1f

-2049/07paper .pc

.org/Vol

>

CEUR-WS

Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

Formal Contract Logic Based Patterns for Facilitating
Compliance Checking against ISO 26262

Julieth Patricia Castellanos Ardila and Barbara Gallina

Milardalen University, Box 883, 721 23 Visteras, Sweden
{julieth.castellanos,barbara.gallina}@mdh.se

Abstract. ISO 26262 demands a confirmation review of the safety plan, which
includes the compliance checking of planned processes against safety require-
ments. Formal Contract Logic (FCL), a logic-based language stemming from
business compliance, provides means to formalize normative requirements en-
abling automatic compliance checking. However, formalizing safety requirements
in FCL requires skills, which cannot be taken for granted. In this paper, we pro-
vide a set of ISO 26262-specific FCL compliance patterns to facilitate rules for-
malization. First, we identify and define the patterns, based on Dwyer’ et al.’s
specification patterns style. Then, we instantiate the patterns to illustrate their
applicability. Finally, we sketch conclusions and future work.

Keywords: ISO 26262, Confirmation review, Compliance checking, Formal Con-
tract Logic, Safety compliance patterns.

1 Introduction

Safety critical systems designers rely on safety standards, which embody the public
consensus of acceptable risk [1]. Particularly, the automotive industry has adopted the
functional safety standard ISO 26262 [2], which guides the development of the safety-
related systems included in a specific class of road vehicles. To claim compliance with
ISO 26262 from a process perspective, necessary pieces of evidence are: the safety
plan, which is used to manage the execution of safety activities, as well as the cor-
responding confirmation review, which includes the compliance checking of planned
processes against safety requirements. In [3, 4], we have identified that automatic com-
pliance checking of safety processes involves the definition of a finite state model of
the process, where normative safety requirements provides the permissible states of the
process elements. This task can be supported with available on the shelf tools. In partic-
ular, Formal Contract Logic (FCL) [5], a logic-based language stemming from business
compliance, provides means to formalize normative requirements. However, formal-
izing safety requirements in FCL requires skills, which cannot be taken for granted.
Patterns, which are “abstractions from concrete forms which keeps recurring in spe-
cific non-arbitrary context” [6], could represent a solution. In this paper, we follow
Dwyer et al.’s specification patterns style [7], created to ease the formalization of sys-
tems requirements for finite state system model verification, to draw a general definition
of safety compliance pattern. We also use specification patterns to identify and define

65



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

a set of ISO 26262-specific FCL compliance patterns. The defined patterns are instan-
tiated to illustrate their applicability. This work will contribute to AMASS project [8],
in particular, it aims at support the compliance management vision proposed, in which
automotive is one of the 11 domains involved [9].

The rest of the paper is organized as follows. In Section 2, we provide essential
background. In Section 3, we provide our definition of safety compliance pattern as well
as our identified and defined ISO 26262-related patterns. In Section 4, we instantiate
the defined safety compliance patterns. In section 5, we present related work. Finally,
in Section 6, we present conclusions and future work.

2 Background

This section recalls essential information required in our work.

2.1 ISO 26262

ISO 26262 [2] addresses functional safety in automotive. The safety process influences
functional safety. Thus, a confirmation review of the safety plan, which includes the
compliance checking of the planned process against safety requirements is mandatory.
The safety process can be either strictly planned, i.e., including all the activities pro-
vided by the reference process, or flexibly planned, i.e., by tailoring activities (omit-
ting/performing them differently) [10]. According to ISO 26262:2, if a safety activity is
tailored, a) the tailoring shall be defined in the safety plan and b) a rationale as to why
the tailoring is adequate and sufficient to achieve functional safety shall be available.

From a structure perspective, ISO 26262 is divided into parts, which are subdivided
into clauses. Some clauses represent phases of the safety process, which also describe
activities and tasks. ISO 26262 uses Automotive Safety Integrity Levels (ASIL), which
are levels to specify item’s necessary safety requirements. Alternative methods to use
in the planning of safety activities (e.g., tables) have to be chosen according to the
higher recommendation for the ASIL assigned, but if not, a rationale shall be given
that the selected methods comply with the corresponding requirement. Disjoint alterna-
tives are also included in the text of the normative requirements. Frequently recurring
expressions, which can guide the reading of the standard, can also be found, e.g., in ac-
cordance with. In Table 1, we recall a subset of requirements from ISO 26262:6 clause
8, which specifies the software unit design and implementation phase.

Table 1. Requirements for ISO 26262:6 clause 8.

ID [Ref |Description

RI1(8 The Software unit design and implementation phase start.

R2 (8.1 |Specify software units in accordance with the architectural design and the associated safety requirements.

R3 (8.2 |The detailed design will be implemented as a model or directly as source code.

R4 [8.4.2| The software unit design shall be described using specific notations, which are listed as alternative methods.

66



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

2.2 Specification Patterns

The specification patterns, formulated by Dwyer et al.’s [7], are ”generalized descrip-
tions of commonly occurring requirements on the permissible state sequence of a finite
state model of a system.” A selected set of Dwyer et al.’s patterns is presented in Ta-
ble 2. The reader may refer to [11] to see the complete set of patterns with their entire
descriptions. Each pattern has a scope, which is the extent of the program execution
over which the pattern must hold. The types of scope that we consider in this paper
are: global, which represent the entire program execution, before, which includes the
execution up to a given state, and after which includes the execution after a given state.

Table 2. Dwyer’s specification patterns [7]

Name Description

Absence A given state P does not occur within a scope

Existence A given state P must occur within a scope

Universality A given state P must occur throughout a scope

Precedence A state P must always be preceded by a state Q within a scope
Response A state P must always be followed by a state Q within a scope

2.3 Formal Contract Logic

Formal Contract Logic (FCL) [5] is a language designed to formalize normative re-
quirements. FCL is implemented in Regorous, a tool developed by Data61/CSIRO in
Australia'. An FCL rule is represented as follows:

r:ai,...,da, = c, where:
ai,...,a, = Conditions of the applicability of the norm.

¢ = Normative effect.

If a rule has an empty antecedent, it represents the definition of a new term. Otherwise,
it represents the triggering of deontic notions, i.e., obligations, situations to which the
bearer is legally bounded, or that should avoid, and permissions. If something is per-
mitted the obligation to the contrary does not hold [12]. In the modeling of the rules,
the normative effect requires a notation that clarifies the applicability of the norm (pre-
sented in Table 3). Thus, if an obligation has to be obeyed during all instants of the
process interval, it is called maintenance obligation. If achieving the content of the
obligation at least once is enough to fulfill it, it is called achievement obligation. An
achievement obligation is preemptive if it could be fulfilled even before the obligation
is actually in force. Otherwise, it is non-preemptive. If the obligation persists after being
violated, it is a perdurant obligation, otherwise is a non-perdurant. A binary relation
between rules (>) allows handling rules with conflicting conclusions.

U https://research.csiro.au/data61/regorous/.

67



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

Table 3. FCL rule notations [12]

Notation Description

[P]P P is permitted

[OM]P There is a maintenance obligation for P

[OAPP]P There is an achievement, preemptive, and non-perdurant obligation for P
[OANPP]P There is an achievement, non-preemptive and perdurant obligation for P
[OAPNP]P There is an achievement, preemptive and non-perdurant obligation for P
[OANPNP]P There is an achievement, non-preemptive and non-perdurant obligation for P

3 Safety Compliance Patterns Identification and Definition

This section introduces our definition of safety compliance pattern as well as our iden-
tified and defined ISO 26262-related compliance patterns.

3.1 Our definition of Safety Compliance Pattern

As recalled in the introduction, automatic compliance checking of safety process in-
volves the definition of a finite state model of the process, where normative safety re-
quirements provide the permissible states of the process elements. This statement allows
us to think of a process as a kind of system that can be verified. Thus, we can translate
the specification pattern definition (see Section 2.2) into our context as follows: safety
compliance patterns are patterns that describe commonly occurring normative safety
requirements on the permissible state sequence of a finite state process model. With this
definition, we can develop a mapping between specification patterns and safety compli-
ance patterns, as follows: the presence of a state in a system can be interpreted as the
state of the obligation imposed to an element in the process, and the scope corresponds
to the interval in a process when the obligations formulated by the pattern are in force.
In Section 3.2, we identify the safety compliance patterns extracted from ISO 26262.

3.2 1ISO 26262-related Compliance Patterns Identification

For identifying a safety compliance pattern in ISO 26262, we have delineated five
methodological steps. The first step consists of the selection of a recurring structure
in the standard since, as recalled in Section 2.1, safety requirements in ISO 26262 have
implicit and explicit structures. The second step is the description of the obligation for
compliance, namely, the reasons why the structure is required for safety compliance.
The third step is the pattern description, based on similar (or a combination of) be-
haviors of the patterns described by Dwyer et al.’s (see Table 2). This description is
contextualized to safety compliance, based on the mapping presented in Section 3.1. In
this step, we also assign a name for the safety pattern, which reflects the related obliga-
tion for compliance. The fourth step is the definition of the scope of the pattern, which
we also base on Dwyer et al.’s work. The fifth step is the formalization in FCL. To for-
malize the pattern, the scope defined for the pattern requires being mapped into the rule
notations provided by FCL. Therefore, a global scope, which represents the entire pro-
cess model execution, can be mapped to maintenance obligation, which represents that

68



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

an obligation has to be obeyed during all instants of the process interval. A before scope,
which includes the execution of the process model up to a given state, can be mapped
to the concept of preemptive obligation, which represents that an obligation could be
fulfilled even before it is in force. An after scope, which includes the execution of the
process model until a given state, can be mapped to the concept non-preemptive obliga-
tion, which represents that an obligation cannot be fulfilled until it is in force. It should
be noted that, in safety compliance, it is possible to define exceptions for the rules.
Therefore, if the obligation admits an exception, the part of the pattern that corresponds
to the exception is described as a permission, since, as recalled in Section 2.3, if some-
thing is permitted the obligation to the contrary does not hold. The obligation, to which
the exception applies, is modeled as non-perdurant, since the permission is not a viola-
tion of the obligation, and therefore the obligation does not persist after the permission
is granted. In this case, the obligation and a permission have contradictory conclusions,
but the permission is superior since it represent an exception. These methodological
steps have helped us to define an initial set of four ISO 26262 - related FCL compli-
ance patterns, presented in Section 3.3. The description of our patterns has information
related to the steps mentioned above. Therefore, the corresponding expressions in bold
represent the elements of the pattern’s description.

3.3 IS0 26262-related Compliance Patterns Definition

In what follows, we define our safety compliance patterns in ISO 26262.

Pattern: Address Phase. Recurring structure: A phase. Obligation for compliance:
Every phase proposed by the safety model must be addressed. A phase can be omitted
if tailoring is performed and a rationale is provided. Pattern description: Universality
+ absence - A phase must occur. Not addressing the phase requires its tailoring and
the provision of a rationale. Scope: Global. FCL mapping: A maintenance obligation
address{Phase} is triggered by a previous task {optionalTriggeringObligation}, which
can be empty if the phase is checked for compliance in isolation from the other phases.
The permission for not addressing the phase requires two antecedents, tailor{ Phase}
and rationaleForOmiting{ Phase} (See Formula 1).
r: {optionalTriggeringObligation} = [OM|address{Phase}
v : tailor{Phase}, rationaleForOmiting{ Phase} = [P| — address{Phase} )
r>r

Pattern: Perform Preconditions. Structure: The structure implicit in the expression
in accordance with. Obligation for compliance: A task is prohibited until the pre-
conditions are performed. Pattern description: Absence + precedence - A given task
cannot occur within a scope. The task is permitted to be performed if the precondi-
tions are performed. Scope: After. FCL mapping: A rule triggered by a previous rule
{TriggeringObligation} prohibits the performing of the task perform{Task}. The per-
mission of performing perform{Task} is granted after the preconditions are fulfilled
perform{Preconditions} (See Formula 2).

r: {TriggeringObligation} = [OANPNP| — per form{Task}
' : per form{Preconditionl}, ..., per form{ PreconditionN'} = [P)per form{Task} (2)

P>r

69



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

Pattern: Select Disjoint Methods. Structure: Structure implicit when the word or is
used to list two methods. Obligation for compliance: Only one method can be selected
from a list of two. Pattern description: Existence + absence - A given method can be
selected within a scope. The presence of a second method derogates the selection of
the first method. Scope: After. FCL mapping: A rule triggered by previous obligations
{TriggeringObligation} imposes the obligation of selecting a method select{ Methodl}.
The selection of a second method select{Method2}, derogates the previous selection
select{Methodl} (See Formula 3).

r: {TriggeringObligation} => [OANPNP]select{Method1}]
v : select{Method2} = [P] — select{Method1} 3)

P>r

Pattern: Select alternative methods. Structure: Alternative methods given in tables.
Obligation for compliance: Methods should be selected according to ASIL/recom-
mendation levels. Alternative methods can be selected if a rationale is provided. Pattern
description: Response + absence - A given obligation has to occur. The provision of
a rationale grants the permission to derogates the obligation. Scope: After. FCL map-
ping: A rule triggered by previous obligations {TriggeringObligation} imposes the se-
lection of methods according to the requirements select{mandatoryMethods}. The pro-
vision of the rationale is the permission that derogates the obligation (See Formula 4).

r: {TriggeringObligation} = [OANPNP]select{mandatoryMethods}
7’ : provideRationaleForNotSelect{mandatoryMethods} = [P] — select{mandatoryMethods} (4)

/
r>r

4 1S0 26262-related Compliance Patterns Instantiation

In this section, we instantiate the patterns defined in Section 3.3, using the ISO 26262
requirements presented in Table 1.

Requirement R1, which defines the phase software unit design and specification, can
be specified by using the pattern Address Phase. We assume that the phase is checked
in isolation from other phases (See Formula 5).

r1 := [OM]addressSwUnitDesignAndImplementation
7 : tailorSwUnitDesignAndImplementation, rationaleForOmitingSwDesignAndImplementation )
= [P| — addressSwUnitDesignAndImplementation

r’1>r1

Requirement R2 have the expression in accordance with, which can be represented
with the pattern Perform Preconditions. Specifically, the software architectural design
and the associated safety requirements are preconditions to specify the software units.
We assume that the triggering rule is addressSwUnitDesignAndImplementation (See
Formula 6).

ry : addressSwUnitDesignAndImplementation = [OANPNP| — per formSpecifySwU nit
v} : performProvideSwArchitectural Design, per formProvideSafetyRequirements = [P|performSpecifySwUnit{Task}

r'2>r2

(6)

70



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

Requirement R3 mentions the use of two disjoint implementation strategies, namely
implementation as a model or directly as source code. Therefore, this requirement can
be modeled using the pattern Select Disjoint Methods. We assume that the triggering
rule is implementingSwUnit (See Formula 7).

r3 : implementingSwUnit = [OANPNP]selectImplementingAsSourceCode(X)
15 : selectImplementingAsModel (X) = [P] — selectImplementingAsSourceCode(X) (7)

r§>r3

Requirement R4 refers to a table with alternative entries. This requirement can be rep-
resented by using the pattern Select alternative methods. We assume that the triggering
rule is performSpecifySwUnit (See Formula 8).

ry : per formSpecifySwUnit = [OANPNP]selectMandatoryNotations forSwDesign
7y : provideRationaleForNotSelectMandatoryNotations forSwDesign = [P] — selectMandatoryNotations forSwDesign

rQ>r4

®)

5 Related Work

Patterns for the formal specification of system safety requirements are presented in [13].
These patterns consider the cases and the terminology used in industrial automation
systems to facilitate formal verification. Our patterns, instead, are restricted to process-
centered requirements. Some works provide patterns for facilitating the formalization
of the normative requirements for compliance checking in areas like business process
compliance, e.g., the works presented in [14, 15] which extends Dwyer et al.’s specifi-
cation patterns, and the work presented in [16], which uses REA (Resources, Events,
and Agents) approach. A similar work, in the context of security, is presented in [17],
which aims at providing a pattern structure for generating security policies for service-
oriented architectures. In our work, as in some of the previously mentioned works,
we use Dwyer et al.’s specification patterns as a base for providing our definition for
safety compliance pattern. Also, we identified and defined the safety compliance pat-
terns present in some structures of the standard ISO 26262. Moreover, our patterns are
formalized in FCL, a formal language that is explicitly created for compliance check-
ing, providing precise structures for modeling, e.g., deontic effects, which facilitate the
expression of normative requirements in a more natural way.

6 Conclusion and Future Work

In this paper, we use Dwyer et al.’s specification patterns style to provide our definition
of safety compliance patterns. Also, we identify and define set of ISO 26262-specific
FCL compliance patterns, which were extracted from implicit and explicit recurring
structures provided by ISO 26262. In the last part of our work, we have instantiated the
defined safety compliance patterns, to illustrate their applicability.

In future, we plan to examine other clauses of ISO 26262 to apply the proposed
patterns and discover additional ones. Once a complete catalogue of safety compli-
ance patterns embracing ISO 26262 is ready, we plan to facilitate their instantiation by

71



Proceedings of the 1st Workshop on Technologies for Regulatory Compliance

providing more elaborated guidelines. Our work on safety compliance patterns is ex-
pected to be combined with previously achieved results [3, 4] regarding the provision of
a framework to increase efficiency and confidence in process compliance management.

Acknowledgments. This work is supported by the EU and VINNOVA via the ECSEL
JU project AMASS (No. 692474) [8].

References

—

10.

11.
12.

13.

14.

15.

16.

17.

. Dunn, W.: Designing Safety-Critical Computer Systems. Computer. 36(11) (2003) 40-46
. ISO 26262: Road Vehicles-Functional Safety. International Standard (2011)
. Castellanos Ardila, J., Gallina, B.: Towards Increased Efficiency and Confidence in Process

Compliance. In: 24th European Conference EuroSPI. (2017) 162-174

. Castellanos Ardila, J., Gallina, B.: Towards Efficiently Checking Compliance Against Auto-

motive Security and Safety Standards. In: The 7th IEEE International Workshop on Software
Certification., Toulouse, France (2017)

. Governatori, G.: Representing business contracts in RuleML. International Journal of Co-

operative Information Systems. 14(02n03) (2005) 181-216

. Riehle, D., Ziillighoven, H.: Understanding and using patterns in software development.

Tapos 2(1) (1996) 3—-13

. Dwyer, M., Avrunin, G., Corbett, J.: Property Specification for Finite-State Verification. In:

International Conference on Software Engineering. (1998) 411-420

. AMASS: Architecture-driven, Multi-concern and Seamless Assurance and Certification of

Cyber-Physical Systems. http://www.amass-ecsel.eu/

. AMASS: Case studies description and business impact DI1.1. https://www.amass-

ecsel.eu/content/deliverables. Technical report (2017)

Gallina, B.: How to increase efficiency with the certification of process compliance. In: The
3rd Scandinavian Conference on Systems & Software Safety. (2015)

Santos Laboratory: Specification Patterns. http://patterns.projects.cs.ksu.edu/

Hashmi, M., Governatori, G., Wynn, M.: Normative requirements for regulatory compliance:
An abstract formal framework. Information Systems Frontiers. 18(3) (2016) 429-455
Bitsch, F.: Safety patterns-the key to formal specification of safety requirements. Computer
Safety, Reliability, and Security. (2001) 176-189

Namiri, K., Stojanovic, N.: Pattern-Based Design and Validation of Business Process Com-
pliance. On the Move to Meaningful Internet Systems. (2007) 59-76

Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.: Formalizing and apply-
ing compliance patterns for business process compliance. Software and Systems Modeling.
15(1) (2016) 119-146

Karimi, V.R.: Formal Analysis of Access Control Policies for Pattern-Based Business Pro-
cesses. In: World Congress on Privacy, Security, Trust and the Management of e-Business.
(2009) 239-242

Menzel, M., Warschofsky, R., Meinel, C.: A pattern-driven generation of security policies for
Service-oriented Architectures. In: IEEE International Conference on Web Services. (2010)
243-250

72



