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1. Proactive Cyber Defense 
In 2016, the cyberthreat landscape showcased advanced attack techniques, escalated attack 
frequency, and high levels of adversarial sophistication (Kulkarni 2016). Conventional 
cyberattack management is response driven, with organizations focusing their efforts on 
detecting Indicators of Compromise, or threats (Kulkarni 2016). This reactive approach has 
limited efficacy, as it does not capture advanced and sophisticated adversaries, mutating or 
unknown malware, living-off-the-land techniques, or new variants being deployed (Kulkarni 
2016). Furthermore, responding to incidents after the attack has occurred is costly for two 
reasons. First, the attack has successfully occurred and damage has occurred in the form of data 
theft, system manipulation, service/functionality disruption, or the like, which is costly to fix 
(Barnum 2013). Second, during the attack, the adversary may have established several footholds 
in different parts of the targeted system. Identifying and eradicating these footholds are costly 
with regards to manpower and time (Barnum 2013). 

The average time taken to identify and contain data breaches caused by malicious or 
criminal attacks was 229 and 82 days, respectively, and cybercrime detection and recovery 
activities accounted for more than 55 percent of total internal company activity costs in FY 2016 
(Ponemon 2016). US organizations had the highest average cost of cybercrime ($17.36 million), 
with cybercrime costs in Germany and the UK averaging at $7.84 million and $7.21 million, 
respectively (Ponemon 2016). There is thus an immediate need for a paradigm shift in the area of 
cybersecurity. Security experts are calling for anticipatory or proactive defense measures that 
focus on Indicators of Attack that identify adversarial behavior and movement (Barnum 2013, 
Kulkarni 2016). Doing so requires a timely comprehension and predictive analysis of adversary 
decision-making capacities, which are currently downplayed in existing research. 

Imagine a theoretically grounded system that learns, simulates, and predicts the attack 
progressions of adversaries of different intents, tactics, capabilities, and preferences. Through 
limited data accompanied with theoretical explanation, the system learns one or few adversary 
behaviors with salient features, extrapolates from the learned behaviors to many simulated ones, 
and generates plausible future activities based on the observed and extrapolated behaviors. The 
extrapolated behaviors and plausible futures can be key ingredients of proactive cyber defense 
measures, including providing anticipatory intelligence to human and autonomous agents. The 
following section provides a brief description of interdisciplinary research directions that address 
some of the current gaps towards such a system. 



2. Theoretically Grounded Learning, Simulation, and Prediction 
Criminology Theories: According to Routine Activity Theory (RAT), a criminological theory, 
crime is more likely to occur when three elements converge in space and time: (i) a capable 
offender, (ii) a suitable victim or target, and (iii) the absence of capable guardianship (Cohen & 
Felson 1979). RAT offers more about where and when crimes are likely to occur (when the three 
elements converge) than about why crime is likely to happen (why and how this convergence 
results in crime) (Wikstrom & Treiber 2016). Furthermore, the interaction of the three RAT 
elements is dynamic and shifts as the cyberattack progresses (Sutton 2012).  

In the criminological discipline, ‘crime scripts’ provide a “standardized, systematic and 
comprehensive understanding of the crime commission processes” (Leclerc 2016; Cornish & 
Clarke 2002). Crime scripts also help identify the decisions, actions, and resources that are 
needed at each stage for the successful completion of the crime (Leclerc 2016). In the context of 
cybercrime, as conducted by state actors, cyber criminals, hacktivists, etc., crime scripts are 
captured by intrusion chains. Barnum’s (2013) intrusion chain model (Figure 1) illustrates how 
adversaries study their targets, break into the targeted system, establish footholds, pivot and 
move laterally to strengthen their presence, and repeat the process until their objectives are 
completed.  

 
Figure 1: FireEye’s Attack Life Cycle (Barnum 2013) 

Existing criminological theories can use additional refinement to capture the dynamics of 
cybercrime, to examine the continually changing interaction between offender, target, and 
guardian (OTG) along cyberattack trajectories, and to explain how variations in OTG impact 
dynamic adversarial attack trajectories. The development of an enhanced theory will require 
interdisciplinary study where computational techniques offer insights and validation of attack 
behaviors learned and extrapolated from real-world attacks (albeit limited). A preliminary study 
has shown that as the crime process unfolds, the interaction between the offender, victim/target, 
and guardianship fluctuates, which determines whether the crime will stop or progress/regress to 
the next/previous stage (Rege 2016, Rege 2017). Understanding the dynamics and the decision-
making capacity of adversaries will be critical to developing sound computational learning, 
simulation, and prediction systems. 

  
Computational Techniques: Independent of the criminology theories, several probabilistic 
models have been developed to represent the interdependencies between system vulnerabilities 
and observables of malicious activities (Qin 2004, Fava 2008, Noel 2009, Yang 2014). This set 
of works infer the probabilistic dependencies using machine learning through observed malicious 
activities and/or based on specific properties of system exploits. While the learned models might 
reflect, implicitly, the adversarial behavior and be used to predict attack actions, they are limited 
in criminological/behavioral grounding and lack the ability to explain why and how attackers 
make specific movements. In addition, it is unlikely one will have ample data to 
comprehensively learn about cyber adversaries given the vast and fast-changing attack landscape 



and tactics. This calls for a new solution where limited data can be used to learn salient features 
and extrapolate to additional attack scenarios representing a broader spectrum of evolving 
adversarial behaviors. 

Figure 2 shows a framework where observables of cyberattacks are fed to both ASSERT – 
an ensemble learning system that continuously creates and refines hypothesized attack models by 
integrating Dynamic Bayesian Network (DBN), Clustering, and Generative Adversarial Network 
(GAN), and CASCADES – a simulator that generates attack scenarios utilizing Monte-Carlo and 
Importance Sampling over the attack action space subject to attacker capability, opportunity, 
intent, and preference (Moskal 2014, Krall 2016, Moskal 2017). The two systems also feed to 
each other to enhance the learning process through simulated data and to provide salient features 
that can be used to guide simulation.  
 

 
Figure 1: A framework that takes limited data to synthesize hypothesized attack models and to 

simulate critical attack scenarios.  

 Because cyberattack data is limited and evolving without ground truth of agent behaviors, 
ASSERT must extract features through a carefully crafted GAN, use these features to create 
DBN-based attack models, and evaluate the quality of observable-model pairing using the 
concept of clustering. Current works have shown success in dynamically creating attack models 
(Strapp 2014) and refine them with a cluster validity index (Saxton rev). Attack models resulting 
from this process may also enhance the learning process in GAN. Meanwhile, referencing the 
features and models from ASSERT as well as a dynamic criminological theory, CASCADES 
may generate simulated attack scenarios along with observables to complement the limited real-
world data.   
 

3. Transformative Impact  
Cyber defense must be proactive, utilizing anticipatory intelligence that enables actionable 
resilience. A theoretical grounded learning, simulation, and prediction system will be a key to 
enhance the intelligence of human and autonomous agents. A novel ensemble of advances in 
machine learning and simulation that incorporates the dynamics of cyber adversary decision 
making process will be at the frontline to bring forth this new era of cyber defense. 
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