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1 Introduction

Water monitoring involves the acquisition of data from rivers, lakes, and other
bodies of water to gather knowledge about water properties. New technologies
have recently started a transition from manual and passive monitoring to au-
tomatic and active monitoring, in which water drones autonomously move into
catchments according to strategies that maximize the acquisition of information
[2]. These intelligent systems collect large amount of data which need advanced
computational methods to be analyzed, interpreted, and exploited for decision
making [1].

A promising research area in this context concerns the automatic identifica-
tion of events [9], activities [3,14], and situations [5,6,12,7] of interest from the
analysis of large datasets collected by unmanned vehicles using artificial intelli-
gence and statistical learning methods [13,10]. Here we follow this line of research
and aim at developing an activity recognition system for unmanned vehicles in-
volved in water monitoring. The main data sources for activity recognition can
be grouped into two macro-categories, namely vision-based and sensor-based
sources [3]. In this work we use only the second kind of sources. Moreover, while
activity recognition is a concept often applied to human activities [3], this is a
key features also for autonomous robots when the activities of others can not be
communicated [14] or when such activities can not be perceived from the robots
(e.g., because there are no available sensors to directly perceive such activity) or
because sensors can be too expensive (e.g., detecting whether the water drone
is navigating upstream or downstream in a river).

Specifically, our aim in this work is twofold: i) to support drone operations
(on-line decision making), ii) to support the extraction of knowledge from the
large sets of data collected by drones (off-line data analysis). The main contri-
butions we present here are: i) the application of unsupervised statistical meth-
ods to activity recognition in the context of autonomous water monitoring, and
ii) the empirical evaluation of a system for detecting a specific activity: “up-
stream/downstream navigation” on real data. Our empirical evaluation provides
promising results for the identification of this activity.



2 Material and Methods

System overview. This work is part of the H2020 EU project INTCATCH1

which aims at developing innovative strategies for integrated water monitoring
of catchments. Our low-cost aquatic drones, displayed in Figure 1, are equipped
with sensors able to detect: i) GPS coordinates, i.e., latitude and longitude, ii)
water properties, such as temperature, dissolved oxygen and electrical conduc-
tivity, iii) commands to propellers, iv) battery voltage. In the data acquisition
phase, signals coming from different sources are integrated and synchronized, and
new variables are possibly generated by fusing information from these sources.
A data matrix of n variables and m time steps is thus generated which we aim
to annotate with activity labels, such as, “the boat is navigating upstream”.
Each activity instance should be represented by the time interval in which the
activity was detected and the subset of variables that provided information to
identify the activity. Therefore, an activity instance should be represented by a
sub-matrix, possibly after row rearrangements, containing specific information
patterns. From this point of view our problem could be seen as a multivariate
time-series segmentation [11,4] or a clustering problem [8].

Fig. 1. System overview: acquatic drones and available data.

Dataset. Data collection was performed in different environments and locations
including rivers, fish ponds an lakes. Every dataset is a matrix of 13 features,
namely time, latitude, longitude, altitude, speed, electrical conductivity, dissolved
oxygen, temperature, battery voltage, heading, acceleration, command to propeller
1 and 2, and a certain number of observations depending on the duration of
the data acquisition process. Different sensors have different sampling intervals,
hence interpolation is performed during data preprocessing to merge all signals
and obtain a common sampling interval of 1 second.

Activities. Aquatic drones face different activities during their missions, where
an activity can be defined, in general, as a specific action that the drone is
performing in a given state of the environment. Manual labeling was performed
for five activities, namely, acquiring data in/out of water, upstream/downstream
navigation, manual/automatic driving, navigation facing waves/no waves, blocked
boat. Labeling was performed in a partial way, namely, experts analyzed geo-
referenced path images, videos of the acquisition phases and manual notes, and
they labeled time intervals in which specific activities surely occurred. They left

1 See the project website for futrther info http://www.intcatch.eu/



unlabeled (i.e., label 0 in Figure 2) time intervals in which activity occurrence
was not completely sure. In this work we aim at assessing a specific activity,
namely if the drone is moving upstream or downstream in a river.

Unsupervised learning methods for activity recognition. We performed
clustering of sensors observations using Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs). In both cases the Expectation-Maximization
(EM) algorithm was used to learn the model. Inference was performed us-
ing the junction tree algorithm for GMMs and Viterbi algorithm for HMMs.
Clustering performance was computed by purity. Purity is an external method
of the extent to which clusters contain a single class, and it is computed as
P (C) = 1

N

∑
k∈K max

d∈D
|k ∩ d|, where C represents a clustering, N is the total

number of points, K is the set of clusters and D is the set of classes.

3 Results

GMMs and HMMs were trained on a dataset collected on a river, with a total
of 3615 observations (multiple sensor readings) and 9 features, namely, speed,
electrical conductivity, dissolved oxygen, temperature, battery voltage, heading,
acceleration, command to propeller 1 and 2. During the entire mission, which
lasted about 1 hour, the aquatic drone moved both upstream and downstream,
as shown in Figure 2 (the stream direction is from left to right in the map).
Moreover, sensor readings include data acquired before the drone was inserted
into the water and after it was removed from the water.

We set the number of clusters (hidden states) to 3, in order to enable the
detection of the target activity (i.e., upstream and downstream navigation) con-
sidering also the possibility of having measurements that show no specific water
flow (e.g., when the drone was out of the water). Clusterings generated by GMMs
and HMMs are graphically shown in points (b) and (c), respectively, of Figure
2. The value of purity for GMMs is 0.54 while for HMM we have 0.95. GMMs
clearly detect the intervals in which the boat was out of the water, corresponding
to cluster 3 (blue) and 1 (red) in the picture (low level of electrical conductivity
identify such an activity). However, this model groups together all observations
collected in water and it cannot distinguish upstream from downstream naviga-
tion. This behavior is well represented by the low value of purity. On the other
hand, HMMs achieve good performance in the detection of both situations out of
water (cluster 2/green points in Figure 2) and upstream/downstream navigation
(cluster 1/red points and cluster 3/blue points, respectively). The high purity
achieved by HMM confirms the good performance of this clustering.

In order to understand what characterizes upstream and downstream navi-
gation in our dataset we analyzed model parameters. In particular we compared
the distributions of each variable of the HMM model between upstream and
downstream clusters (see box plots in the right-hand side of Figure 2) and we
identified statistically significant differences in means using Student’s t-test. We
found that variables heading, commands to propellers 1 and 2, dissolved oxy-
gen and speed were significantly different using a threshold of 0.05 for p-values.



Differences in heading have intuitive interpretation since the boat had opposite
directions while navigating upstream and downstream in the river. The com-
mands to propellers 1 and 2 were higher in upstream navigation (cluster 1) than
in downstream navigation. This is because the boat needed full power to move
against the water flow. The speed of the boat was also higher during upstream
navigation. An interesting element of the analysis is the unexpected behavior
of dissolved oxygen which had higher level during upstream navigation (i.e.,
7.53 µg/L) than during downstream navigation (i.e., 7.48 µg/L). Since the wa-
ter moved along the same path (only in different directions) during upstream
and downstream navigation we suppose that the slight but statistically signifi-
cant difference is due to the increased turbulence generated by the boat along
the upstream path.

Fig. 2. Results for clustering based on GMMs (purity: 0.54) and HMMs (purity: 0.95)
in a river. Left: segmented time series. Center: segmented paths in the map. Right: box
plots of model parameters. Best viewed in colors.



4 Conclusions

This paper takes a first important step towards activity recognition for au-
tonomous water drones. The main idea behind our approach is to employ sta-
tistical methods for multivariate time-series segmentation to perform activity
recognition in this specific context. Our approach achieves promising results by
correctly interpreting real data collected during data acquisition missions. More-
over, by observing the statistical distribution provided by the model it is also
possible to identify the most representative variables for a given activity. Fu-
ture work in this direction includes a more detailed analysis of our approach
for different activities/datasets and an investigation to further analyse the in-
terpretability of the models by human operators.
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4. F. Duchêne, C. Garbay, and V. Rialle. Learning recurrent behaviors from hetero-
geneous multivariate time-series. Artificial Intelligence in Medicine, 39(1):25–47,
2007.

5. M. R. Endsley. Toward a theory of situation awareness in dynamic systems. Human
Factors, 37(1):32–64, 1995.

6. M. R. Endsley. Theoretical underpinnings of situation awareness: a critical review.
In M. R. Endsley and D. J. Garland, editors, Situation Awareness Analysis and
Measurement. Lawrence Erlbaum Associates, Mahwah, NJ, USA, 2000.

7. A. Farinelli, D. Nardi, R. Pigliacampo, M. Rossi, and G. P. Settembre. Cooperative
situation assessment in a maritime scenario. International Journal of Intelligent
Systems, 27(5):477–501, 2012.

8. D. Hallac, S. Vare, S. Boyd, and J. Leskovec. Toeplitz inverse covariance-based clus-
tering of multivariate time series data. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17 (Au-
gust 13-17), pages 215–223, New York, NY, USA, 2017.



9. R. P. Higgins. Automatic event recognition for enhanced situational awareness in
UAV video. In MILCOM 2005 - 2005 IEEE Military Communications Conference,
pages 1706–1711 Vol. 3, 2005.
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