
Building a MultiAgent System from a User

Workflow Specification

Ezio Bartocci∗, Flavio Corradini∗, Emanuela Merelli∗

∗ Dipartimento di Matematica e Informatica,

Università di Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

{name.surname}@unicam.it

Abstract— This paper provides a methodology to build
a MultiAgent System (MAS) described in terms of inter-
active components from a domain-specific User Workflow
Specification (UWS). We use a Petri nets-based notation
to describe workflow specifications. This, besides using a
familiar and well-studied notation, guarantees an high-
level of description and independence with more concrete
vendor-specific process definition languages. In order to
bridge the gap between workflow specifications and MASs,
we exploit other intermediate Petri nets-based notations.
Transformation rules are given to translate a notation to
another. The generated agent-based application implements
the original workflow specification. Run-time support is
provided by a middleware suitable for the execution of the
generated code.

I. INTRODUCTION

Nowadays open distributed systems, characterized by

independent components that cooperate to achieve indi-

vidual and shared goals, are becoming essential in several

contexts, from large scientific collaborations to enterprise

information systems. The Grid and agent communities

are both developing concepts and mechanisms for open

distributed systems, but with different perspectives [10].

Grid community has focused on the main prominent

cyberinfrastructures [12] for large-scale resource shar-

ing and distributed system integration, providing tools

for secure and reliable resource sharing within dynamic

and geographically distributed virtual organizations. Grid

computing [9] promises users the ability to harness the

power of large numbers of heterogeneous, distributed

resources such as computing resources, data sources,

instruments and application services. Agent community

instead is working on the development of methodologies

and algorithms for autonomous problem solvers that can

act flexibly in uncertain and dynamic environments in

order to achieve their goals [13]. As referred in [10],

Grid and Agents need each other and are respectively

considered the “brawn” and the “brain” of open dis-

tributed systems. With the advent of Grid and Agent-

based technologies, scientists and engineers are building

more and more complex applications to manage and

process large data sets, and execute scientific experiments

on distributed grid resources. These applications are gen-

erally characterized by the execution of a set of distinct,

sometimes repetitive, domain-specific activities. Automat-

ing such processes requires a model that describes the

coordination of the activities to be executed, the roles

Fig. 1. A two steps methodology

involved in the organization and the needed resources.

For this reason, during the last decade, the workflow

technology has became very important. In fact the Work-

flow Management Coalition (WfMC) defines a workflow

“the automation of a business process, in whole or part,

during which documents, information or tasks are passed

from one partecipant to another for action, according

to a set of procedural rules.” [21]. In order to provide

a proper workflow specification language each standard

organization -i.e WfMC, BPMI and OMG- has defined its

own process definition language. Our aim is to provide a

methodology to translate a User Workflow Specification

(UWS) into a MultiAgent System described in terms of

Interactive Components [8] (ICs). We have based our

approach to describe a MAS with the help of components

on that proposed by Ferber in [9] for modelling of MAS

in BRIC. Figure 1 shows the two steps of the proposed

methodology. In the first step, UWS is translated to

a Role-based Workflow Specification (RWS). The user,

whose primary expertise is in the application domain, can

focus on coordinating domain activities rather than being

concerned with the resources involved in the distributed

environment. The first translation assigns the resources or

roles needed to execute each task. We have chosen Wf-net

as high-level specification language suitable to represent

the main workflow patterns provided by the most used

workflow specification languages -i.e XPDL [22], and

BPEL [2]. Wf-net is a well-known extension of classical

Petri net [16] notation and it has been introduced in [18].

The second step of the proposed methodology translates

RWS into Interactive Components. To describe behavioral

aspect of each component we have used BRICs [8]

notation; another extension of classical Petri net. We have

defined transformation rules to map Wf-net specification

patterns into BRICs. This paper is organized as follows.

96



Section 2 describes the background of the work. Section

3 and 4 explain the two steps of our methodology. In

Section 5, we present a case study that applies this

methodology in Hermes [7] middleware. We conclude in

Section 6.

II. BACKGROUND

This section provides some background on Workflow

Management System (WMS), Petri nets, High level Petri

nets and their application to Workflow Management [18].

A. Workflow Management System

Workflow Management Systems (WMSs) provide an

automated framework for managing intra- and interprise

business processes. A WMS is defined by WfMC

as:“A system that defines, creates and manages the

execution of workflows through the use of software,

running on one or more workflow engines, which is

able to interpret the process definition, interact with

workflow partecipants and, where required, invoke the

use of IT tools and applications.” [21]. The most part

of implemented WMS are based on a client/server

architectural style. In these systems, the workflow

enactment is entrusted to a central component, that acts

as a server and is responsible for the correct execution.

These systems lack the flexibility, scalability and fault

tolerance required for a distributed cross-organizational

workflow; in fact a monolithic architecture does not

allow the execution of workflow or parts of it over

distributed and heterogeneous systems. To overcome

these limitations, agent-based technology promises to

alleviate many of these problems [20] and hence enable

adaptive workflow. Moreover, using agent mobility,

instances of a workflow or parts of it can migrate; i.e., it

is possible to transfer the code and the whole execution

state, including all data gathered during the execution,

between sites participating in workflow’s execution.

Agent mobility provides two main benefits. First,

migrating workflow decreases efficiently traffic network;

usually code implementing workflow specification is less

heavy to transfer than the amount of data needed during

its execution. The second asset concerns the possibility

for the workflow to be executed even in mobile and

weekly network connected devices. This model requires

a suitable middleware to guarantee code mobility support.

B. Petri nets

A Petri net [16] is a directed bipartite graph with

two node types called places and transitions. The nodes

are connected via directed arcs. Connections between

two nodes of the same type are not allowed. Places are

represented by circles and transitions by boxes or bars.

According to [15], an ordinary Petri net can be defined

as a 4-tuple, PN = (P, T, F, M0) where:

1) P = {p1, p2, · · · , pm} is a finite set of places,

2) T = {t1, t2, · · · , tn} is a finite set of transitions,

3) F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow

relation),

Fig. 2. A subprocess

4) M0 : P → N is the initial marking function,

5) P ∩ T = ® and P ∪ T 6= ®.

Ordinary means that all arcs have weight 1.

A place p is called an input place of a transition t

if and only if there exists a directed arc from t to p.

Place p is called an output place of transition t if and

only if there exists a directed arc from p to t. We use •t,
t• to denote respectively the set of input places and the

set of output places a transition t. The notation •p and

p• identifies instead the set of transitions sharing p as

input place and as output place respectively.

At any time a place contains zero or more tokens,

drawn as black dots. A marking function M ∈ P → N is

the distribution of tokens over places and represents the

state of PN . In this definition we do not consider any

capacity restrictions for places. The number of tokens

may change during the execution of the net.

Transitions are the active components in a Petri

net: they change the state of the net according to the

following firing rule:

1) A transition t is said to be enabled if and only if

each input place p is marked with at least one token.

2) An enabled transition may fire. If transition t fires,

then t consumes one token from each input place

p of t and produces one token in each output place

p of t.

C. High level Petri nets

A High-level Petri Net (HLPN) [1] is a PN with three

main extensions:

• Extension with color - in Coloured Petri Net

(CPN) [14] tokens are typed and each token has a

value often referred as color. Transitions determine

the values of the produced tokens on the basis

of the values of the consumed tokens. Moreover

preconditions can be specified taking into account

the color of tokens.

• Extension with time - using time extension, tokens

receive a timestamp value that indicates the time

from which the token is available. A token with

timestamp 10 is available for the consumption by

a transition only from moment 10. A transition is

enabled only at the moment when each of the tokens

97



Fig. 3. Special transitions and their translation

to be consumed has a timestamp equal or subsequent

to the current time.

• Extension with hierarchy - hierarchical extension

allows to model complex processes more easily by

dividing the main process into ever-smaller subpro-

cesses to overcome the complexity. In this paper, we

use the notation proposed by Wil van der Aalst [23],

where a subprocess is a transition represented by

double-border square as Figure 2 shows.

D. Workflow Nets

Workflow Nets (WF-nets) [23] are a subclass of HLPN

where tasks are represented by transitions and conditions

by places. A WF-net satisfies two requirements. First of

all, it must contain at least two special places: i and o.

Place i is a source place with •i = ®. Place o is a

sink place with o• = ®. Secondly, it must hold that if

we add a transition t∗ which connect place o with i -

i.e. •t∗ = {o} and t∗• = {i} - then the resulting Petri

net is strongly connected -from each node there exists

a directed path to every other node-. This requirement

avoids dangling tasks and/or conditions. In order to make

the WF-net suitable for workflow process modelling a set

of notational extensions was applied to the standard Petri

net definition. In particular, as referred [23], the author

of WF-net added to the classical Petri net transition a

set of special transitions (AND split, AND join, XOR

split, XOR join, AND/OR split), shown in Figure 3 with

their translations, to express branching decisions in a more

compact and user friendly way.

In the workflow theory [19], routing primitives are defined

as a set possible basic patterns that determine which tasks

need to be performed and in which order. Using the

prevoius defined special transitions as control flow, a set

of four basic routing primitives can be obtained as Figure

4 shows:

1) Sequential routing - task A is executed before task

B,

2) Alternative routing - either task A or task B are

executed non deterministically,

3) Concurrent routing - task A and task B are executed

concurrently,

4) Iterative routing - task B is repeated

In order to model dependencies between the workflow

process and its operative environment three different

constructs named “triggers” were added to the standard

Petri net -resource, message and time trigger. In this

paper we will consider only the resource trigger. In

this particular case, a trigger is associated to a specific

resource needed to execute a task. As Figure 5 we

can consider a trigger as special place linked with the

transition representing a task. When the needed resource

is not available this place is empty and the transition is

not enabled, while if it contains a token it means that the

resource is available and the task related to the linked

transition could be executed. In the following sections we

will consider interactive components as computational

resources able to execute tasks under particular cases.

The resource trigger can be assigned to every transition

and is represented by a small, self-explaining icon (⇓)

near the associated transition symbol as Figure 5 shows.

III. ADDING ROLES TO WORKFLOW SPECIFICATION

A workflow process specification defines which tasks

need to be executed and in what order. A set of cases,

identified by pre- and postcondition, are handled by

executing tasks in a specific order. A task which needs to

be executed for a specific case is called work item [18].

A workflow specification is the composition of both

primitive and complex work items. A primitive work item

can be directly executed. A complex work item -called

subprocess in [18]- must be specified before it can be

used; the specification of a subprocess is a workflow of

complex and primitive work items. By using subprocesses

the specification of workflows is simplified because they

enhance both hierarchical specification and reuse: we can

use an already existing subprocess without having care

of its specification. Work items are generally executed by

a resource that can be either a machine -i.e. printer or a

fax-, a computational entity -i.e. an agent- or a person.

Resources are allowed to deal with specific work items.

Grouping resources into classes facilitates the allocation

of work items to resources. A resource class based on

the capabilities of its members is called role. A work

item which is being executed by a specific resource is

called an activity. A workflow designer, whose primary

expertise is generally in the application domain, should be

free to focus on coordinating domain specific activities

rather than being concerned with the complexity of a

domain specific activity or resources involved to execute

it. Users in fact may ignore the topological organization of

the distributed environment and resource classes available.

The first step of the proposed methodology translates

a user workflow specification to a role-based workflow

specification. During this step each work item is assigned

to a role able to perform it. This operation could be made

manually or automatically. In the first case an expert user

can assign role by itself, while in the second case an

activity repository store all informations about complex

activities and the user knows only there is an automatic

mapping from domain specific work items and activities.

This resource allocation is applied recursively in all work

items of each subprocess. Figure 6 shows an example in

98



Fig. 4. Routing primitives

bioinformatics. In this case a bioscientist has designed an

in-silico experiment -shown on the top of the Figure 6-

to globally align some omologous sequences to a given

one. This workflow involves five main work items:

1) get gene seq - given a gene id, retrieve the gene

DNA sequence,

2) search genbank omologous - given a DNA se-

quence, retrieve a set of DNA sequence omologous

from NCBI Genbank [3],

3) search PDB omologous - given a DNA sequence,

retrieve a set of DNA sequence omologous from

the Protein Data Bank (PDB)[4],

4) merge seqs - merge two or more set of sequences

in a set of sequences,

5) global alignment - given a set of DNA sequences

calculate the global alignment

In the Role-based Workflow Specification -

shown on the bottom of Figure 6- subprocesses

search genbank omologous, search PDB omologous and

merge seqs are substituted with the corresponding set

of primitive work items. Each primitive work item is

assigned to a specific role. In this case we have three

roles A, B and C. Roles are translated into Interactive

Components in the next step.

IV. INTERACTIVE COMPONENTS SPECIFICATION

In the second step the Role-based Specification is

translated into Interactive Components. In order to specify

the behaviour of each component indipendently from the

corresponding generated code, we use BRICs [8], another

Petri nets-based notation. In this section we provide trans-

formation rules to translate Wf-net to BRICs notation.

A. BRICs notation

Block Representation of Interactive Components

(BRICs) [8] is an high-level language for the design of

MultiAgent systems based on a modular approach. A

Fig. 5. Resource trigger

BRIC component -see Figure 7 (a)- is a software structure

characterized externally by a certain number of input and

output terminals and internally by a set of components.

Every component is an instance of a class, which de-

scribes its internal structure. A structured component is

defined by the assembly of the its subcomponents. The

input terminals of the structured components are linked

to the input terminals of the the sub-components and

is also possible to combine terminals of the composite

components with sub-components as showed in Figure 7

(b). The behaviour of elementary components is described

in terms of a Petri net based formalism. The default net

formalism normally used in BRIC is coloured Petri nets

with inhibitor arcs. Figure 7 (c) represents the general

form of a transition. A transition is defined by entry arcs,

exit arcs and pre-condition of activation. Entry arcs are

carriers of a condition, in the form of the description

of a token including variables. When the place contains

a token corresponding to this description, the arc is

validated. There are three categories of entry arcs:

1) Standard arcs, denoted a1, · · · , an, trigger the tran-

sition only if they are all validated consuming

tokens which act as triggers and deleting them from

input places.

2) Inhibitor arcs, denoted i1, · · · , im, inhibit the trig-

gering of the transition if they are enabled without

deleting tokens from the input place.

3) Non-consumer arcs, denoted b1, · · · , bk, work as

standard arcs, but they don’t delete the input tokens.

Fig. 7. BRICs notation

An exit arc associate a transition with an output place

producing in this position new tokens that depend on

the tokens used for triggering the transition. The pre-

condition associated with a transition relates to the ex-

ternal conditions. The components communicate by ex-

changing information along communication links which

connect output terminals to the input terminals. Informa-

tion is transported through the net in the form of tokens. A

token is either an elementary piece of information whose

value is a mere presence or absence, or a predicate in the

form p(l1, · · · , ln), where each li represents a number or

a symbol in a finite alphabet. Other importart assumptions

concerning this notation are:

99



Fig. 6. From User to Role-Based Workflow Specification

1) Input terminals are considered as places, thus names

of input terminals are taken to be place identifiers.

2) Any direct link between an input terminal of an

incorporating component and an input terminal of

incorporated component is assumed to comprise a

transition, in accordance with Petri net design rules.

B. Mapping roles with structured components

The translation from a role-based workflow to inter-

active components specification requires the definition of

a structured component skeleton that represents a role-

specific implementation. As Figure 8 shows, the basic

skeleton has two essential capabilities. First, since it

must be able to receive messages from the other external

components asynchronously, we specify a subcomponent

called MessagesQueue that stores messages as coloured

tokens following a First In First Out (FIFO) approach.

Each message is defined in the form:

<sender>: <address> << <Act, Pre, Pa>

where sender is the identifier of the component sending

the message, address is the identifier of the compo-

Fig. 8. Basic skeleton component

Fig. 9. Scheduler component

nent to which the message is addressed. Act and Pre

are respectively the activity to be chosen and the pre-

condition to be set, Pa is a possible input parameter

for the activity -null value means no parameters. In the

basic skeleton we specify a second subcomponent, called

Scheduler, providing, as Figure 9 shows, a set of places

and transitions to receive tokens from MessagesQueue

and to schedule the execution of a set of tasks following

the order and cases defined by the role-based workflow

specification. Scheduler component has four main places:

1) Scheduler Input (SI) - a token in this place means

a new message for the scheduler.

2) Schedule Place (SP) - after tA firing produces a

coloured token in SP in the form:

<Act, Pre, Pa>

Each Scheduler component contains a set of n Act

components and ∀tBi,ki
we define an entry arc ei,ki

with the description:

<i, k, Pa>

where 1 < i < n, 1 < ki < mi and mi is number

100



Fig. 11. From Role-Based Workflow to Interactive Components Specification

Fig. 10. Mapping activities

of pre-conditions for Acti. A token in SP matching

with a description of an entry arc ei,ki
enables

the corresponding transition tBi,ki
. The entry arc

description for the transition tD is defined as:

<null, null, null>

3) Idle Place (IP) - when this place contains a token

the Scheduler is waiting for a new message.

4) Dead Place (SP) - the transition tD when is enabled

produce a token in SP inhibiting the transition tA.

Consequently the Scheduler can’t receive any token

in SP place. This place is called dead, because a

token here stops the behaviour of this component.

When this happens tD can produce also a token for

the external components to stop their behaviour too:

<me>: <All> << <null, null, null>

C. Mapping activities

An Interactive Component (IC) is an executor of a

piece of workflow specification. The final behaviour

of an IC is obtained by plugging the activities of the

corresponding role into the basic skeleton previously

defined. Each primitive activity defined in the Role-based

specification is associated with an Act component in

ICs specification. Figure 10 shows how the routing

constructs in Figure 4 are mapped into Act components.

A component Acti contains an input terminal for each

pre-condition of the mapped activities, which are labelled

pi,1, · · · , pi,mi
where mi is the number of the activity

pre-conditions. When the routing transition tRi
fires the

token produced in pRi
enable the task transition tTi

-representing a task to be execute by an IC- is enabled

iff IP is not empty. The coloured token produced by tTi

is a message -as previously defined- for its and/or other

ICs MessageQueue.

101



D. An example

Figure 11 shows, on the top a Role-based specification

using all possibile routing primitives and on the bottom

the translation in ICs specification. For each role in the

first corresponds to an IC in the second. All pre-conditions

and activities are mapped into Act components adding the

right routing transitions and are plugged in the Scheduler

of the IC basic skeleton. An Act component produce at

least a message describing which are the next IC, Act

component and input terminal to be reach and an optional

parameter for the task transition. The field address in the

message specifies which are the receiver IC and an entry

arc is assumed from this output teminal and the external

input terminal of the IC specified.

V. A CASE STUDY

In the previous sections we have defined a Petri nets-

based methodology showing how a user workflow-based

application specification can be translated into Interac-

tive Components. As a case study we have applied this

methodology in Hermes [7], an agent-based middleware,

for the design and the execution of activity-based appli-

cations in distributed environment. Hermes is structured

as a component-based, agent-oriented system with 3-

layer -user, system and run-time- software architecture.

Due to the lack of space, middleware architecture is not

discussed here and we refer to [7] for further details. In

this section, we focus instead on its workflow compiler

architecture implementing the methodology previously

defined. This component, infact, allows to translate a user

domain-specific workflow specification into mobile code

supported by Hermes middleware.

A. Workflow compilation process

As Figure 12 shows, workflow compilation process in

Hermes requires three main components:

1) WebWFlow - allows the user to define graphically a

workflow of domain-specific activities. A repository

provides a set of complex or primitive activities

available for selecting. At this level activity imple-

mentation details are hidden to user.

2) XPDLCompiler - translates the Role-based work-

flow specification into Interactive Components

specification and generates the code to be executed

on Hermes middleware. In this case another repos-

itory provides the implementation of each activity

as a code template.

3) Hermes middleware - supports the generated code

execution and mobility.

In the follow sections we focus on the first two

components details.

B. WebWFlow

WebWFlow is a web-based workflow editor supporting

the workflows specification by composing activities in a

graphical environment. The graphical notation provided is

mapped by WebWFlow into an XML Process Definition

Fig. 12. Workflow compilation process

Language (XPDL) [22] document. WebWFlow allows to

import complex activities from the User Activity Repos-

itory (UAR). This repository contains the role-based def-

inition of domain-specific activities. The implementation

of each activity in UAR is provided instead by the User

Implementation Activity Repository (UAIR) and corre-

sponds to a piece of Java code extended with Velocity

Template Language(VTL)[11]. The XPDL produced by

WebWFlow is a Role-based workflow specification.

C. XPDLCompiler

XPDLCompiler receives an XPDL document and

generates the Java bytecode implementing Interactive

Components. A lexical and syntax analyzer performs

the validation and the parsing of the XPDL document

using the Java Architecture XML Binding [17]. After

this first phase, the compiler checks if the activities

used in the workflow specification have a corresponding

implementation in UAIR. Each role is translated in an

Agent skeleton, an extension of Hermes UserAgent Java

class. As Figure 13 shows, a UserAgent provides the

needed communication methods to interact with other

UserAgents. Then, for each activity, the corresponding

102



Fig. 13. UserAgent and Agent main methods

implementation code in UAIR is plugged into an Agent

skeleton and each internal scheduler is set. The Java

code generation is performed using Apache Velocity

(http://jakarta.apache.org/velocity/) template engine.

Finally, using the Java compiler, the generated bytecode

can be loaded into Hermes middleware.

ACKNOWLEDGMENT

This work is supported by the Investment Funds for

Basic Research (MIUR-FIRB) project Laboratory of In-

terdisciplinary Technologies in Bioinformatics (LITBIO).

We would also like to thank Luca Tesei for his valuable

remarks and suggestions.

VI. CONCLUSION

This paper presents a methodology to build a MultiA-

gent System described in terms of Interactive Components

from a domain-specific User Workflow Specification. The

whole approach is described using Petri nets-based nota-

tion. This provides many benefits. Petri nets are well-

studied formalisms and there are many tools available

for verification. The high-level of description provided by

Petri Nets guarantees independence with vendor-specific

process definition languages. Behaviour of agents can

also be described using BRICs, another Petri nets-based

notation. In this case it is possible to describe components

independently from the their implementing code. Using

transformation rules from a notation to another we reduce

the gap between workflow specifications and MultiAgent

System. Our approach currently supports the building of

a MAS based on message passing communication, its

extension towards uncoupled communication will be next

considered. As future work we also aim to use the ap-

proach proposed in [5], [6] to validate the implementation

starting from the model.

REFERENCES

[1] W. Aalst. Putting Petri nets to work in industry. Computers in

Industry, 25(1):45–54, 1994.

[2] T. Andrew, F. Curbera, H. Dholakia, Y. Goland, and et al. Business
process execution language (bpel) for web services version 1.1.
Technical report, IBM, 2003.

[3] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and
D. Wheeler. Genbank. Nucleic Acids Res., 34:D16–20, 2006.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, W. H.,
S. I.N., and B. P.E. Wildfire: distributed, grid-enabled workflow
construction and execution. Nucleic Acids Res., 28(1):235–42,
2000.

[5] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving
test plans from architectural descriptions. In ICSE, pages 220–229,
2000.

[6] A. Bertolino, P. Inverardi, and H. Muccini. An explorative journey
from architectural tests definition downto code tests execution. In
ICSE, pages 211–220. IEEE Computer Society, 2001.

[7] F. Corradini and E. Merelli. Hermes: agent-based middleware for
mobile computing. In Mobile Computing, volume 3465, pages
234–270. LNCS, 2005.

[8] J. Ferber. Multi-Agent System: An Introduction to Distributed

Artificial Intelligence. Addison-Wesley, 1999.
[9] I. Foster and C. Kesselman. The Grid: Blueprint for a Future

Computing Infrastructure. Morgan Kaufmann Publishers, San
Francisco, CA, 1998.

[10] I. T. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn:
Why grid and agents need each other. In AAMAS, pages 8–15.
IEEE Computer Society, 2004.

[11] A. Group. Vtl reference guide.
http://jakarta.apache.org/velocity/docs/vtl-reference-guide.html.

[12] T. Hey and A. E. Trefethen. Cyberinfrastructure for e-Science.
Science, 308(5723):817–821, 2005.

[13] N. R. Jennings. An agent-based approach for building complex
software systems. Commun. ACM, 44(4):35–41, 2001.

[14] K. Jensen. Coloured Petri Nets. Basic concept, analysis methods

and practical use. EATCS monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1996.

[15] T. Murata. Petri nets: Properties, analysis and applications. In
Proceedings of the IEEE, volume 77, pages 541–580, April 1989.

[16] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut
für instrumentelle Matematik, Bonn, 1962.

[17] Sun. Java architecture for xml binding (jaxb).
http://java.sun.com/webservices/jaxb/.

[18] W. van der Aalst. The application of petri nets to workflow
management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[19] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros. Workflow patterns. Distributed and Parallel

Databases, 14(1):5–51, 2003.
[20] J. M. Vidal, P. A. Buhler, and C. Stahl. Multiagent systems with

workflows. IEEE Internet Computing, 8(1):76–82, 2004.
[21] WfMC. Workflow management coalition terminology and glos-

sary. Technical Report WFMC-TC-1011, Workflow Management
Coalition, 1999.

[22] WfMC. Xml process definition language (xpdl). WfMC standard,
W3C, October 2005.

[23] K. v. H. W.M.P. van der Aalst. Workflow Management - Models,

Methods and Systems. MIT Press, Cambridge, 2002.

103


