

�
Abstract—This paper describes the design and the

implementation of an Agent-based Work flow Enactment
Framework (AWEF) which can be instantiated on the basis of a
work flow schema for obtaining a specific workflow enactment
engine. A work flow engine therefore is a MAS capable of
managing instances of the workflow schema used for the
instantiation of AWEF. Each MAS adopts a hierarchical
organizational structure composed by an EnacterAgent, which is
responsible of the activation and monitorin g of the workflow , one
or more ManagerAgents, which are responsible of the execution
and control of the workflow /subworkflow s according to a
parent/child model, and one or more TaskAgents, which are
responsible of the execution of internal tasks and/or of the
wrapping of external tasks or services. The hierarchical
distribut ion of the workflow execution control between the
ManagerAgents and the distr ibution of the computation among
the TaskAgents allow for more flexible, efficient, and robust
enactment services.

Index Terms—Mul ti-Agent Systems, Distribut ed Workf low
Enactment, Workfl ow Patterns, Agent-based Appli cations.

I. INTRODUCTION

ORKFLOW Management Systems (WFMS) are
systems designed to automate complex activities

consisting of many dependent tasks [26]. In the last decades
WFMS have been developed to provide support to the
modeling, improvement and automation of business
management, industrial engineering, and data-intensive
scientific processes [25,10]. Since each business area can
benefit from workflow management it is possible to
distinguish different kind of workflows and related workflow
management techniques specifically conceived for meeting the
requirements of a specific business area and fully supporting
the associated business processes. A main distinction that can
be done is between Collaborative and Production-oriented
workflows. The former are information centric: human
interactions drive the execution of workflows in a loosely
structured manner. In this case WFMS are Computer

G. Fortino is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
giancarlo.fortino@unical.it).

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
alfredo.garro @unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: wilma.russo
@unical.it).

Supported Cooperative Work (CSCW) systems that offer
groupware applications and other shared workspace tools for
supporting human interactions [4]. Instead, Production
workflows are process-driven due to their highly repetitive
nature [7]. In this case the processes are highly structured and
the adopted WFMS are based on workflow enactment services
able to offer an efficient and accurate control about the flow
of the processes. Moreover, in a Production workflow, most
of the tasks are executed automatically by software programs
and applications without interacting with human users. Such a
kind of workflows can be modeled as a set of interrelated
services (Service Workflow) [29]. In the context of Internet-
based workflows [19], such services are distributed and
owned by different organizations so that they could become
unavailable due to the lack of network service guarantees. To
deal with this important issue, a dynamic service allocation of
services is often required as well as the negotiation of service
level agreements (SLA). Due to these reasons the enactment
of Internet-based workflows requires more flexible enactment
engines based on more adequate coordination mechanisms.

To effectively fulfill such requirements the Agents
paradigm and technology are being used since Agents are
widely considered very suitable for the modeling and
implementation of complex software systems in open
distributed environments [18]. In particular, in the context of
workflow management, the use of the Agents paradigm allows
for transforming a workflow from a sequence of activities,
that are often modeled and consist of (Web) services
invocation, in a society of proactive, autonomous and
coordinable entities (or multi-agent system) whose
coordinated interactions drive the workflow execution
[20,17].

This paper proposes an agent-based approach for the
distributed enactment of workflows. The workflow enactment
is enabled by an Agent-based Workflow Enactment
Framework (AWEF) which is instantiated on the basis of the
schemas of the workflows to be enacted so obtaining specific
workflow engines. A workflow schema can be defined by
using the Workflow Patterns identified and proposed by van
der Aalst [25] and can be represented using YAWL (Yet
Another Workflow Language) [24]. A workflow engine
therefore consists of a MAS capable of managing instances of
the workflow schema used for the instantiation of the
workflow engine. The framework provides the base agents for
workflow enactment (EnacterAgent, which is responsible of
the activation and monitoring of the workflow,

Distributed Workflow Enactment:
an Agent-based Framework

Giancarlo Fortino, Alfredo Garro, and Wilma Russo

W

110

ManagerAgent, which is responsible of the execution and
control of the workflow, and TaskAgent, which is responsible
of the execution of internal tasks and/or of the wrapping of
external tasks or services), their interaction protocols and a set
of control-flow classes which are associated to the behavior of
the ManagerAgent and implement the Workflow Patterns. The
framework is implemented by using JADE [3,16], a FIPA-
compliant [13] Java-based agent development environment
which basically offers a distributed agent platform and an API
for agent programming.

The remainder of the paper is organized as follows. Section
2 introduces some background concepts about workflow
enactment, presents our agent-based approach enabled by
AWEF and reports some related works. Section 3 and Section
4 describe the design and the JADE-based implementation of
AWEF respectively. Finally conclusions are drawn and
directions of further work delineated.

II . DISTRIBUTED WORKFLOW ENACTMENT

The Workflow Reference Model, proposed by the
Workflow Management Coalition (WfMC) [28], describes a
generic architecture for workflow management consisting of
several functional components interfaced with a Workflow
Enactment Service (see Figure 1). The Process Definition
Tools allow a process designer to define business processes
often adopting a diagrammatic representation. The diagrams
(or workflow schemas), represented in a Process Description
Language (PDL), are received by the Workflow Enactment
Service via Interface 1. The Workflow Client Application is
usually the application which requests the enactment of a
workflow to the Workflow Enactment Service by specifying
the workflow schema to be enacted and passing the
parameters (Case Activation Record) needed for the activation
and execution of a specific workflow instance. During its
enactment a workflow can be administered and monitored
(Interface 5) and it may interact with other automated business
processes (Interface 4), with human participants (Interface 2)
and with other applications without human intervention
(Interface 3).

Fig. 1. The reference model for WFMS proposed by the WfMC.

TABLE I
THE WORKFLOW PATTERNS

PATTERN

TYPE
PATTERN NAME

(SYNONYMS)
DEFINI TION

Sequence
(Sequential routing, serial
routing)

An activity is enabled after the
completion of another activity .

Parallel Split
(AND-split, parallel routing,
fork)

A point in the workflow where a single
thread of control splits into multiple
threads of control which can be executed
in parallel, thus allowing activities to be
executed simultaneously or in any order.

Synchronization
(AND-join, rendezvous,
synchronizer)

A point in the workflow where multiple
parallel subprocesses/activities converge
into one single thread of control, thus
synchronizing multiple threads.

Exclusive Choice
(XOR-split, conditional
routing, switch, decision)

A point in the workflow where, based on
a condition, one of several branches is
chosen.

B
as

ic
 C

on
tr

ol
 F

lo
w

Simple Merge
(XOR-join, asynchronous
join, merge)

A point in the workflow where two or
more alternative branches merge without
synchronization.

Multi-choice
(Conditional routing,
selection, OR-split)

A point in the workflow where, based on
a condition, a number of branches are
chosen.

Synchronizing Merge
(Synchronizing join, OR-join)

A point in the workflow where multiple
paths converge into one single thread.

Multi-merge

A point in a workflow where two or
more branches reconverge without
synchronization. If more than one branch
gets activated the activity following the
merge is started for every activation of
every incoming branch.

A
dv

an
ce

d
B

ra
nc

hi
ng

 a
nd

Sy

nc
hr

on
iz

at
io

n

Discriminator
(N/M or partial join)

A point in a workflow that waits for a
number of the incoming branches to
complete before activating the
subsequent activity; then it waits for the
remaining branches to complete and
“ ignores” them. Then it resets itself.

Arbitrary Cycles
 (Loop, iteration, cycle)

A point in a workflow where one or
more activiti es can be done repeatedly.

St
ru

ct
ur

al

Implicit Termination
A given sub-workflow should be
terminated when there is nothing else to
be done.

Multiple Instances
without synchronization
(Multi-threading without
synchronization, spawn off
facility)

Multiple instances of an activity can be
created with no need to synchronize
them.

Multiple Instances with a
priori design time
knowledge

An activity is enabled a number of times
known at design time. Once all instances
are completed some other activity needs
to be started.

Multiple Instances with a
priori run-time knowledge

An activity is enabled a number of times
known at run time. Once all instances are
completed some other activity needs to
be started.

M
ul

ti
pl

e
In

st
an

ce
s

Multiple Instances
without a priori run-time
knowledge

An activity is enabled a number of times
known neither at design time nor at run-
time. Once all instances are completed
some other activity needs to be started.

Deferred Choice
(External choice, implicit
choice, deferred XOR-split)

It is similar to the exclusive choice but
the choice is not made explicitl y and the
run-time environment decides what
branch to take.

Interleaved Parallel
Routing
(Unordered sequence)

A set of activities is executed in an
arbitrary order decided at run-time; no
two activities are active at the same time.

St
at

e-
ba

se
d

Milestone
(Test arc, deadline, state
condition, withdraw
message)

The enabling of an activity depends on
the workflow being in a given state, i.e.
the activity is only enabled if a certain
milestone has been reached which did
not expire yet.

Cancel Activity
(Withdraw activity)

An enabled activity is disabled, i.e. a
thread waiting for the execution of an
activity is removed.

C
an

ce
ll

at
io

n

Cancel Case
(Withdraw case)

A workflow instance is removed
completely.

111

As described above, the Process Definition component
provides the process designer with a workflow language able
to specify a workflow schema which can be successively
instantiated by means of the Enactment Service based on a
workflow API and on one or more workflow engines. The
workflow definition language is to be expressive and powerful
to specify complex workflows from several perspectives:
control-flow, data-flow, resource and operational [25].

The control-f low perspective describes activities and their
execution ordering through different constructors, which
permit to control the flow of execution, and provides an
essential insight into the effectiveness of a workflow
specification. The data flow perspective rests on control-flow
perspective, while the resource and operational perspectives
are ancillary.

An expressive and powerful set of control-flow constructs
for the specification of workflow schemas (WF Schemas) is
the set of the Workflow Patterns proposed by van der Aalst
[25]. In Table I the Workflow Patterns, identified by
examining the most known contemporary workflow
management systems, are enumerated along with their
synonyms and a brief definition.

An example WF Schema based on the WF Patterns and
drawn by using YAWL [24] is given in Figure 2. After the
task A is carried out (sequence pattern), the tasks B, C, and D
are executed in parallel (parallel split pattern). When B or C
complete (synchronizing merge pattern), the task E is
executed an arbitrary number of times (arbitrary cycles
pattern). When D completes (sequence pattern), either the task
F or the task G (exclusive choice pattern) is executed. When
either F or G complete (simple merge pattern), depending on
the precedent choice, the task H is executed (sequence
pattern). When the iterative execution of E completes and also
H terminates (synchronization pattern), the task I is executed
and, after its completion (sequence pattern), the workflow
terminates.

G

A

B

C

D

F

H

I

Done?

No

E

yes

G

A

B

C

D

F

H

I

Done?

No

E

yes

Fig. 2. An example WF Schema based on the WF Patterns.

A generic Workflow Enactment Service (WFES) receives

from the user the indication about which workflow is to be
enacted (WF Type param) and the Case Activation Record
(CAR) for the specific workflow instance; then, on the basis
of the WF Schema corresponding to the selected WF Type,
the WFES enacts the workflow by means of a specific WF
Engine. If the WF Engine is of the distributed type the user
indicates also a set of params for specifying some
requirements related to the distribution of control,

computation and/or data during the workflow enactment
(Figure 3).

WF Enactment Service

WF Schemas

WF Enactment

WF Activation Params
• WF Type
• CAR

WF
Distribution Params WF Engines

WF Enactment Service

WF Schemas

WF Enactment

WF Activation Params
• WF Type
• CAR

WF
Distribution Params WF Engines

Fig. 3. An A Workflow Enactment Service.

More in details, in order to enact a workflow the WFES

selects a suitable WF Engine, from the WF Engines
repository, on the basis of the schema of the workflow to be
enacted. If the required WF Engine is not available the WFES
creates it. The creation is driven by the WF Schema which is
used to properly instantiate a Workflow Enactment
Framework so building a WF Engine able to enact that
specific WF Schema. In building the specific WF Engine the
distribution params specified by the user are also considered.
Finally, the WF Engine will enact the workflow on the basis
of the given CAR and the possible distribution params (Figure
4). The created WF Engine is stored in the WF Engines
repository so that it can be reused for enacting future
workflows of the same type.

WF Engine

W
F

 E
n

actm
en

t

WFE
Framework

WF Schema Distribution
Params

CAR WF Engine

W
F

 E
n

actm
en

t

WFE
Framework

WF Schema Distribution
Params

CAR

Fig. 4. The construction of a WF Engine.

A. The proposed agent-based approach

In our approach for the distributed workflow enactment a
WF Engine is a MAS built by properly instantiating the
Agent-based Workflow Enactment Framework (AWEF) on
the basis of a WF Schema defined by using the WF Patterns.
In particular, a WF Engine consists of tree different agent
types:
- EnacterAgent, which represents the interface between the

MAS constituting the WF Engine and the Workflow

112

Enactment Service and is responsible for the activation and
monitoring of the workflow.

- ManagerAgent, which is responsible of the execution and
control of the workflow. A single ManagerAgent allows for
flat workflow management whereas a hierarchical structure
of ManagerAgents, formed according to the parent/child
model, allows for a hierarchical workflow management.
The behavior of a ManagerAgent is defined on the basis of
the WF Schema it has to enact.

- TaskAgent, which is responsible for the execution of
internal tasks and/or for the wrapping of external tasks or
services. The behavior of a TaskAgent is defined on the
basis of the activities composing the task it has to carry out.
A WF Engine is, therefore, a MAS with a hierarchical

organizational structure in which the control of the workflow
execution is hierarchically distributed between the
ManagerAgents and the computation is distributed among the
TaskAgents.

A WF Schema can be specified by using YAWL [24]
which is based on the WF Patterns and offers also an XML
based representation of the WF Schema

The design and the implementation of the AWEF, on which
the WF Engines are based, are presented in details in sections
3 and 4.

B. Other related approaches

In the literature it is possible to find different proposals of
distributed workflow enactment mechanisms based on the
Agent paradigm and technologies which aim to support more
flexible, dynamic and adaptive workflow from the process,
resource and activity perspective [8].

Such approaches differ from each other in the supported
dimensions of distribution (computation, control and data), in
the adopted coordination model (control-driven, data-driven)
and in the exploited MAS organizational structure
(hierarchical, peer-to-peer).

In [10,23,21] the authors present an agent-based workflow
engine centered on a hierarchical organizational structure in
which a ProcessAgent executes a workflow instance by
requesting the execution of the tasks composing the workflow
to a set of ResourceAgents. ResourceAgents can be seen as
representing web services and can be dynamically discovered
and allocated to a ProcessAgent by a ResourceBrokerAgent.
In this control-driven approach the control about the state of
the workflow execution is hierarchically distributed between
the ProcessAgents and the computation whereas data are
distributed among the ResourceAgents which are responsible
of the task execution.

In [1] the authors propose a software environment to
dynamically generate agent-based workflow engines. A
workflow engine is generated by a compiler that translates an
XPDL workflow definition to a MAS ready to be executed in
the Hermes middleware. The translation process is a two step
procedure. In the first step the user-level workflow definition
is mapped to an Agent Level Workflow (ALW) specification.
In the second step, the compiler concretely generates agents,

called Workflow Executors, from the ALW specification by
plugging the implementation of the required workflow
activities, that are available in a repository, into “empty”
agents (skeletons). A workflow engine is, therefore, a MAS
having a peer-to-peer organizational structure in which the
workflow execution is driven by the interactions among the
Workflow Executors.

A similar approach can be found in [22] which presents a
methodology for translating a workflow specification into a
MAS architecture specifying formalized rules for modeling
agents’ behaviors. The MAS is not generated automatically by
a compiler like in [1] but by the developer adopting a tool
called Agent Developer Studio (ADS).

In [7,8,9] the authors present an agent-based approach for
enacting BPEL4WS (Business Process Execution Language
for Web Services) [6] workflow specifications. BPEL4WS is
an XML-based language that allows for the specification of
workflows where the activities are defined by Web service
invocations. The proposed distributed enactment mechanisms
combine data-centered and control-centered coordination
mechanisms. Data are managed via a shared XML repository
while the control of the workflow activities is driven by
asynchronous messages exchanged between the agents that
enact the workflow. The message exchange pattern for the
control messages is derived from a Colored Petri Net model of
the workflow. The agents’ behaviors are configured and
instantiated at run time on the basis of the BPEL4WS
specification of the specific workflow to be enacted. The
organizational MAS structure is based on a RequestorAgent
that orchestrates a set of Distributed Workflow Agents
according to the workflow specification. The system has been
implemented in JADE.

Another agent-based approach for enacting workflows
specified in BPEL4WS is proposed in [14]. The novelty of the
approach is that the enactment of the workflows is carried out
by peer agents that can be associated with web services. The
control flow is coded in an interaction protocol that is not
defined at the development time like in [1,22] but which is
passed at run time between the agents together with the
messages so informing each agent what to do next to keep the
workflow executing.

Another peer-to-peer agent-based enactment approach is
presented in [29]. In this approach the workflow to be enacted
is decomposed into a set of interrelated task partitions. Each
task partition represents a service and its position, i.e., the
interaction and dependency with the other services in the
process. Then, each task partition is distributed to an agent
which represents a service provider offering a service required
by the specific workflow instance. Each agent autonomously
manages the enactment of the represented service and the
interactions between this service and the others only on the
basis of the assigned task partition; agents are not conscious of
the whole process in which they are involved. Such adopted
coordination model is known as a choreography coordination
model.

113

II I. THE DESIGN OF AWEF

The design of AWEF was carried out by exploiting an
agent-oriented development process [11] in which the
requirements capture phase is supported by the Tropos
methodology [5], the analysis and design phases are supported
by the Gaia methodology [27] and the detailed design phase is
supported by the Agent-UML [2] and the Distilled StateCharts
(DSC) [12].

The requirements, captured using the Tropos goal-oriented
approach, were reported in a Requirements Statements
document. On the basis of the requirements the following key
roles were identified:
� Enacter, which manages the activation and monitoring of

workflows and represents the interface between the WF
Engine and the Workflow Enactment Service;

� Manager, which manages the execution and control of
workflows;

� Executor, which executes the internal workflow tasks;
� Wrapper, which interacts with the external tasks or

services.
Each of these roles was fully described by using a Role

Schema according to the Gaia methodology. The protocols
associated with each role were identified and documented by
an Interactions Model. Then, the identified Roles were
aggregated into Agent Types also specifying the agent types
hierarchy (Agent Model); the main services required to
realize each role were specified (Services Model) and the
relationships of communication between the Agent Types
documented (Acquaintance Model).

The identified Agent Types are:
� EnacterAgent, which derives from the Enacter role.
� ManagerAgent, which derives from the Manager role. A

single ManagerAgent allows for flat workflow management
whereas a hierarchical structure of ManagerAgents, formed
according to the parent/child model, allows for a
hierarchical workflow management.

� TaskAgent, which derives from both the Executor and
Wrapper role.
The detailed design phase allowed for obtaining a detailed

specification of the behaviors of the Agent Types which have
been defined in the Agent Model. The work products of this
phase were the Agent Interactions Model and the Agent
Behaviors Model. The former consists of a set of Agent-UML
interaction diagrams [2] which thoroughly specify the patterns
of interaction between the Agent Types; the Agent Behaviors
Model specifies the dynamic behavior of each Agent Type by
means of the Distilled StateCharts (DSC) formalism [12].

The main interaction patterns documented by the Agent
Interactions Model are:
� EnacterAgent/ManagerAgent, which is enabled by the

Enacter/Manager Interaction Protocol (EMIP);
� ManagerAgent/ManagerAgent, which is enabled by the

Manager(parent)/Manager(child) Interaction Protocol
(MMIP);

� ManagerAgent/TaskAgent, which is enabled by the

Manager/Task Interaction Protocol (MTIP).
In the Agent Behaviors Model the basic behaviors of the

EnacterAgent, ManagerAgent and TaskAgent are defined. In
particular, the defined ManagerAgent behavior (or
ManagerBehavior) is composed of:
� An InitialPseudoActivity, which represents the starting

point of the workflow execution in the WF Schema.
� One or more FinalPseudoActivity, which represent points in

the WF Schema at which the workflow or a part of it ends.
A FinalPseudoActivity uses a parent ManagerAgent for
notification purposes.

� One or more WFPattern, which represent the control-f low
activities. A WFPattern, which can be any of the available
WF Patterns [25] (sequence, and-spli t, and-join, xor-spli t,
xor-join, or-split, multi-merge, discriminator, loop, multiple
instances, deferred choice, milestone, etc) uses one or more
TaskAgents and one or more child ManagerAgents for
activation purposes and a parent ManagerAgent for
notification purposes.
In order to model a WF Schema, InitialPseudoActivity,

FinalPseudoActivity, and WFPattern are linked through
source/target control-flow associations.

Figure 5 shows a Statecharts-based representation [15] of
the ManagerBehavior.

ControlFlow

ControlAction
Executed

/ executeNextControlAction()

ExecuteNextControlAction/ executeNextControlAction()

TerminateControl/ sendEndNotification()

S
tateC

hangeN
otification/handleN

otification()

Fig. 5. The generic behavior of a ManagerAgent.

According to the WF Schema to enact, the ManagerAgent

enters the ControlFlow superstate executing the
executeFirstControlAction() method. In this superstate, every
times that an ExecuteNextControlEvent is received the
ManagerAgent executes the next control-flow action by
invoking the executeNextControlAction() method which
fetches the next WFPattern and executes it. Upon completion
of a WFPattern execution, two events are generated: (i)
ExecuteNextControlAction which allows the
ManagerBehavior to invoke the executeNextControlAction()
method; (ii) StateChangeNotification which allows notifying
the upper-level ManagerAgent or the EnacterAgent about the
control-flow state change of the workflow. If there are no
more WFPatterns to execute, the TerminateControl event is
generated which drives the termination of the
ManagerBehavior and the transmission of the related
EndNotification to the upper-level ManagerAgent or to the
EnacterAgent. A WFPattern execution can involve: (i) the

114

detection of the completion of a task through the reception of
a FIPA ACL message which can also carry the data produced
by the completed task; (ii) the creation and/or activation of
TaskAgents or ManagerAgents.

The interaction diagrams composing the Agent Interactions
Model and the behavioral specifications of the Agent
Behaviors Model are to be intended as basic schemas that will
be coded into the basic classes of AWEF. A WF Engine wil l
be obtained by instantiating such basic classes according to
the schema of the workflow to be enacted and using the
concrete implementations of the tasks required for the
workflow execution.

Fig. 6. Class diagram of the AWEF Framework.

In Figure 6 the classes which compose AWEF are reported.

In particular, AWEF provides the base agents for workflow
enactment (EnacterAgent, ManagerAgent and TaskAgent),
their interaction protocols and a set of control-f low classes
which are associated to the behavior of the ManagerAgent and
implement the WF Patterns.

IV. THE JADE-BASED IMPLEMENTATION OF AWEF

The JADE-based classes of AWEF were straightforwardly
derived from the class diagram reported in Figure 6. In
particular:
� EnacterAgent, ManagerAgent and TaskAgent extend the

Agent class of JADE [16];
� EnacterBehavior, TaskBehavior and WFPattern extend

Behaviour class of JADE which represents a generic
behavior terminating when the end-of-activity condition is
met;

� ManagerBehavior extends FSMBehaviour class of JADE

which models a complex task whose sub-tasks correspond
to the activities performed in the states of a finite state
machine. In particular, the states of ManagerBehavior
correspond to the control-flow states of the workflow (or
sub-workflow) that the ManagerAgent is controlling; each
state is associated to a WFPattern which is activated when
the state becomes active. EMIP, MMIP, and MTIP are
appositely defined through sequences of ACL messages
instances of the ACLMessage class of JADE.

In the following subsection a hierarchical WF Engine based
on AWEF and capable of enacting the WF Schema reported in
Figure 2 is presented.

A. A hierarchical WF Engine based on AWEF

The hierarchical workflow management is enabled by a set
of ManagerAgents each of which embodies a sub-schema of a
WF Schema according to a hierarchical model. With reference
to the WF Schema of Figure 2, the WF Engine able to enact
such a WF Schema is obtained through:

1. The partitioning of the WF Schema into a set of
hierarchically arranged workflow schemas: WF Schema 1,
WF Schema 1.1, WF Schema 1.2 (see Figure 7);

2. The instantiation of AWEF with respect to the obtained
workflow schemas (see Figure 8 for the resulting class
diagram).

A

SM1

I

SM2

WF Schema 1 Top Manager Agent

B

C
Done?

No

E

Yes

WF Schema 1.1
SubManagerAgent1

D

F

H

WF Schema 1.2
SubManagerAgent2

A

SM1

I

SM2

WF Schema 1 Top Manager Agent

B

C
Done?

No

E

Yes

WF Schema 1.1
SubManagerAgent1

D

F

H

WF Schema 1.2
SubManagerAgent2

Fig. 7. Partitioned WF Schema.

With reference to Figure 8a the EnacterAgent is linked to
the top-level ManagerAgent which is, in turn, linked to the
TaskAgents related to the WF Schema 1, and to the
SubManagerAgents1and SubManagerAgents2 which control
the WF Schemas 1.1 and 1.2 respectively. Each
SubManagerAgent is, in turn, linked to the TaskAgents
associated to its schema.

With reference to Figures 8b-d each ManagerBehavior is
obtained by translating its associated WF Schema in a set of
classes consisting of one InitialPseudoActivity, one or more
FinalPseudoActivity, and one or more WFPattern which are
appositely interconnected.

115

(a) (b)

(c) (d)
Fig. 8. WF Engine class diagram: (a) MAS structure; (b-d) behaviors of the ManagerAgents (b-d)

V. CONCLUSIONS

This paper has described an Agent-based Workflow
Enactment Framework (AWEF) which can be instantiated on
the basis of a WF Schema for obtaining a specific WF Engine
which mainly consists of a hierarchy of ManagerAgents.
Each ManagerAgent has in charge the enactment of a sub-
schema of the WF Schema used for the instantiation of AWEF
and exploits a set of TaskAgents for the execution of the
specific workflow tasks associated to its sub-schema. This
MAS organization allows for the hierarchical distribution of
the workflow execution control between the ManagerAgents
and for the distribution of the computation among the
TaskAgents. Due to these features AWEF constitutes a basic
component for the construction of more flexible, efficient, and
robust Workflow Enactment Services.

The JADE-based implementation of AWEF has been
applied to the development of a workflow system for the
monitoring of distributed agro-industrial productive processes.
The developed workflow system is a component of a larger
system which was buil t in the context of the M.ENTE
(Management of integrated ENTErprise) project which aims at
developing a pervasive system for the control and
management of productive, organizational, and business
processes of companies working in the agro-alimentary
industry of Calabria. The current experimentation of the
system provides support to a consortium of agro-industrial
greenhouses.

Efforts are currently underway to develop an enactment
service which is able to automatically instantiate AWEF on

the basis of WF Schemas defined in YAWL.

ACKNOWLEDGMENT

This work was partially supported by the Italian Ministry of
Education, University and Research in the framework of the
M.ENTE (Management of integrated ENTErprise) research
project PON (N°12970-Mis.1.3). The authors also wish to
thank Serena Martino and Giuseppe Agapito for their
contribution to the JADE-based implementation of the AWEF
framework.

REFERENCES
[1] E. Bartocci, F. Corradini, E. Merelli, Enacting proactive workflows

engine in e-Science, In proceedings of the 6th International Conference
on Computational Science (ICCS 2006), University of Reading, UK,
May 28-31, 2006, pp. 1012-1015, volume 3993/2006, Springer-Verlag,
Berlin.

[2] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A Formalism for
Specifying Multiagent Interaction. In Paolo Ciancarini and Michael
Wooldridge, editors, Agent-Oriented Software Engineering, pages 91-
103. Springer-Verlag, Berlin, 2001.

[3] F. Bellif emine, A. Poggi, and G. Rimassa, Developing multi-agent
systems with a FIPA-compliant agent framework, Software Practice and
Experience, 31, pp. 103-128, 2001.

[4] U. M. Borghoff, J. H. Schlichter. Computer-Supported Cooperative
Work: Introduction to Distributed Applications. Springer-Verlag. 2000.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology,
Journal of Autonomous Agents and Multi-Agent Systems, 8(3):203-236,
2004.

[6] Business Process Execution Language for Web Services version 1.1.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[7] P. Buhler, J.M. Vidal, Towards AdaptiveWorkflow Enactment Using
Multiagent Systems, Journal of Information Technology and
Management, vol. 6, pp. 61–87, 2005, Springer-Verlag, Berlin.

116

[8] P. Buhler, J.M. Vidal, Enacting BPEL4WS specified workflows with
multiagent systems, In Proceedings of the Workshop on Web Services
and Agent-Based Engineering, 2004.

[9] P. Buhler, J.M. Vidal and H. Verhagen, Adaptive Workflow = web
services + agents, In Proceedings of the First International Conference
on Web Services, 131-137, 2003.

[10] L. Ehrler, M. Fleurke, M. A. Purvis, and B.T.R. Savarimuthu, Agent-
Based Workflow Management Systems(Wfmss): JBees - A Distributed
and Adaptive WFMS with Monitoring and Controlling Capabilities,
Journal of Information Systems and e-Business Management, Volume 4,
Issue 1, Jan 2006, Pages 5-23, Springer-Verlag, Berlin.

[11] G. Fortino, A. Garro, and W. Russo, An Integrated Approach for the
Development and Validation of Multi Agent Systems, Computer Systems
Science & Engineering, 20(4), pp.259-271, Jul. 2005.

[12] G. Fortino, W. Russo, and E. Zimeo, A Statecharts-based Software
Development Process for Mobile Agents, Information and Software
Technology, 46(13), pp. 907-921, Oct. 2004.

[13] Foundation of Intelligent and Physical Agents, http://www.fipa.org.
[14] L. Guo, Y. Chen-Burger, and D. Robertson Dave, Enacting the

Distributed Business Workflows Using BPEL4WS on the Multi-Agent
Platform. In Proceedings of the Third German Conference on Multi-
agent System Technologies (MATES2005), LNAI 3550, pp. 35-47,
Koblenz Germany, Springer-Verlag.

[15] D. Harel and E. Gery. Executable Object Modelling with Statecharts.
IEEE Computer, 30(7): 31-42, 1997.

[16] Java-based Agent Development Environment (JADE), documentation
and software at the world wide web: http://jade.tilab.com.

[17] N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, and B. Odgers,
Autonomous Agents for Business Process Management, Journal of
Applied Artificial Intelligence, 14(2), pp. 145–189, 2000.

[18] M. Luck, P. McBurney, and C. Preist, A Manifesto for Agent
technology: Towards Next Generation Computing, Autonomous Agents
and Multi-Agent Systems, 9(3), pp. 203-252, 2004.

[19] D.C. Marinescu, Internet-based Workflow Management, John Wiley &
Sons, Inc., New York, 2002.

[20] P.D. O’Brien and M.E. Wiegand, Agent-based process management:
applying intelligent agents to workflow, Knowledge Engineering
Review, 13(2), pp. 1-14, 1998.

[21] M. A. Purvis, B.T.R Savarimuthu, and M.K Purvis, A Multi-agent Based
Workflow System Embedded with Web Services, In proceedings of the
second international workshop on Collaboration Agents: Autonomous
Agents for Collaborative Environments (COLA 2004), Beijing, China,
September 2004, pp 55-62, IEEE/WIC Press.

[22] M. Repetto, M. Paolucci, A. Boccalatte, A Design Tool to Develop
Agent-Based Workflow Management Systems, In Proc. of the 4th
AI* IA/TABOO Joint Workshop "From Objects to Agents": Intelligent
Systems and Pervasive Computing, 10-11 September 2003, Villasimius,
CA, Italy, pp. 100-107, Pitagora Editrice Bologna.

[23] B.T.R. Savarimuthu, M.A. Purvis, M.K. Purvis, and S. Cranefield,
Agent-Based Integration of Web Services with Workflow Management
Systems, Information Science Discussion Paper Series, Number
2005/05, ISSN 1172-6024, University of Otago, Dunedin, New Zealand.

[24] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245-275, 2005.

[25] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros, Workflow Patterns, Distributed and Parallel Databases, 14(3),
pp. 5-51, July 2003.

[26] W.M.P. van der Aalst and K. van Hee, Workflow Management: Models,
Methods, and Systems, The MIT Press, Cambridge (MA), 2002.

[27] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[28] Workflow Management Coalition, http://www.wfmc.org.
[29] J. Yan, Y. Yang, R. Kowalczyk, and X. T. Nguyen, A service workflow

management framework based on peer-to-peer and agent technologies,
In Proc. of the International Workshop on Grid and Peer-to-Peer based
Workflows co-hosted with the 5th International Conference on Quality
Software, Melbourne, Australia, September 19 -21, 2005.

117

