
Responsive Software Architecture Patterns for Workload Variations: A
Case-study in a CQRS-based Enterprise Application

Gururaj Maddodi
dept. name of Computing and Information Science

Utrecht University
Utrecht, Netherlands

g.maddodi@uu.nl

Slinger Jansen
dept. name of Computing and Information Science

Utrecht University
Utrecht, Netherlands
slinger.jansen@uu.nl

I. EXTENDED ABSTRACT
In any software system, end-users’ workloads vary due to

different requirements and business models. In enterprise
applications, variation is typically caused by the types of
business an organization does, e.g. whether it is a wholesale
business with large numbers of orders from the same customer,
while supermarkets process single orders for each customer,
and each of the orders contains many items. For applications
deployed in the cloud, the current approach is to scale the
hardware as the usage varies . However, it may be profitable to
dynamically adjust the application architecture itself based on
the usage of an end-user organization. We term this responsive
architecture. Responsive architecture can be dynamically
adapted to varying workloads as the components of software
maps directly to business elements of the business domain the
application is serving. This mapping helps to connect the
architecture to the application usage.

In the case-study an architectural pattern called Command-
query responsibility segregation (CQRS) [1, 2] is used. CQRS
is a distributed computing approach, where the system handle s
requests in the form of commands and queries. CQRS pattern
advocates a separation of the request types where the parad igm
is that request to view the state of the system should not change
its current state. Hence, commands are defined as the actions
that create a new state or modify the existing state of the
system, whereas queries are the requests that access and
present the current state. The separation of command-side and
the query-side of the application using CQRS architecture can
provide opportunities to optimize the architecture that is used
to build the states, the storage mechanisms etc. based on the
requirements, hence providing flexibility. CQRS pattern is
often used along with Event Sourcing [2]. In event sourcing the
creation or modification of new states are recorded as events
which are then played back in sequence to obtain the present
state of the system.

The command-side in CQRS approach, handles the requests to
create new state, hence the framework to build the state is
present on the command-side. Also, the mechanism of how the
dependencies that exist in the domain elements are handled on
command-side in the form of aggregates . Aggregates are
concepts from domain-driven design (DDD) [4] that from a
functional and business point-of-view consist of entities which
can be processed together. Formally, the aggregates can be
defined as groups of entities with a defined consistent domain

boundary and dependency structure. An example of such a
domain boundary could be, a person who has an order placed
for purchase, and order contains the items that the person
wants to purchase. Here, the entities person, order, and order
items are all belonging to a single domain boundary of
purchasing, and there is hierarchical structure where the person
first opens an order and then selects the items that he/she wants
to purchase with the order.

Though the aggregates are formed from several entities,
separate aggregates can be formed from individual entities.
Though they are not in same domain boundary, they can still
interact with each other by mechanism of internal events which
are not played back while building the state. There are
advantages as well as disadvantages to each choice, i.e. a single
aggregate containing all the entities or separates aggregates
with entities or a combination of them. Firstly, the creating new
state is much simpler with single aggregate as everything is in a
single boundary and does not need communication as in
separated aggregates, but modification of state need the whole
aggregate state to be built, while with separate aggregates
individual entities can be updated separately. The usage
patterns also involve validations which requires attributes to be
shared between entities, which in case of single aggregates is
simple but complicated in separate aggregate case. Also with
the number of attributes increasing, building state in single
aggregate become very memory intensive, while in separate
aggregate case it being separated can build states only when
needed. In this presentation, we present a case-study of impact
of workload patterns involving combination of validations,
attributes, and entity to entity ratio (e.g. items to order) on
architectural choices in terms of resource utilization.

REFERENCES

[1] Jaap Kabbedijk, Slinger Jansen, and Sjaak Brinkkemper. 2012. A case
study of the variability consequences of the CQRS pattern in online
business software. In Proc. of the 17th European Conference on a ttern
Languages of Programs. 2:1–2:10.

[2] Greg Young. [n. d.]. CQRS and Event Sourcing. Feb. 2010. URl:
http://codebetter. com/gregy oung/2010/02/13/cqrs-and-event-sourcing
([n. d.]).

[3] Martin Fowler. 2005. Event sourcing. Online, Dec (2005), 18
[4] Eric Evans; Domain-Driven Design—Tackling Complexity in the Heart

of Software; 2003, AddisonWesley, ISBN 0-321-12521-5.

30

