users’ behaviours and movement in the web

site environment, represents a very simple way of exploiting

this kind of information without requiring an off-line analysis

17Here vertical is intended as describing the typical navigation path starting
from an index page and going deeper into the web site.

18http://www.lintar.disco.unimib.it

73

of the logs generated by the web server. The design, imple-

mentation and test of more complex strategies, for instance

based on details of the outcomes of emerging link proposals

(e.g. which user effectively followed the suggested adaptive

hyperlink) are object of future works.

V. RELATED WORK

There are several different approaches and relevant ex-

periences in the area of web site adaptation, and some of

them are also related to agent technologies. In particular,

a relevant approach provides the adoption of information

agents supporting users in their navigation [18]. These agents

generally consider both the specific behaviour of the user and

the actions of other visitors, and adopt multiple strategies for

making recommendations (e.g. similarity, proximity, access

frequency to specific documents).

The Footprints system [6] instead provides a site optimiza-

tion through the metaphor of site visitors leaving traces in

their navigation. These signals accumulate in the environ-

ment, generating awareness information on the most frequently

visited areas of the web site. No user profile is needed,

as visitors are essentially provided this information which

could represent an indicator of the most interesting pages

to visit. The metaphor of the structure of the web site as

an environment on which visitors move in their search for

information is very similar to the one on which the proposed

framework is based, but we also propose the exploitation of

the gathered information on users’ paths for user specific

customization. Another interesting recent work [19] represents

an attempt to integrate interaction mechanisms similar to the

one adopted by Footprints, often referred to as stigmergic

interaction mechanisms [20], and cognitive agents. This line

of research could represent an interesting way to integrate the

proposed approach, which is able to generate and manage

awareness contextual information, with higher level mecha-

nisms and strategies of adaptation.

Other approaches provide instead the generation of index

pages [3], that are pages containing links to other pages

covering a specific topic. These pages, resulting from an

analysis of access logs aimed at finding clusters grouping

together pages related to a topic, are proposed to web masters

in a computer-assisted site optimization scheme. A differ-

ent approach provides the real-time generation of shortcut

links [21], through a predictive model of web usage based

on statistical techniques and the concept of expected saving

of a shortcut, which considers both the probability that the

generated link will be effectively used and the amount of

effort saved (i.e. intermediate links to follow). In particular,

this framework is very similar to the one proposed here with

reference to the aims of the overall system, but it incorporates

a complex algorithm for off-line analysis of logs, while the

proposed approach provides a light and dynamic generation of

most probable useful links and the storage of these proposals

and high level information on site usage for a possible further

off-line analysis.

A different approach to web site adaptation provides the

adoption of a learning network to model the evolution of

a distributed hypertext network, such as a web site [22].

Also in this case the adaptation provides a modification in

the structure of a web site, and the concept of emergent

link and the underlying mechanisms present a similarity with

the learning rules adopted for that kind of learning network.

However that approach also provides a deep modification

in the architecture of the site and modifications in the web

protocols, while this work aims at providing a solution that

can be easily integrated with a traditional web architecture.

Moreover, recent developments of that line of research were

aimed at identifying analogies and relations among words by

means of web mining [23], rather than realizing adaptive web

systems.

The introduced system supporting web site adaptation seems

more similar to a recommendation system. A relevant type

of recommender exploiting users’ behaviours to decide which

contents could be interesting for a certain visitor is represented

by the collaborative filter approach [24]. The latter has been

adopted in different recommendation systems, filtering mail

messages, newsgroup articles and web contents in general,

but typically requires users to rate these items. Moreover,

it generally provides a concept of explicit users descriptions

through profiles which can be compared to determine similar-

ity among them. The idea is that contents that received a high

rating by a certain user could be considered interesting by a

similar user. The introduced system instead does not require an

explicit rating of contents, but it rather observes the frequency

of specific navigation paths, and exploits emergent links for

customization or optimization of site structure. However, the

adaptive block of the page can include emerging links that are

not related to the specific visitor who is currently browsing

that page, but were generated by other users which frequently

followed paths that the current one still did not follow.

From this point of view, the system provides a very basic

collaborative browsing scheme, but a more through analysis of

a possible integration with this approach is object of current

and future works.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper introduced a general framework providing the

adoption of a web site as an environment on which agents

related to visitors move and possibly interact. This approach

allows the gathering of a structured form of information on

users’ behaviours and activities in the web site. The concept

of emerging links and traces have been introduced in order

to support an application exploiting information on users’

browsing history for sake of web pages adaptation. The intro-

duced framework and the application to web site adaptation

have been designed and implemented, exploiting a platform

supporting systems based on the MMASS model.

A campaign of tests aimed at evaluating the effectiveness

of the adaptation approach, and also for sake of tuning

the involved parameters (e.g. timings, number of presented

possible emerging links) is under way. This evaluation will

74

be based on user interviews and also on the exploitation

of the gathered information of the success rate of proposed

adaptive hyperlinks. Such an indicator might be obtained as a

ratio between the number of times an emerging link has been

actually selected by a user and the total number of times its has

been shown. However, it must be noted that we currently do

not have an indication of threshold to discriminate successful

suggestions from unsatisfactory ones; a further analysis of

methods adopted to evaluate related approaches is currently

being carried out. The results of this evaluation might also lead

to consider the modelling, design and implementation of more

complex trace selection strategies, and thus a more complex

behaviour for the interface agent.

Future works will be focused on the introduction and

exploitation of higher level semantic information related to

the site structure and contents, and thus agents’ environment,

aimed at providing additional forms of adaptation, including

images and multimedia contents. While in [25] an analysis

on how a conceptual view on the topics may be used as

an additional level of description of the environment, another

aspect that will be considered is the possibility to improve the

effectiveness of web–based applications supporting processes

with adaptive functionalities. Finally, a further development

provides also the design and implementation of a prototype

supporting the context-aware interaction among web site vis-

itors. In this framework, the environment related to the web

site also supports the mutual perception of the agents situated

in it and it also supports a form of interaction among them

depending on their relative positions. The latter can be thus

considered as a form of context–dependant interaction. A more

thorough analysis of the possible applications of this approach

can be found in [25], and a prototypal implemetation of these

interaction mechanisms is currently under way.

REFERENCES

[1] A. S. Tanenbaum, Computer Networks - third edition. Prentice Hall,
1996.

[2] M. Perkowitz and O. Etzioni, “Adaptive Web Sites: an AI Challenge.” in
Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence (IJCAI 1997), 1997, pp. 16–23.
[3] ——, “Adaptive Web Sites,” Communications of the ACM, vol. 43, no. 8,

pp. 152–158, 2000.
[4] R. Cooley, “The Use of Web Structure and Content to Identify Subjec-

tively Interesting Web Usage Patterns,” ACM Transactions on Internet

Technology, vol. 3, no. 2, pp. 93–116, 2003.
[5] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber,

“Environments for Multiagent Systems State-of-the-art and Research
Challenges.” in Environments for Multi-Agent Systems, First Inter-

national Workshop (E4MAS 2004), ser. Lecture Notes in Computer
Science, vol. 3374. Springer–Verlag, 2005, pp. 1–47.

[6] A. Wexelblat and P. Maes, “Footprints: History-Rich Tools for Infor-
mation Foraging,” in Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM Press, 1999, pp. 270–277.
[7] J. Liu, S. Zhang, and J. Yang, “Characterizing Web Usage Regularities

with Information Foraging Agents,” IEEE Transactions Knowledge and

Data Engineering, vol. 16, no. 5, pp. 566–584, 2004.
[8] D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár, “Active Walker

Model for the Formation of Human and Animal Trail Systems,” Physical

Review E, vol. 56, no. 3, pp. 2527–2539, January 1997.

[9] R. C. Miller and K. Bharat, “Sphinx: a Framework for Creating Personal,
Site-specific Web Crawlers,” Computer Networks and ISDN Systems,
vol. 30, no. 1–7, pp. 119–130, 1998.

[10] D. Weyns, F. Michel, and H. V. D. Parunak, Eds., Environments for

Multi-Agent Systems, First International Workshop (E4MAS 2004), ser.
Lecture Notes in Artificial Intelligence, vol. 3374. Springer–Verlag,
2005.

[11] D. Weyns and T. Holvoet, “Model for Simultaneous Actions in Situated
Multi-Agent Systems,” in First International German Conference on

Multi-Agent System Technologies, MATES, ser. Lecture Notes in Com-
puter Science, vol. 2831. Springer–Verlag, 2003, pp. 105–119.

[12] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: Towards a
Unifying Approach to the Engineering of Swarm Intelligent Systems,”
in Engineering Societies in the Agents World III: Third International

Workshop (ESAW2002), ser. Lecture Notes in Artificial Intelligence, vol.
2577. Springer–Verlag, 2002, pp. 68–81.

[13] K. Hadeli, P. Valckenaers, C. Zamfirescu, H. V. Brussel, B. S. Germain,
T. Hoelvoet, and E. Steegmans, “Self-organising in Multi-Agent Coor-
dination and Control Using Stigmergy,” in Engineering Self-Organising

Systems: Nature-Inspired Approaches to Software Engineering, ser.
Lecture Notes in Computer Science, vol. 2977. Springer–Verlag, 2004,
pp. 105–123.

[14] S. Bandini, S. Manzoni, and C. Simone, “Dealing with Space in Multi–
Agent Systems: a Model for Situated MAS,” in Proceedings of the first

international joint conference on Autonomous agents and multiagent

systems. ACM Press, 2002, pp. 1183–1190.
[15] S. Bandini, S. Manzoni, and G. Vizzari, “Towards a Platform for

Multilayered Multi Agent Situated System Based Simulations: Focusing
on Field Diffusion,” Applied Artificial Intelligence, vol. 20, no. 4–5, pp.
327–351, 2006..

[16] J. J. Garrett, “AJAX: a New Approach to Web Applications,”
Adaptive Path Essay, Tech. Rep., 2005. [Online]. Available:
http://www.adaptivepath.com/publications/essays/archives/000385.php

[17] M. Claypool, P. Le, M. Waseda, and D. Brown, “Implicit Interest
Indicators.” in Intelligent User Interfaces, 2001, pp. 33–40.

[18] M. J. Pazzani and D. Billsus, “Adaptive Web Site Agents,” Autonomous

Agents and Multi-Agent Systems, vol. 5, no. 2, pp. 205–218, 2002.
[19] A. Ricci, Omicini, M. Viroli, L. Gardelli, and E. Oliva, “Cognitive

Stigmergy: a Framework Based on Agents and Artifacts,” in 3rd Inter-

national Workshop “Environments for Multi-Agent Systems” (E4MAS

2006), D. Weyns, H. V. D. Parunak, and F. Michel, Eds., 2006, pp.
44–60.

[20] G. Theraulaz and E. Bonabeau, “A Brief History of Stimergy,” Artificial

Life, vol. 5, no. 2, pp. 97–116, 1999.
[21] C. R. Anderson, P. Domingos, and D. S. Weld, “Adaptive Web

Navigation for Wireless Devices,” in Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence (IJCAI 2001),
2001, pp. 879–884.

[22] J. Bollen and F. Heylighen, “Algorithms for the Self-Organisation of
Distributed, Multi-User Networks. Possible Application to the Future
World Wide Web,” in Proceedings of the 13th European Meeting on

Cybernetics and Systems Research, R. Trappl, Ed. Austrian Society
for Cybernetic Studies, 1996, pp. 911–916.

[23] F. Heylighen, “Mining Associative Meanings from the Web: from
Word Disambiguation to the Global Brain,” in Proceedings of the

International Colloquium: Trends in Special Language & Language

Technology, R. Temmerman and M. Lutjeharms, Eds. Standaard
Editions, Antwerpen, 2001, pp. 15–44.

[24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
plens: an Open Architecture for Collaborative Filtering of Netnews,”
in CSCW ’94: Proceedings of the 1994 ACM conference on Computer

supported cooperative work. ACM Press, 1994, pp. 175–186.
[25] S. Bandini, M. Sarini, C. Simone, and G. Vizzari, “WWW in the Small:

Towards Sustainable Adaptivity,” World Wide Web Journal, 2006 (to
appear).

75

