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1 Motivation

Spatial understanding is crucial for any agent that navigates
in a physical world. Computational and cognitive frameworks
often model spatial representations as spatial templates or
regions of acceptability for two objects under an explicit spa-
tial preposition such as “left” or “below” (Logan and Sadler
1996). Contrary to previous work that define spatial templates
for explicit spatial language only (Malinowski and Fritz 2014;
Moratz and Tenbrink 2006), we extend such concept to im-
plicit spatial language, i.e., those relationships (usually ac-
tions) that do not explicitly define the relative location of the
two objects (e.g., “dog under table”) but only implicitly (e.g.,
“girl riding horse”). Unlike explicit relationships, predicting
spatial arrangements from implicit spatial language requires
spatial common sense knowledge about the objects and ac-
tions. Furthermore, prior work that leverage common sense
spatial knowledge to solve tasks such as visual paraphrasing
(Lin and Parikh 2015) or object labeling (Shiang et al. 2017)
do not aim to predict (unseen) spatial configurations.

Here, we propose the task of predicting the relative spatial
locations of two objects given a textual input of the form
(Subject, Relationship, Object). We report on initial exper-
iments with a simple neural network model with distance-
based supervision learned in annotated images that obtains
promising performance. Crucially, we show that the model
can reliably predict templates of unseen combinations, e.g.,
predicting (man, riding, elephant) without having seen such
scene before. Furthermore, by leveraging word embeddings
of objects and relationships, the model can correctly predict
spatial templates for unseen words. E.g., without having ever
seen “boots” before but only “sandals”, the model predicts
correctly the template of (person, wearing, boots) by infer-
ring that, since “boots” are similar to “sandals”, they must be
worn at the same position of the “person”’s body. Hence, the
model is able to leverage the learned common sense spatial
knowledge to generalize to unseen objects.

*The reader may refer to a full paper (Collell, Van Gool, and Moens
2018) that resulted from the preliminary studies presented in this
abstract.
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Figure 1: Overview of our model and setting.

2 Proposed task and model
2.1 Proposed task

We propose the task of predicting the 2D relative spatial
arrangement of two objects under a relationship given a struc-
tured text input of the form (Subject, Relationship, Object)—
abbreviated as (S, R, O). More precisely, the model predicts
the Object’s box center and box size (output) given the struc-
tured text input (S, R, O) plus the center and size of the
Subject’s box (Fig. 1).

2.2 Proposed model

We employ a feed forward network with embeddings (Fig. 1).
The embedding layer maps the input words (S,R,0) to their
d-dimensional representations. The embeddings are then con-
catenated with the Subject’s box center and size. This vector
is then fed into a fully connected layer to compose S, R,
O into a joint representation. model predictions (Object’s
center and size) are evaluated against ground truth with a
mean squared error (MSE) loss.

3 Experimental setup

Data. We use the Visual Genome (Krishna et al. 2017)
dataset, which has ~108K images containing ~1,5M
human-annotated (S, R, O) instances with corresponding
object boxes. We filter out all instances with explicit spatial
prepositions, yielding ~378K implicit (S, R, O) instances.



MSE R2 accy F1, Iy Iy
EMB 0.008 0.705 0.756 0.755 0.894 0.834

S RND 0.008 0691 0750 0.750 0.891 0.826
g* IH 0.008 0.717 0.762 0.762 0.896  0.842
= ctrl 0.054 -1.000 0.522 0.521 0.000 -0.001
< EMB 0013 0586 0.768 0.770 0.811 0.823
.2 RND 0.013 0580 0.767 0.769 0.808 0.815
5‘ 1H 0.012 0.604 0.778 0.780 0.815 0.828

ctrl  0.060 -1.000 0.633 0.630 0.000 0.000

Table 1: Results on implicit and explicit relations.

Evaluation sets. We evaluate performance in the fol-
lowing subsets of Visual Genome. (i) Raw set: Simply the
unfiltered instances. (ii) Unseen words: We randomly pick
25 objects (e.g., “woman”, “apple”, etc.) among the 100
most frequent ones and leave out from the training data
all the instances (~130K) containing any of these words.
This set is used for testing. (iii) Unseen combinations: We
randomly pick 100 combinations (S, R, O) among the 1,000
most frequent implicit ones and leave them out for training.
We finally consider the explicit version of the Raw set.
Reported results are always on unseen instances—yet the
combinations (S, R, O) may have been seen during training
(e.g., in different images).

Data pre-processing. Coordinates are normalized by
image width and height. Since right/left depends only on the
camera viewpoint, we get rid of this arbitrariness by mir-
roring the image when the Object is on the left of the Subject.

Evaluation metrics. We use standard regression met-
rics: (i) Mean Squared Error (MSE) between predicted
and true Object center and size. (ii) Coefficient of De-
termination (R?) of model predictions and ground truth.
(iii) Pearson Correlation (r) between predicted and
true xz-component of the Object center, and similarly for
the y-component. We also consider the classification of
above/below relative locations of the Object w.r.t. the Subject.
We report (macro averaged) F1 (F1,) and accuracy (acc,).

4 Results

We test the following model variations. EMB denotes a model
that uses pre-trained word embeddings', RND a model with
random normal embeddings, /H employs one-hot embed-
dings and ctrl outputs random normal predictions. Overall,
the preliminary results outlined below look promising.

4.1 Quantitative results

Evaluation with raw data. Table 1 shows that all methods
perform well in the Raw data. Remarkably, we see that rela-
tive locations can be predicted from implicit spatial language
at least as accurately as from explicit spatial language.

Unseen combinations. All models perform well on unseen
combinations (table not shown), remarkably closely to their

"We use 300-d GloVe embeddings (Pennington, Socher, and
Manning 2014) http://nlp.stanford.edu/projects/glove.

performance with seen combinations.

Unseen Words. Contrarily, large differences in performance
are observed with unseen words (table not shown) where the
model that uses embeddings (EMB) performs significantly
better than the rest.
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Figure 2: Predictions by the model that leverages word em-
beddings (EMB). Top: Predictions in unseen words (under-
lined). Bottom: Predictions in unseen triplets.

4.2 Qualitative evaluation (spatial templates)

Heat maps in Fig. 2 show regions of predicted high (red) and
low (blue) probability. The “heat” of the objects is assumed
to be normally distributed with i equal to the object’s center
and o to the object’s size. The EMB model is able to infer
both, relative locations and sizes, e.g., predicting correctly the
size of a “cat” relative to a “person” even though the model
has never seen a “cat” before. Notably, the model learns to
compose the triplet as a whole, distinguishing, e.g., (man,
flying, kite) from (man, holding, kite).
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