
TANKER: Distributed Architecture
for Named Entity Recognition and
Disambiguation
Sandro A. Coelho sandro.coelho@ice.ufjf.br

InfAI, University of Leipzig, Leipzig, Germany

Diego Moussalem moussalem@informatik.uni-leipzig.de

AKSW, University of Leipzig, Leipzig, Germany

Gustavo C. Publio publio@informatik.uni-leipzig.de

AKSW, University of Leipzig, Leipzig, Germany

Diego Esteves esteves@cs.uni-bonn.de

SDA Research Group, University of Bonn, Bonn, Germany

Keywords

Named Entity Recognition Entity Linking NER Architec-tures Knowledge based systems Joining processes

ABSTRACT
Named Entity Recognition and Disambiguation (NERD) systems have recently been widely researched to
deal with the significant growth of the Web. NERD systems are crucial for several Natural Language
Processing (NLP) tasks such as summarization, understanding, and machine translation. However, there is
no standard interface specification, i.e. these systems may vary significantly either for exporting their outputs
or for processing the inputs. Thus, when a given company desires to implement more than one NERD
system, the process is quite exhaustive and prone to failure. In addition, industrial solutions demand critical
requirements, e.g., large-scale processing, completeness, versatility, and licenses. Commonly, these
requirements impose a limitation, making good NERD models to be ignored by companies. This paper
presents TANKER, a distributed architecture which aims to overcome scalability, reliability and failure
tolerance limitations related to industrial needs by combining NERD systems. To this end, TANKER relies on
a micro-services oriented architecture, which enables agile development and delivery of complex enterprise
applications. In addition, TANKER provides a standardized API which makes possible to combine several
NERD systems at once.

1. INTRODUCTION
The Internet has been growing at an explosive rate for several years, which make harder to handle the big
amount of information diffused in diverse formats, such as text, audio and, video. Currently, the Web produces
more than 2.5 exabytes of data per day . Therefore, the challenge of indexing, formatting, and making the
information available to the users has arisen every day, which makes a critical scenario. In order to deal with
such variety of contents, refined NLP techniques are required.

One of the most important NLP techniques is Named Entity Recognition and Disambiguation (NERD). The
task aims at recognizing the entities and their types in raw texts and linking them to distinct Knowledge Base
(KB)s [8] . In addition, NERD systems enable the processing of unstructured texts to provide useful data for
information retrieval, information extraction, machine translation, question answering systems and automatic
summarization tools.

Although NERD approaches have been widely researched nowadays and shown good precision, they still
present inefficient time-performance algorithms and poor versatility. In an industrial environment, a given

1

mailto:sandro.coelho@ice.ufjf.br
mailto:moussalem@informatik.uni-leipzig.de
mailto:publio@informatik.uni-leipzig.de
mailto:esteves@cs.uni-bonn.de

newspaper company which desires to annotate their news can deal with different subjects in the same
document. It makes the use of distinctive NERD systems and KBs harder. On the other hand, financial
companies handle very large documents and the current NERD tools do not deliver the response in a
reasonable time (e.g., they may take almost half day to deliver the results from a big data set). For instance,
DBpedia Spotlight [6] is able to process only 120 queries per minute and also retrieves information only
from DBpedia [5] , which is not enough for enterprise companies who deal with large documents and different
subjects. Therefore, the main lack is scalability which becomes a key factor for academic solutions to be
adopted by the industrial environment.

Early efforts have focused on algorithms and evaluations, resulting in stand-alone applications that aimed to
solve problems in specific domains. For example, Rizzo et al. [10] and Borodino et al. [2] proposed the
combination of NERD systems for industrial solutions, but they did not focus on scalability. Thus, it becomes
difficult to use them in real cases. Moreover, the systems must be checked whether there is any limitation for
using in distributed environments regarding their licenses.

To this end, we present TANKER, an approach to address the aforementioned gaps by combining NERD
solutions through a micro-services architecture. TANKER is a REST based service that decreases
drawbacks especially with regards to integration, licensing, outdated technologies and availability/scalability.
The main contributions intended with our work are:

Scalability : TANKER allows to start new service instances by language/domain in response to rising
demand with a round-robin distribution strategy.

Fault tolerance : using a client-side IPC library, a request can be handled for N configured available
servers

Completeness : under the same request, TANKER can query one-to-many services to provide better
results.

The paper is structured as follows: In the next section, we present the related works. Section Section 3
presents the TANKER architecture in details and explains how TANKER address the gaps pertaining to
industrial solutions. In Section Section 4 we present the primary implementation of TANKER. Finally, we give
an outlook on further directions and possibilities for TANKER in Section Section " SUMMARY " .

2. RELATED WORK
To the best of our knowledge, there is no work proposing a distributed architecture based on micro-services,
especially focusing on its infrastructure and scalability. However, there are two works which had proposed
distinct architectures for combining NERD systems without relying on machine learning (ML) algorithms.
They are as follows:

NERD framework : In 2012, proposed a generic framework which groups either commercial and
research approaches among several entity recognition tools. The Named Entity Recognition (NER)
tools are made available via Web APIs and they use a hybrid approach for presenting the different
outputs of each NER tool via a unique response. Thus, providing users the opportunity to easily query
each of these services through the same setup and compare their outputs. In addition, NERD is tailored
for entity recognition of Twitter streams and has a public web API .

HERMES framework : The authors proposed a novel NLP framework dubbed HERMES which focuses
on addressing the performance at the infrastructure layer. HERMES provides an Entity Recognition and
Disambiguation service, enhanced with three features (topic extraction, topic labeling and topic
explanation). It uses Apache Kafka to deal with message queues. However, their implementation
comprises of asynchronous modules which does not consider the response time. This implies several
challenges for developers, as it is hard to deal with different kinds of failure in asynchronous scenarios.
Although Hermes architecture is based on modules, there is no web service or API provided by this
solution.

In terms of components, i.e. NER, Entity Linking (EL) and NERD models, there are a plenty of available tools
that could be integrated in our architecture. However, for the sake of space, we only introduce the approaches

2

3

4

5

which are included in TANKER.

NER - Stanford NER [4] is a Java implementation of a NER system. It labels sequences of words in a
text which are the names of things, such as person and company names, or gene and protein names. It
comes with well-engineered feature extractors for Named Entity Recognition, and many options for
defining feature extractors. Stanford NER implements Conditional Random Fields (CRF) sequence
models to perform NER tasks in pre-existing training sets, and one can also train a new model.

NED – AGDISTIS [11] is an open source named entity disambiguation framework. Its early version
can link entities by combining the HITS algorithm with label expansion strategies and string similarity
measures. The newer version of it includes a new algorithm called MAG [7] . MAG is a multilingual and
deterministic algorithm which disambiguates entities from a given knowledge base by using HITS and
PageRank along with an in-depth context search based on TF-IDF statistics. Based on this
combination, it can efficiently detect the correct URIs for a given set of named entities within an input
text. Furthermore, AGDISTIS is agnostic of the underlying knowledge base.

NERD - One of the first semantic approaches published in 2011, DBpedia Spotlight [6] is a tool which
combines NER and NED approaches for automatically annotating mentions of DBpedia resources [3] in
texts. In addition, Spotlight contains programmatic interfaces based on a vector-space representation of
entities and cosine similarity for phrase spotting, i.e., recognition of phrases to be annotated. Moreover,
it can export the results in various output formats such as XML, JSON/JSON-LD, RDF, NIF, and N3.

3. ARCHITECTURE
TANKER was designed with portability and efficiency in mind. It was also designed to be customizable and
extensible w.r.t. its user interface, functionality and the integration of underlying components. The overall
architecture of TANKER is shown in TANKER is built using a microservice architecture [9] . Microservices
have been getting a lot of attention and popularity in the recent years because of its significant benefits,
especially w.r.t enabling the agile development, improving scalability, reliability and failure tolerance.

TANKER does not depend on any specific NERD service and is generic enough to be connected to any
replacement microservice that abides by given service specification. This allows for simple configuration as
well as adds a way to extend the functionality of the system - by adding or removing the microservices we can
easily tailor the final user experience.

Additionally, microservices enforces a modularity level which is much faster to develop, and easier to
understand and maintain. This architecture enables the development of each server independently by letting
the architects free to choose appropriate technologies for different kind of problems. Thus, being possible to
combine different programming languages in one single solution. The other components of TANKER are
described in the sequence.

6

7

8

9

Figure 1. Overview of TANKER architecture

3.1. Scalability and Fault tolerance
Scalability is the capability to handle a growing amount of processes within a computational system in a
graceful manner, providing minimal interruptions to ongoing operations. This feature is mandatory for
enterprise systems in addition to fault-tolerance, scaling up mode and some others, to deliver a good user
experience at a minimum cost.

Most of NERD solutions are usually developed under synchronous or asynchronous requests. Both requests
wait for a response, however, the synchronous might block the user interaction while the asynchronous does
not. Commonly, distributed applications consider services interactions to decide which one will be used in its
ecosystem. For instance, in synchronous requests, HTTP REST or Thrift are adopted, on the other hand,
the Advanced Message Queuing Protocol is used for asynchronous.

These request types infer on Inter-Process Communication (IPC) mechanisms. IPC software is a central
piece of the architecture to ensure that microservices will scale and have fault-tolerance. This component is
usually designed to be highly configurable and supports running in hybrid environments that are multi-region
and multi-zone. To this end, TANKER supports synchronous interactions relying on Ribbon framework as
our IPC. Ribbon framework offers client-side software load balancing algorithms and a good set of
configuration options such as connection timeouts and retry algorithms that fills in our requirements for NERD
environments.

3.2. Configuration
The configuration of TANKER aims to reduce the complexity of management processes by using cloud
services. Therefore, TANKER is based on Spring Cloud Config which offers a client-side application for
exposing configuration of a distributed system. It is integrated with Spring ecosystem, but it can also be used

10

11

12

13

with any application running in any programming language. This service uses the human-readable data
serialization language (YAML), a widely spread format to describe services parameters and exposes all of
them under a REST/API (see Listing 1).

spring:
 profiles: eureka primary
 cloud:
 config:
 uri: http://localhost:8001
 eureka:
 instance:
 preferIpAddress: true
 enableSelfPreservation: false
 client:
 name: eureka
. . .

Listing 1. YAML example

Moreover, the delivered configuration through agnostic technologies will reinforce TANKER architecture
pliability, by allowing approaches written in non-JVM technologies to reuse parameters and quickly integrate
to the IPC.

3.3. Service Registry
Distributed systems need to localize the network address of each service. Services assign network locations
dynamically. Moreover, the set of services instances also changes periodically because of auto-scaling,
failures, and upgrades. This reinforces the need to have an elaborated service framework that uses a
discovery pattern.

There are two service registry patterns: client-side discovery and service-side discovery. In client-side
discovery pattern, clients query the service registry to select an available resource and perform a request. In
the server-side discovery pattern, clients make a request via router, which queries the service registry and
forward the request to an available instance [1] .

TANKER uses Eureka for service discovery. Eureka is a REST server-side discovery service that locates
services for load balancing and fail over of middle-tier servers.

3.4. Completeness
TANKER architecture offers a pluggable platform that allows the whole community to interconnect a set of
services and approaches, making it available into a powerful standardized API. To this end, TANKER
comprises of scaffoldtechnique. This technique provides a basis configuration that allows a quick
development by using parameters from our setup services and by connecting to our service registry
infrastructure.

4. PROTOTYPE
On the primary version, we support both recognition and linking of named entities using DBpedia as a
knowledge base. We chose DBpedia as primary KB for our prototype because the most of NERD approaches
can handle it. Also, we intend to evaluate TANKER in GERBIL which comprises of many datasets using
DBpedia as a KB. Therefore, we include DBpedia Spotlight and Stanford NER for carrying out the recognition
part and AGDISTIS framework to disambiguate the recognized entities (see Figure 2).

14

15

Figure 2. Prototype schema with integrated services

The described tools will be available into the TANKER infrastructure, under three endpoints: annotate,
disambiguate and recognition.

Annotate . This parameter performs both name entity recognition and disambiguation (for an example,
see Listing 2). TANKER can deliver both the types of entities and their resources links

Disambiguate . Once the entities are already recognized in texts, this parameter only disambiguates
them.

Recognition . This parameter is only able to recognize the types of entities.

{
 "text": "Angela met Obama in New York"
 "resources": [
 {
 "surface-form": "New York",
 "offset": "20:28",
 "score": "0.96",
 "type": "dbo:Location",
 "origin-tool": "Spotlight"
 {"disambiguate": [
 {
 "uri": "dbr:New_York",
 "types": "dbo:Location",
 "surface-form": "New York",
 "offset": "20:28",
 "similarity-score": "0.86",
 "percentage-second-rank": "2",
 "origin-tool": "SpotLight"
 }
 {
 "uri": "dbr:New_York_City",
 "types": "dbo:Location",
 "surface-form": "New York",
 "offset": "20:28",
 "similarity-score": "0.92",
 "percentage-second-rank": "1",
 "origin-tool": "AGDISTIS"
 }]}
...
}

Listing 2. Annotating New York as entity.

When a client performs a request, all the available tools in the service discovery will be queried, and their
results will be consolidated in the response. As you can see in the Listing 2, the entity New York got different
resources from the disambiguation tools, but TANKER provides both and rank them according to their scores
to let the user chooses. TANKER initially supports content-negotiation for JSON, JSON-LD, NIF, and N3.

4.1. Challenges
After the deployment of our first prototype we identified three challenges to be addressed. First, to rank the
response when the tools diverge the results from a same entity even more when one of the tools does not
provide any score. Second, to combine different KBs at once in a reasonable response time. Finally, to
manage the outcomes and configurations of experiments. To bridge this gap, we plan to integrate the MEX
vocabulary [14] and stored the configurations of experiments and respective outcomes in the WASOTA
repository [13] .

SUMMARY
We presented TANKER, a distributed architecture for combining NERD systems. In a preliminary overview,
our approach can deal with a large-scale processing and a high number of requests. In addition, TANKER
responds to the queries in an appropriate response time thus addressing the aforementioned gaps. As an
immediate work, we intend to integrate more NERD systems in order to improve the fault tolerance and
evaluate TANKER using GERBIL [12] to see the real performance of it compared to other NERD systems. As
a future work, we plan to include a KB management service for enabling TANKER to process different KBs
altogether. Furthermore, in order to facilitate data management and follow best practices in terms of
reproducibility of experiments, we will integrate TAKER within state of the art ML vocabularies and metadata
repositories.

ACKNOWLEDGEMENTS
This paper’s research activities were funded by grants from the FP7 & H2020 EU projects ALIGNED (GA-
644055) and from the project Smart Data Web BMWi project (GA-01MD15010B) and CNPq foundation
(scholarships 201808/2015-3 and 206971/2014-1).

REFERENCES
1. K. Bakshi. Microservices-based software architecture and approaches. In 2017 IEEE Aerospace

Conference, pages 1-8, March 2017.

2. Bordino, A. Ferretti, M. Firrincieli, F. Gullo, M. Paris, S. Pascolutti, and G. Sabena. Advancing nlp via a
distributed-messaging approach. In Big Data (Big Data), 2016 IEEE International Conference on, pages
1561-1568. IEEE, 2016.

3. J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes. Improving e ciency and accuracy in multilingual
entity extraction. In Proceedings of the 9th International Conference on Semantic Systems, I-
SEMANTICS '13, pages 121-124, New York, NY, USA, 2013. ACM.

4. J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information
extraction systems by gibbs sampling. In ACL, 2005.

5. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P.
van Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale, multilingual knowledge base extracted from
wikipedia. SWJ, 2014.

6. P. N. Mendes, M. Jakob, A. Garcia-Silva, and Bizer. DBpedia Spotlight: Shedding Light on the Web of
Documents. In 7th International Conference on Semantic Systems (I-Semantics), 2011.

7. D. Moussallem, R. Usbeck, M. R. oder,• and A.-C. N. Ngomo. Mag: A multilingual, knowledge-based
agnostic and deterministic entity linking approach, 2017.

8. D. Nadeau and S. Sekine. A survey of named entity recognition and classification. Lingvisticae
Investigationes, 30:3-26, 2007.

9. S. Newman. Building microservices. " O'Reilly Media, Inc., USA, 2015.

10. G. Rizzo and R. Troncy. Nerd: a framework for unifying named entity recognition and disambiguation
extraction tools. In Proceedings of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pages 73{76. Association for Computational
Linguistics, 2012.

11. R. Usbeck, A. N. Ngomo, M. Roder,• D. Gerber, S. A. Coelho, S. Auer, and A. Both. AGDISTIS - graph-
based disambiguation of named entities using linked data. In P. Mika, T. Tudorache, A. Bernstein,
Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, F. Noy, K. Janowicz, and C. A. Goble, editors, The
Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture Notes in Computer Science, pages
457-471. Springer, 2014.

12. R. Usbeck, M. Roder,• A. N. Ngomo, C. Baron, Both, M. Brummer,• D. Ceccarelli, M. Cornolti, D. Cherix,
B. Eickmann, P. Ferragina, C. Lemke, A. Moro, R. Navigli, F. Piccinno, G. Rizzo, H. Sack, R. Speck, R.
Troncy, J. Waitelonis, and L. Wesemann. GERBIL: general entity annotator benchmarking framework. In
A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceedings of the 24 International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 1133-1143. ACM, 2015.

13. Neto, C. B., Esteves, D., Soru, T., Moussallem, D., Valdestilhas, A., & Marx, E. (2016). WASOTA: What
Are the States Of The Art?. In SEMANTiCS (Posters, Demos, SuCCESS).

14. Esteves, D., Moussallem, D., Neto, C. B., Soru, T., Usbeck, R., Ackermann, M., & Lehmann, J. (2015,
September). MEX vocabulary: a lightweight interchange format for machine learning experiments. In

th

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Proceedings of the 11th International Conference on Semantic Systems (pp. 169-176). ACM.

Footnotes
http://www.northeastern.edu/levelblog/2016/05/13/how-much-data-produced-every-day/

See the average time in http://gerbil.aksw.org/gerbil/experiment?id=201701260017

https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/User's-manual

http://nerd.eurocom.fr

http://kafka.apache.org

https://nlp.stanford.edu/software/CRF-NER.shtml

http://aksw.org/Projects/AGDISTIS.html

http://www.dbpedia-spotlight.org

https://www.oreilly.com/ideas/the-evolution-of-scalable-microservices

https://thrift.apache.org/

https://www.amqp.org/

https://github.com/Netflix/ribbon

http://cloud.spring.io/spring-cloud-static/spring-cloud.html

http://yaml.org/

https://github.com/Netflix/eureka

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

[back]

http://www.northeastern.edu/levelblog/2016/05/13/how-much-data-produced-every-day/
http://gerbil.aksw.org/gerbil/experiment?id=201701260017
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/User's-manual
http://nerd.eurocom.fr
http://kafka.apache.org
https://nlp.stanford.edu/software/CRF-NER.shtml
http://aksw.org/Projects/AGDISTIS.html
http://www.dbpedia-spotlight.org
https://www.oreilly.com/ideas/the-evolution-of-scalable-microservices
https://thrift.apache.org/
https://www.amqp.org/
https://github.com/Netflix/ribbon
http://cloud.spring.io/spring-cloud-static/spring-cloud.html
http://yaml.org/
https://github.com/Netflix/eureka

	TANKER: Distributed Architecture for Named Entity Recognition and Disambiguation
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	ARCHITECTURE
	Scalability and Fault tolerance
	Configuration
	Service Registry
	Completeness

	PROTOTYPE
	Challenges

	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES
	Footnotes

