
Business process languages: an
ontology-based perspective

Greta ADAMO a,c and Stefano BORGO b and Chiara DI FRANCESCOMARINO a and
Chiara GHIDINI a and Nicola GUARINO b and Emilio M. SANFILIPPO b

a FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
b ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

c University of Genova, DIBRIS, via Dodecaneso 35, 16146 Italy

Abstract. Business process modelling (BPM) notations describe processes using a
graphical representation of process-relevant entities and their interplay. Despite the
wide literature on the comparison between different modelling languages, the BPM
community still lacks an ontological characterisation of process constructs. Purpose
of this paper is to start filling this gap by providing a first ontological analysis of
the main business process entities. The analysis and the resulting characterisation
aim at illustrating the different perspectives that BPM languages implicitly take
on business processes, as well as guiding the modellers in making an appropriate
choice when selecting among different notations.

1. Introduction

Business process modelling (BPM) notations describe processes using a graphical repre-
sentation of process-relevant entities and their interplay. If we focus on typical business-
to-consumer (B2C) scenarios, examples of languages include well-known imperative
languages such as the Business Process Model and Notation (BPMN), the Unified Mod-
eling Language Activity Diagram (UML-AD) and the Event-driven Process Chain (EPC)
as well as declarative notations such as the Case Management Model and Notation
(CMMN) and DECLARE.1 Despite the wide literature on process execution semantics and
on the comparison between the graphical constructs of different languages [25,14,12,16],
the BPM community still lacks a robust ontological characterisation of the entities in-
volved in process models.2 While some initial efforts have been done towards this direc-
tion (see, e.g., [20]), they focus on the analysis of behavioral aspects of process models,
thus neglecting other central modelling constructs such as those denoting process partic-
ipants (data objects, actors and so on). As a result, process participants are exposed to a
paradox: on the one hand, they are explicitly referred to within process diagrams; on the

1Imperative paradigms aim at producing models that describe all allowed flows: every flow that is not speci-
fied in the model is implicitly disallowed. Declarative process modelling notations instead allow the production
of flexible models obtained by describing constraints on the allowed flows: all flows are allowed provided that
they do not violate the specified constraints.

2We will interchangeably use the notions of ‘process model’ and ‘process diagram’.

G. Adamo et al. /

other hand, they are emblematically neglected when explaining or illustrating the very
notion of process in the BPM community.

The purpose of the paper is to remove the above paradox, offering an ontological
analysis of the various kinds of process participants, with a specific focus on B2C sce-
narios that will hopefully contribute to the ontological foundations of BPM. The paper
is structured as follows. In Section 2, we provide an illustration of different constructs
used by imperative and declarative modelling notations; then we identify in Section 3 the
constructs referring to process participants, and, after analysing the definition of process
in Section 4, we discuss the ontological properties of process participants in Section 5,
providing in this way an initial comparison of (some of) the modelling constructs used in
different modelling notations (Section 6). This represents a first step toward the illustra-
tion of how an ontological analysis enlarged to process participants can support the in-
terpretation of business process diagrams, the comparison between modelling notations,
the illustration of the different perspectives that BPM languages implicitly take on busi-
ness processes, as well as guiding the modellers in making an appropriate choice when
selecting among different notations.

2. Background

In this section we illustrate the graphical elements of the BPM languages taken into ac-
count throughout the paper.3 As a starting point, we select five amongst the most popular
languages that follow the imperative (BPMN, UML-AD, EPC) and declarative (CMMN
and DECLARE) paradigms. To support the presentation, we make use of process diagrams
illustrating the simple scenario of a customer buying a flight ticket from a travel agency.
For the sake of clarity, we “annotate” the diagrams with speech balloons to explicitly
indicate the graphical constructs.

BPMN. It is a standard language, proposed by the Object Management Group (OMG),
to design business processes.4 BPMN defines a Business Process Diagram (BPD) which
includes a set of graphical constructs divided in: (i) flow objects, (ii) data, (iii) connect-
ing objects, and (iv) swimlanes. Flow objects define the behavior of a business process,
as the one reported in Figure 1. They divide into events, activities and gateways. Events
represent things that happen during a process; they divide into start, intermediate and end
events. An activity is a generic term that is used for work to be performed. It can be either
atomic (task) or compound (sub-process). A gateway determines the forking, merging or
joining of paths. BPMN 2.0 allows for the explicit modelling of data by means of con-
structs denoting data objects, data inputs, data output and data stores. Flow objects are
inter-linked through connecting objects which are not further discussed here. Swimlanes
are used to specify who is responsible for the execution of a certain process.5 Looking at
Figure 1, for example, two swimlanes specify that ‘Customer’ and ‘Travel agency’ will
carry out the depicted processes.

3Note that our analysis focuses on the graphical elements used to draw models and leave out further notions
that may be included in the language specification.

4http://www.omg.org/spec/BPMN/2.0/
5Because of lack of space we do not introduce the distinction between pools and lanes here.

http://www.omg.org/spec/BPMN/2.0/

G. Adamo et al. /

C
us

to
m

er
Tr

av
el

 A
ge

nc
y

Flight
needed

Check travel
agency website

Check flight
offer

Reject offer

Book and pay
flight

Make
flight offer

Prepare ticket

offer received

request
received

Ticket received

Flight paid

Offer rejected

Booking and
payment received

Offer rejection received

Flight
organised

Offer cancelled

Flight offer

Flight offer
[rejected]

Flight offer
[paid]

Ticket

Pool

Start event
Exclusive
gateway

Message
event

End
event

Task Event-based
gateway

Data object

Flight request Data object
with state

Figure 1. A Business Process Diagram in the BPMN language.

C
us

to
m

er
Tr

av
el

A
ge

nc
y

Check travel
agency website

Make flight
offer

Flight Offer

Check flight
offer

Reject
Offer

Book and
pay flight

Flight Offer
[paid]

Prepare
ticket

Ticket
Flight Offer
[rejected]

Cancel
Offer

Activity
partition

Action
node

Initial
node Final

node
Decision

control node Merge node

Object
node

Unsatisfied

Satisfied

Guard condition
Flight

request

Object node
with state

Figure 2. A Business Process Diagram in the UML AD language.

UML-AD. It is one of the diagram families of the OMG standardized UML language6,
whose purpose is to describe the control and data flow as a sequence of activity nodes
connected by activity edges (see example in Figure 2).

The nodes responsible of describing the control flow are the action nodes and the
control nodes. While the former represent atomic steps within an activity, the latter allow
for controlling the execution flow by means of the AND, OR or XOR logical operations.
Additional control flow nodes are used to depict the initial and final nodes of process
models. Object nodes and object flows are the main UML-ADs constructs describing the
data flow. The former represent objects at a given point of the flow and, as such, they can
also have an associated state. The latter are instead used for connecting object nodes to
actions. Activity partitions are a mechanism for grouping activity nodes that have com-
mon characteristics. They are mainly used to define organizational units. Finally, the no-
tation allows for specifying activity pre- and post-conditions, for instance, by annotating
activity edges with guards.

EPC. It is a modelling language developed in the early 1990s as part of the Architecture
of Integrated Information Systems (ARIS) framework [22].

Three types of nodes are responsible for describing the control flow: function, event
and logical operators (see Figure 3). Function nodes represent atomic activities and can
be considered as the “active” part of a control flow; event nodes stand for the states in
which a process happens to be and can be therefore considered as the “passive” part of
the control flow. Functions and events alternate, capturing the intuition that states lead
to activities, while activities generate states. Finally, the XOR, AND and OR logical
operators allow for controlling the execution flow.

6http://www.omg.org/spec/UML/

http://www.omg.org/spec/UML/

G. Adamo et al. /

Flight offer
requested

Make
flight offer

Offer sent
to client

Check
flight offer

Customer

XOR

Reject
Offer

Book and
pay flight

Customer

Customer

Offer
rejected

Cancel
Offer

Flight ticket
needed

Check travel
agency website

Customer

Offer
canceled

Offer
accepted

Website

Flight offer

Flight offer

Flight offer

Prepare
ticket

Travel
Agency

Ticket

Ticket
prepared

Send ticket
to customer

Flight
organised

Event

Function

Organization
unit

Owner
Supporting

system

Logical
operation

Ensure
confortable

flight

Goal

Client
unsatisfied

Client
satisfied

Travel
Agency

Travel
Agency Flight offer

Data

Travel
Agency

Flight
request

Figure 3. A Business Process Diagram in the EPC language.

User event
listener

Stage

Milestone

Data object
Task

Sentry (entry
criterion)

Sentry (exit
criterion)

Sentry (exit
criterion)Optional task

Flight order

Case plan model

Flight needed

Flight offer
Payment

Ticket

Check travel
agency website

Make flight
offer

Check flight
offer

Reject flight
offer

Book and
pay flight

Cancel offer

Prepare ticket
Offer

produced

Flight
organized

Figure 4. A Business Process Diagram in the CMMN language.

Functions within the control flow can be connected to objects belonging to the other
views of an ARIS model, namely the organizational, data, function and product service
views. While the exact number of objects differs across different versions of the lan-
guage,7 the core modeling constructs usually denote: (i) input and output data, material,
services or resource objects required or produced by a function; (ii) owners who are re-
sponsible for a specific function; (iii) organization units responsible for a specific func-
tion (e.g., a department); and (iv) supporting systems upon which a function acts (e.g., a
database). Some versions include goals that can be connected to specific functions.

CMMN. It is a OMG standard for the declarative representation of process models.8 Its
main modelling construct is the case, which is described by a case diagram (see Figure 4).
Differently from the previous languages, CMMN follows a declarative approach. Thus,
rather than describing all the allowed flows of a process from the start to the end, it
models cases as composed of process segments (called stages) and tasks.

A case plan model contains: (possibly discretionary) tasks, stages, milestones, event
listeners, connectors, and sentries. A task is a unit of work. Stages are plan fragments
which can be composite or atomic. A milestone represents an accomplishment which
occurs during the process of a case. Events represent something that can happen to a plan
construct (e.g., a task cancelled) or in general (timer and user event listener). Connectors

7The analysis and diagrams contained in this paper refer to the description provided in [23].
8http://www.omg.org/spec/CMMN/1.1/

http://www.omg.org/spec/CMMN/1.1/

G. Adamo et al. /

TEMPLATE NOTATION DESCRIPTION

init(A)
init

A A must occur as a first activity

not coexistence(A,B) A •−−−•‖ B If A occurs, B must not occur and viceversa

precedence(A,B) A −−−I• B B can occur only if A has occurred before

response(A,B) A •−−−I B if A occurs, then B occurs after A

Table 1. Graphical notation of some DECLARE templates.

init

Check travel agency website Reject flight offer •−−−•‖ Book and pay flight

Make flight offer −−−I• Check flight offer Check flight offer −−−I• Reject flight offer Check flight offer −−−I• Book and pay flight

Book and pay flight −−−I• Prepare ticket Reject flight offer −−−I• Cancel offer

Figure 5. A DECLARE process diagram.

are used to link different plan items. Finally, sentries represent the entry / exit criteria for
path items and can direct the control flow mimicking the AND and OR logical operators.

Declare. It is one of the most popular declarative languages for modelling business
processes [18]. It grounds on the finite-trace semantics of LTL and aims at capturing
variable cases by means of the so-called patterns. These are particular LTL formulae
that have been singled out for process modelling taking inspiration from [8]. Table 1
reports the graphical notation and a brief description of the patterns used across the paper;
Figure 5 provides a DECLARE version of the flight ticket example using the patterns
in the table. As we can see from the figure, DECLARE focuses only on the temporal
relations between (atomic) activities and does not provide any support for data or actors.9

Combinations of patterns, such as precedence and non-coexistence, can be used to direct
the control flow using the AND, OR, and XOR logical operators.

3. A brief comparison of business process language constructs

We present now a short categorization and comparative summary of the main modelling
constructs of the five languages. Modelling constructs are grouped into the three basic
categories of process modelling languages, namely the behavioural (BEV) category re-
lated to the control flow, the data (DT) category related to the data flow, and the orga-
nizational (ORG) category related to process actors. Since the behavioural category is
the most articulated, we further describe it in terms of Functional (executable pro-active
actions), Event (what happens), Flow (how actions are connected and routed), and State
(of the world) categories. The result of this grouping is summarized in Table 2.

First, we can observe that all the imperative languages, namely BPMN, EPC, and
UML-AD, provide distinctive constructs to indicate the start and the end of a process.

9Some proposal to extend DECLARE in order to incorporate non-atomic activities and data centric patterns
are presented in [6] and [2], respectively. They are nonetheless more focused on the logical properties of
the specification rather than on the definition of modelling constructs suitable for business analysts, and are
therefore not considered in this paper.

G. Adamo et al. /

BPMN UML-AD EPC CMMN DECLARE

Fu
nc Task

Subprocess
Action node
Activity

Function
Process path

Task
Stage

Task

B
E

V

E
ve

nt

Start/End
Intermediate
Send/receive

Start/End node
Accept event action
Send signal action

–
Timer
User Event Listener

–

Fl
ow

Gateway
Sequence Flow
Message Flow

Control node
Control Flow
Object Flow

Logical operators
Control Flow
Info Flow

Connector
Sentry

Connector
Pattern

St
at

e

Guard on gateway
Guard on control node
Pre- Post-condition on activity

Event
Start/End event

Sentry
Milestone

–

D
T

Data input
data output
data store

Object node (I/O) data object Case file item –

O
R

G

Pool, Lane Activity Partition
Organization
Activity Owner

–

Table 2. A comparison among modelling languages

CMMN specifies only exiting conditions while DECLARE allows (but does not force) to
specify only initial activities. Not surprisingly, all five languages have graphical symbols
for atomic activities. Instead, subprocesses and generic groups of activities are foreseen
in all languages but EPCs and DECLARE. Other common constructs are routing nodes,
connectors and data objects. CMMN (DECLARE) does not have explicit construct for
routing nodes; nonetheless a combination of sentries and connectors, (DECLARE pat-
terns) can be used to route the control flow mimicking the logical operators. The level
of details of connectors can vary. Besides the one used to denote connections of the
control flow, common to all languages, BPMN, EPC, and UML-AD provide symbols to
denote the connections between actors (data) and activities, or the messages exchanged
between different activities. Also, the level of detail of data objects can vary; e.g., EPC is
particularly rich in defining a taxonomy of data objects. Alternative (OR, XOR) routing
nodes can incorporate guards, i.e., conditions that specify which branch to follow, in all
languages but EPC, where this role can be taken by states. Actors and organizational
constructs are present in imperative languages, although exploiting different notations.10

A distinction that is present in BPMN (to some extent also in CMMN) is between
active tasks, explicitly performed by the actor specified in a corresponding swimlane, and
passive events that occur independently from the actor itself. Other distinctive aspects
are (i) the explicit presence of pre- (activation) and post-conditions on activities, which
is one of the characteristic features of CMMN and is also foreseen in UML-AD; (ii)
the explicit presence of a state, which is a characteristic feature of EPCs where states
and functions (tasks) have to interleave, and is also present in CMMN in the form of
milestones.

4. On the definition of business process

Davenport [5] defines a business process as “a structured, measured set of activities
designed to produce a specific output for a particular customer or market. [. . .] A process
is thus a specific ordering of work activities across time and space, with a beginning
and an end, and clearly defined inputs and outputs”. Similar definitions are provided by

10Note that CMMN allows to associate organizational entities to cases during the run-time phase.

G. Adamo et al. /

Hamer and Champy [11], and Johansson et al. [13]. The first states that a business process
is “a collection of activities that takes one or more kinds of input and creates an output
that is of value to the customer”; the latter says that it is “a set of linked activities that
take an input and transform it to create an output. Ideally, the transformation that occurs
in the process should add value to the input”. The most modern and popular definition
in the BPM literature is likely the one provided by Weske [26], who defines a business
process as “a set of activities that are performed in coordination in an organizational
and technical environment. These activities jointly realize a business goal. Each business
process is enacted by a single organization, but it may interact with business processes
performed by other organizations.”

From these definitions, it is rather spread the idea of a business process as a set of
activities that, together, contribute to achieve a certain goal or, more in general, con-
tribute to transform an input into a desired output. Besides the emphasis on these core
aspects, the literature underlines the importance of additional characteristics such as the
value brought about from the realisation of a certain goal, as well as the organisational
boundaries in which a process is embedded.

Despite this general agreement, the BPM literature does not provide in depth expla-
nations for what a process is or what its components (e.g., activities) are. Let us consider
two illustrative examples. First, it remains unclear whether processes are defined at the
type or at the instance (execution) level. A process execution happens in time and has a
specific duration. Differently, process types are descriptions and do not unfold in time.11

Examples of process types are depicted in process diagrams like the ones in the previous
sections that describe how the various activities are connected to produce a goal, which
is in turn a description of a desired state (e.g., that a certain ticket is purchased). The
carrying out of these activities in real-time (possibly monitored by so-called event logs)
provides the execution of the process type. As an example, process models may be only
descriptive (and not prescriptive) and process executions non compliant with the process
model are often considered executions of that process by people from the BPM com-
munity. Indeed all the process mining activities tend to define processes at the execution
level more than at the process diagram level.

Second, the BPM literature does not provide in depth explanations of the intended
semantics of the various modelling constructs, e.g., what an activity is, what its partic-
ipants are, and how the latter relate to the former. An emblematic example is the lack
of characterisation of the relations that occur between the activities in a process. While
a business process is invariably understood as an ordered collection of activities, it re-
mains unclear, e.g., whether such activities are only temporally or also causally related,
or whether the effects of activities need to be explicitly represented.

5. An ontological analysis of some business process constructs

In this section, we provide an analysis of some of the modelling constructs we encoun-
tered in the previous sections, with particular emphasis on (the lack of) an ontological
characterisation of their properties. We rely on previous works (e.g., [21,20]) for the
characterisation of process-like entities (activities, tasks, and events), whereas we shall

11Concerning the type-execution dichotomy, see the distinction between Activity and
ActivityOccurrence in the Process Specification Language (PSL) [9], respectively.

G. Adamo et al. /

dig into the analysis of process participants. The results of the analysis are used in Sec-
tion 6 to provide an initial ontologically grounded characterisation of the business pro-
cess modelling languages summarised in Table 2.

Activities In the BPM literature, activities are understood as (atomic or compound)
actions, consisting of intentional transformations from some initial state (the input) to
some other state (the output). The participants to such actions are the entities that take
part in these transformations. From the ontological point of view, actions are (specific
kinds of) events, while their participants are objects [4].

A first aspect that needs to be considered concerns the relation between activities,
and more in general the way the activities contribute to the achievement of the goal. In
general terms, the precedence relation between activities can be a temporal, causal or
dependence relation, perhaps depending on the context or scenario to be modelled. For
instance, assume that in a slight variation of the example of Section 2, the travel agency
splits the activity ‘Make flight offer’ in two subsequent steps ‘Send flight offer to cus-
tomer’ and ‘Archive offer’ which, for purely organisational reasons, must be executed
in this order. This would be a pure temporal relation between the activities in this spe-
cific setting and could easily be modified in a revision of the process model. Instead the
activity of ‘Paying for a flight’ may be a strong precondition for the ‘Preparation of the
ticket’, and so it should necessarily occur before the latter. Nonetheless these relations
would be denoted by means of the same connector symbol.

Another aspect that needs to be considered is the (explicit or implicit) representation
of the world’s states affected by the designed process. While the definitions of process in
Section 4 describe business processes as a way to move from an input (state) to an output
(state), they do not specify whether it is desirable to explicitly represent the world’s states
affected by the designed process. Nonetheless, the description of intermediate states of
affairs can be often found in business process models. Think for instance to functions
in EPC diagrams, the status of data objects in BPM and UML-AD, and sentries and
milestones in CMMN. Thus, a question that one may ask is whether the (explicit or
implicit) representation of the world’s states is necessary to fully characterise a process
(model) and what are the characteristics of this representation.

Participants From a general perspective, participants can be physical or non-physical
depending on their properties. In fact, the very same activity may involve several types
of objects as participants: physical objects (e.g., the knife used to cut a piece of bread);
information objects (e.g., personal data involved in submitting a request); agents and/or
organizations playing certain roles (e.g., an administrative employee receiving a form).

A physical participant, whenever it exists12, is located in the physical space. Dif-
ferently, non-physical participants lack physical locations, although they are present in
time. A person is an example of physical participant, whereas the content of a person’s
ID, which is an information object (see below), is a non-physical participant. Informa-
tion objects are rather common in business processes and are represented by means of
data objects modelling constructs. In applied ontology, only a few systems [24,15,3,17]
have attempted a formal treatment of information. These ontologies agree in distinguish-
ing between information objects and their physical carriers like paper sheets or pdf files;
also, the same information object may be encoded in multiple carriers while retaining its

12We use the expressions ‘to exist’ and ‘to be present in time’ as synonyms.

G. Adamo et al. /

identity. For example, John’s and Mary’s copies of the Divine Comedy are two different
carriers of the same information object. Information objects and their physical carriers
have an important role in business processes. For example, in the scenario of buying a
flight ticket, we may consider the flight offer an information object whose physical car-
rier is not that relevant. Instead, the physical carrier (e.g., a pdf file) is of fundamental
importance to exchange the ticket. Again, a question that one may ask is whether this
distinction needs to be represented in a process (model) and what are the characteristics
of this representation.

Another crucial distinction in BPM is the one between agentive and non-agentive
participants. For the purposes of our work, we consider a process participant as agentive
depending on whether it has sensors, actuators and the capability to act on itself or on the
environment. For instance, a lathe machine is an agent when, e.g., it has sensors by which
it acquires data from the objects to be manufactured and acts upon them by elaborating
the data through some software. Additionally, we consider a second notion of agentive
participant characterising an agent that can be ascribed with intentions, including beliefs
or desires. Non-agentive participants that undergo a change during an action are usu-
ally called patients of the action. It is easy to see that a process such as the one in Sec-
tion 2 contains both agentive (e.g., the customer paying for the flight) and non-agentive
participants (e.g., the offer whose status changed from created to rejected).

Apart from the classification of participants, we need to spend some words on their
roles. From an ontological perspective, the latter are properties that objects only con-
tingently satisfy within certain contexts, e.g., processes (e.g., to be a resource during a
drilling process) or organisations (to be professor at MIT). In this sense, an object can
loose or acquire a role while remaining the same entity. We assume that roles can be as-
cribed to any type of participant, including information objects. The ability to constrain
the way an object playing a role participates in a process may be also of interest to the
BPM field, not only at the execution but also at the type level. Let us focus, for exam-
ple, on organisational/business roles, which in BPMN are usually described by means of
pools, such as the pools ‘customer’ and ‘travel agent’ in Figure 1. While it seems plausi-
ble to assume that the customer does not change during the entire duration of the process
(otherwise this would be another process instance), the same constraint would not apply
to the ‘travel agent’. In fact, any employee of the travel agency playing the ‘travel agent’
role would perfectly fit the specification of this process. Enriching BPM languages with
the ability to distinguish between these cases may be useful to constrain and reason on
the identity of process instances.

The second column of Table 3 summarises the main characteristics of business pro-
cesses and of business process constructs described here and in Section 4. In the next
section we provide some insights on whether the modelling notations described in Sec-
tion 2 enable to represent these characteristics, and how. The results are summarised in
the right hand side of Table 3.

6. Discussion

In this section, we discuss the ontological aspects of business processes presented in
Section 5 in the light of the modelling constructs presented in Section 2, with the help of
the flight purchase example. The results are summarised in Table 3

G. Adamo et al. /

CHARACTERISTIC BPMN UML-AD EPC CMMN DECLARE

PR
O

C
E

SS
Set of activities Yes Yes Yes Yes Yes
Clear Input/Output Yes Yes Yes Somehow Somehow
Goal/Value No No Somehow Somehow No
Organizational boundaries Yes Yes Yes No No

A
C

T
IV

. Different types of
relations between activities

No No No No Somehow

State of the word Somehow Somehow Yes Somehow No

PA
R

T.

Agentive vs non agentive Somehow No Somehow No No
Information vs carrier No No No No No
Object vs role Somehow Somehow Somehow No No

Table 3. A comparison among modelling languages

By looking at the diagrams, we observe that all the notations enable to represent
structured / coordinated sets of activities. This is not surprising: the specification of the
control flow is indeed the top priority of a process model. The situation changes as soon
as we move to the clear specification of input and output states. Here we observe that
all the notations but DECLARE enable / require an explicit initial and final state. Not
surprisingly, the imperative modelling languages (BPMN, UML-AD and EPC) strictly
require explicit start and end symbols / states. These languages, in fact, model business
processes in a prescriptive manner specifying all the allowed flows from a start (the input)
to an end (the output) state. Despite its declarative nature, CMMN also facilitates the
modellers to specify input and output states by means of input and output sentries and
by explicitly asking for exit criteria. Instead, DECLARE is, in our opinion, the weakest
language in terms of driving the modeller to explicitly represent input and output states.
In fact, it provides a (optional) pattern for the initial activity, and it does not foresee any
pattern for the exit / last activity, thus lacking also a way to express - even if implicitly
- the goal, or desired state, of a business process. Moving to the specification of the
business goal or added value that the business process realises, none of the modelling
languages force the modeller to make them explicit. The only language that explicitly
contains a ‘goal’ construct is (one of the variants of) EPC. Thus, we can say that most
BPM languages leave implicit in the modeller’s (and the reader’s) mind the goal the
activities contribute to realise. Finally, organization boundaries can be easily described
in notations such as BPMN, UML-AD and EPCs, using notions such as pools/lanes,
activity partitions, and organization/activity owner, respectively, while they are absent in
CMMN and DECLARE.

Moving to the relation between activities, we can easily notice that almost all the
languages only enable a connection between activities without specifying the nature of
such connection. A notable exception is DECLARE, whose main focus is indeed the rep-
resentation of (temporal) relations between activities. While it would be incorrect to say
that DECLARE patterns have the aim of specifying the kind of relation existing between
different activities, it is also true that some (temporal) patterns may be better suited to
model causal vs. temporal vs. dependent relations. As an example, let us consider the
‘response’ and ‘precedence’ patterns in Table 1. While the precedence pattern may be
suited to express that an activity happens before another, and therefore can be consid-
ered as a pure temporal constraint, the ‘response’ pattern conveys the meaning that B is
a consequence of A being true (happening). Thus we may say that, from an ontological
perspective, DECLARE somehow guides the modellers to think about the type of relation
existing between activities, besides the simple sequencing.

G. Adamo et al. /

A key difference among the modelling notations we took into account concerns the
representation of the (state of the) world in response to a process execution. Figure 3
emphasises this as one of the focuses of EPCs. UML-AD and CMMN lie in the middle
by exploiting data objects and sentries for describing how the world is changed because
of the process execution. BPMN, instead, only provides (optional) constructs for repre-
senting the state of data objects. Finally, DECLARE does not offer any construct at all for
representing the status of the world. From an ontological perspective, we would say that,
differently from DECLARE and BPMN, EPC drives the modeller to explicitly represent
the world’s states affected by the designed process, while UML-AD and CMMN guide
the modeller to implicitly represent the world’s states through data objects and sentries.

The participants relevant in the flight purchase example are the customer, the travel
agency and various information objects. The process thus includes different types of par-
ticipants, material and immaterial ones. A first observation we have to make is that DE-
CLARE does not offer any support to the modelling of entities that participate to the ac-
tivities. It is therefore ignored in the remaining of the discussion. By looking at the dia-
grams, we observe that no explicit distinction is made between agentive and non-agentive
participants. Nonetheless, the specification of activity owners in EPCs seems to suggest
that they have the ability to act. Also, pools in BPMN are understood as participants in
collaboration, and therefore exhibiting the capability to collaborate. In case of UML-AD,
the activity partitions may be used for grouping activities with different purposes, i.e, not
only according to the activity performer; however, when used for this purpose, also the
UML-AD notation tends to suggest the ability of the performer to act. CMMN, instead,
does not seem to distinguish between these types of participants.

In Figures 1–3, Check travel agency website results in the Flight request which is
sent to the agency. On the basis of our analysis, one has to distinguish between the
request-information-object and the request-support(s); to some extent, the former is more
relevant than the latter, since it represents the customer’s information to book the flight.
However, one cannot avoid referencing the support. Hence, what the customer sends
to the agency is a (copy of a) physical object displaying an information object. The
distinction between information object and support is not addressed by the languages we
considered; rather, it is blurred in the notion of data object.

No actors appear in CMMN and neither BPMN nor UML-AD specify whether ‘cus-
tomer’ explicitly refers to a single individual (e.g., John) or to an organisation. In both
cases, it reasonably stands for the role of a participant, who desires to book a flight ticket.
This consideration reveals, besides the lack of declarative language graphical constructs
for specifying actors, the underspecification of both BPMN and UML-AD with respect
to our analysis, since pools and activity partitions can be used to refer to different types
of participants, but also to their roles.13 Differently, the distinction between single actors
and organisations can be explicitly conveyed in EPC, although the difference between
participants and their roles is blurred.

To conclude, the analysis of process entities needs to be extended to identify the dif-
ferent modelling approaches in the languages at hand. Once we recognise the ontological
assumptions undergoing the different languages, including the lack of characterisation of
several properties, we can better understand how to correctly use the language to convey

13Although some support is given in the meta-models of the different languages, what we aim at emphasising
here is the lack of support provided by the graphical notations of the different languages.

G. Adamo et al. /

a well characterised meaning. This latter topic however deserves more attention and is
left for future work.

7. Related and Future Work

Focusing on ontology-based BPM, which is the context of our paper, disparate ontologies
have been proposed to semantically enrich process models. Among these, some ontolo-
gies axiomatise the properties that graphical constructs satisfy according to modelling
notations (see, e.g., [19]). In a more general setting, an upper-level ontology for busi-
ness processes is proposed in [7]. In these works, however, the authors do not attempt
an ontological clarification of the modelling notations at stake. Some initial works to-
wards the analysis of BPMN based on foundational ontologies are presented in [10,20].
These however focus only on constructs like activities and events, while leaving aside
the analysis of participants, which is the focus of the presented work. Related work fo-
cused on the provision of semantic foundations for role-related concepts in the context
of enterprise modelling is presented in [1].

In the future we plan to extend our preliminary analysis in order to deepen the in-
vestigation of the ontological commitments of modelling notations by further inspect-
ing the different perspectives that they implicitly take on business processes and their
participants, as well as by providing modellers with guidelines to make an appropriate
choice when selecting among different notations. We also aim at extending our analysis
including further languages that encompass the B2C view, such as ArchiMate, Petri Nets
or the Integrated DEFinition Methods (IDEF) language.

Acknowledgments This research has been partially carried out within the Euregio
IPN12 KAOS, which is funded by the “European Region Tyrol-South Tyrol-Trentino”
(EGTC) under the first call for basic research projects.

References

[1] J. P. A. Almeida, G. Guizzardi, and P. S. Santos, Jr. Applying and extending a semantic foundation for
role-related concepts in enterprise modelling. Enterp. Inf. Syst., 3(3):253–277, Aug. 2009.

[2] A. Artale, M. Montali, S. Tritini, and W. van der Aalst. Object-centric behavioral constraints: Inte-
grating data and declarative process modelling. In Proceedings of the 30th International Workshop on
Description Logics, Montpellier, France, July 18-21, 2017, CEUR Workshop Proceedings, 2017.

[3] C. Bekiari, M. Doerr, P. Le Bœuf, and P. Riva. FRBR object-oriented definition and mapping from
FRBRER, FRAD and FRSAD (version 2.4). International Working Group on FRBR and CIDOC CRM
Harmonisation, 2015.

[4] S. Borgo and C. Masolo. Foundational choices in DOLCE. In S. Staab and R. Studer, editors, Handbook
on Ontologies. Springer Science & Business Media, 2013.

[5] T. Davenport. Process Innovation: Reengineering work through information technology. Harvard Busi-
ness School Press, Boston, 1993.

[6] R. De Masellis, C. D. Francescomarino, C. Ghidini, and F. M. Maggi. Declarative process models:
Different ways to be hierarchical. In Proc. of the 14th Int. Conf. on Service-Oriented Computing (IC-
SOC2016), volume 9936 of LNCS, pages 104–119. Springer, 2016.

[7] A. De Nicola, M. Lezoche, and M. Missikoff. An ontological approach to business process modeling.
In 3th Indian International Conference on Artificial Intelligence 2007, pages ISBN–978, 2007.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state verifi-
cation. In Proc. of the 1999 International Conf. on Software Engineering (ICSE). ACM Press, 1999.

G. Adamo et al. /

[9] M. Grüninger. Using the PSL ontology. In S. Staab and R. Studer, editors, Handbook on Ontologies,
pages 423–443. Springer-Verlag Berlin Heidelberg, 2009.

[10] G. Guizzardi and G. Wagner. Can BPMN be used for making simulation models? In Workshop on
Enterprise and Organizational Modeling and Simulation, pages 100–115. Springer, 2011.

[11] M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business Revolution.
Harper Business, 1993.

[12] F. Heidari, P. Loucopoulos, F. M. T. Brazier, and J. Barjis. A meta-meta-model for seven business process
modeling languages. In IEEE 15th Conference on Business Informatics, CBI 2013, pages 216–221.
IEEE Computer Society, 2013.

[13] H. J. Johansson, P. McHugh, A. J. Pendlebury, and W. A. Wheeler. Business Process Reengineering:
Breakpoint Strategies for Market Dominance. John Wiley & Sons, 1993.

[14] B. List and B. Korherr. An evaluation of conceptual business process modelling languages. In Proc. of
the 2006 ACM Symposium on Applied Computing, SAC ’06, pages 1532–1539. ACM, 2006.

[15] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino. Social roles and
their descriptions. In Principles of Knowledge Representation and Reasoning, pages 267–277. AAAI
Press, 2004.

[16] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E. Boussaidi. Business process
modeling languages: Sorting through the alphabet soup. ACM Comput. Surv., 43(1):4:1–4:56, 2010.

[17] R. Mizoguchi. Yamato: yet another more advanced top-level ontology. In Proceedings of the Sixth
Australasian Ontology Workshop, pages 1–16, 2010.

[18] M. Pesic, H. Schonenberg, and W. van der Aalst. DECLARE: Full Support for Loosely-Structured
Processes. In EDOC, pages 287–300, 2007.

[19] M. Rospocher, C. Ghidini, and L. Serafini. An ontology for the business process modelling notation. In
FOIS, pages 133–146, 2014.

[20] E. M. Sanfilippo, S. Borgo, and C. Masolo. Events and activities: Is there an ontology behind bpmn? In
FOIS, pages 147–156, 2014.

[21] P. S. Santos Jr., J. P. Almeida, and G. Guizzardi. An ontology-based semantic foundation for aris epcs.
In Proceedings of the 2010 ACM Symposium on Applied Computing, pages 124–130. ACM, 2010.

[22] A. Scheer. ARIS - vom Geschäftsprozess zum Anwendungssystem. Springer, Berlin [u.a.], 4., durchges.
aufl. edition, 2002.

[23] A.-W. Scheer, O. Thomas, and O. Adam. Process-Aware Information Systems: Bridging People and
Software Through Process Technology, chapter Process Modeling Using Event-Driven Process Chains,
pages 119–146. Wiley, October 2005.

[24] B. Smith and W. Ceusters. Aboutness: Towards foundations for the information artifact ontology. In
Proceedings of the International Conference on Biomedical Ontology (ICBO) 2015, 2015.

[25] E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. Towards a Framework for
Comparing Process Modelling Languages, pages 600–611. Springer Berlin, 2002.

[26] M. Weske. Business Process Management. Concepts, Languages, Architectures. Springer, 2012.

