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Abstract

The usage of disposable domains for malicious activities is an increasing trend and a
fertile ground for fraudsters actions from phishing to fake goods selling. Those domains
are registered daily, go online within a few hours and last for a very short time. Due to the
existence of automated developing tools for content creation and efficient site management,
a single monicker entity may be in charge of large networks of thousands of domains. Such
a grade of automation requires the usage of easy transmutable websites templates and
repetitive code snippets. In order to deploy a more resilient anti-fraudster strategy, we
present a framework which combines web pages scraping procedures, simhash fingerprint
based near duplicate document detection and agglomerative clustering. The objective is
twofold: firstly to identify common and repetitive structural patterns in potential illicit
websites; secondly to monitor new emerging technical trends in short period time frames.
The framework has been tested on a corpus of newly registered .com domains for a period of
three weeks. The results consistently confirm the existence of recurring technical schemes.
We showed that, by using document fingerprinting, it considerably increases the overall
comprehension of strategies used in complex suspicious domains networks and it may be
of support for a new concept of domain protection.
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1 Context

Thousands of domains are registered and dropped every day across all top-level domains. The
second quarter of 2017 closed with approximately 332 million of registration and it is an in-
creasing number quarter by quarter [5]. The registered domains are completely new or could be



expired/deleted recently. Malicious entities use to register domains daily for creating complex
networks with the objective of generating spam, promoting and selling fake goods or induce
users in phishing [12] [13]. Often a single entity (person or organization) is in charge of a
complex network of interconnected domains, hosted in various countries. The life cycle of such
domains may range from few days to years depending on the responsiveness of potential vic-
tims, of the targeted brands and controlling authorities. It may occur that those domains are
finally inserted in a DNS Blacklists [6], be mentioned in sites contrasting scam and phishing [7]
or be removed by search engine indexing system. The loss of a domain due DNS block or
removal by search engine has negligible effects. A new domain can be quickly registered, and
a new site can be deployed. Indeed, all the procedures for managing contents can be executed
by toolkits [3] able to clone templates and randomize contents producing web pages similar
or identical. Recent studies [10] [23] focus on asserting the trustworthiness of websites by the
analysis of search engine results on the base of a range of features extracted from pages and
integrated eventually with external resources as domain registration data and other metrics. In
this work, we focus on the detection of potential illicit websites by identification of anomalous
density of structural similarities on newly registered websites. The usage of management toolk-
its and templates leave often traces and technical marks. Based on this observation we tackle
the problem of identification of potentially malicious sites to a well-known research topic as the
nearly duplicate document detection applied to web pages document structure.

The rest of the paper is structured as follows:

2. Introduction reviews the related works and summarize some main concepts;

3. Proposed approach describes the proposed framework and its three main components;
4. Experimental setup describes the settings and the data corpus;

5. Results and observations

6. Conclusions

2 Introduction

Duplicated and mirrored web pages are seen in plenty in the World Wide Web, and they have
been object of studies for as long as the web exists as its overlap with many topics as plagiarism
detection, spam detection and even crawlers optimization. The field of near-duplicate document
(NDD) detection focuses on the individuation of almost identical documents which differ in small
portions. In the context of web pages the differences could be in the text, in the images, as
well as in the structure. More in detail a web page may be decomposed in different layers of
features: semantic, structural, and visual.

e The semantic layer of a page is the information and the topics it expresses;
e The structural layer of a page is the underlying skeleton of a page;
e The visual layer of a page represents the visual information conveyed by the page.

In general, all the approaches of NDD vary on the strategy for the document features se-
lection, for the compression of the features in a signature, for the comparison the documents
with a similarity measures and for the corpus under consideration. The growing size of datasets



and the high-dimensional space of documents leaded to the necessity of investigating dimen-
sionally reduction techniques. Broder [9] introduced the algorithm MinHash and a technique
called shingling used for the estimation of document resemblance based on the overlapping of
a subset of adjacent words sequences (called shingles). The MinHash is the first of a more
general framework of algorithms, the Locality Sensitive Hashing [25] devised for solving near
duplicate and similarity problems for web pages and images [17] [24]. Broder studies have been
reviewed to investigate the evolution of individual pages and subsequently related clusters of
near-duplicates pages. It emerged that two documents that are near-duplicates of one another
are very likely to still be near-duplicates after months [14]. MinHash was at first applied to a
set of 30 million web pages, but the dimension of dataset kept growing, so optimization tech-
niques were investigated. Charikar [11] proposed a fingerprinting techniques on documents for
mapping high dimensional vectors to small-sized fingerprints. The process is organized in two
steps. Firstly, for each document it is calculated a representative hash and then near duplicates
are detected by identifying documents that have similar hashes. Manku [20] demonstrated the
goodness of Charikar's technique and proposed an algorithm for identification of fingerprints
which differ from a chosen one for a maximum of k positions. Other studies focused on the
performance respect to the overall complexity of the analysis [22]. Narayana proposed an ap-
proach working on keyword extraction and the correlation between two documents it is given
if the similarity score is greater than a threshold [21]. Other mixed approaches have been
proposed. [19] proposed a mixed approach of keywords extraction and fingerprinting. Most
of those studies concentrate on a vector based on semantic features, the text contained in the
page. All other page components as the HTML markup tags are substituted by whitespaces. In
the study [15] the structural similarity of documents based on the Tree Edit Distance between
Document object model (DOM) [1] trees is investigated. Recent studies explore the combina-
tion of LSH techniques with clustering process [18] to reduce computational costs working on
only semantic layer or a mixed semantic and structural layer, which joins content and other
data as title, description, keywords, and tags [24]

3 Proposed approach

In our proposed approach we focus on the analysis of structural layer features of web pages,
extracting from an HTML page the corresponding DOM tree and transforming it in a stripped
version, containing only HTML tags, by the removal of all textual contents. The sequence of tags
is then converted, using the simhash algorithm, in hashed fingerprints. Due to the properties
of simhash algorithm similar documents have similar fingerprints so it is possible to group
fingerprints in hash buckets and then store them in hash tables. The similarity is calculated
by using the Hamming [16] distance since we converted the document features space to a hash
f-bit space. Subsequently, we randomly select from each bucket candidates for nearly duplicate
selection, and we construct, by the resulting aggregations, clusters of similar documents. The
system architecture is composed of three main components as described in fig. 1 .

3.1 Scraper module

The scraper module is in charge of the preprocessing activity consisting in the page selection,
crawling and parsing. The scraper module makes usage of various scraping tools as cURL [4],
a library as Beautiful Soup [2] and a headless browser as Selenium [8] to access web pages.
The selection consists of accessing the daily newly registered domains lists and choosing the
domains containing terms belonging to the bag of word in the url. Crawling consist of establish
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Figure 1: System Architecture

communication with the correspondent domain through the HTTP protocol and, in case of
reachability, digest (download) the domain homepage. Web pages are based on an underlying
object structure, namely, the DOM. The DOM is a cross-platform and language-independent
application programming interface that treats an HTML, XHTML, or XML document as a tree
structure (fig. 2 ) where each node is an object representing a part of the document. The DOM
defines the logical structure of documents and the way a document is accessed and manipulated.

HTML

HEAD | | BODY |
L w | [ rp |
This is an header This is some text

Figure 2: DOM Tree

Stripping procedure is a transformation which manipulates the crawled document, removes
contents and terms not of interest to obtain a linear stripped DOM tree. Consequently, all
pages contents, all the tag attributes are ignored. as for example in
[html’, ’head’, 'meta’, ’meta’, 'meta’, 'meta’, link’, ’title’, ‘frameset’, ‘frame’, ’noframes’,
‘body’, 'h2’, br’, ‘br’, center’, 'a’,..]

3.2 Fingerprinting and Indexing module

A fingerprinting hashing algorithm is a transformation that maps an arbitrarily large data item
(in this paper, we refer as items to web pages) to a much shorter bit string that is likely to
identify the original data. More formally, lets introduce H as a family of hashing functions h
mapping an input x to a compact code y as y = h(x).
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In our case we opted for a family H of transformations, the locality sensitive hashing which
let the generated fingerprints to maintain an internal similarity even in case of an item small
change. It means that a similar set of item in the domain of these functions have a higher
probability of colliding in the range space than dissimilar ones. More formally an LSH [25]
family F is defined for a metric space M=(M,d), and an approximation factor ¢ > 1. This
family of function F is a family of functions h: M -> S which map elements from the metric
space to a bucket s € S . The LSH family satisfies the following conditions for any two points
P, @ € M, using a function h € F which is chosen uniformly at random:

e if d(p,q) < R then h(p) = h(q) (i.e. p and g collide) with probability at least P,
e if d(p,q) > cR , then h(p)=h(q) with probability at most P,

A family of function is of interest when P; > P, . Such a family F is called (R, cR, Py, P»)
-sensitive. For the objectives of this research, we identified Charickar's simhash algorithm [11]
as an appropriate algorithm for fingerprint generation. The advantage of this algorithm is
the compression of high dimensional documents to small sized fingerprints of a chosen size,
traditionally 64 bits. So a standard web pages of hundreds of KB size is firstly linearized to a
stripped DOM version and then the correspondent fingerprint is generated with the simhash
algorithm (Table 1).

Domain Fingerprint
Domain 1 eb395dcc289alae8
Domain 2 €9f9590072906a52
Domain 3 a920b871e7d33ec2

Table 1: Registering time frame for a multi-term cluster of domains

Lastly the fingerprints are indexed using hash tables, formed by storing the items with
similar codes in hash buckets.

3.3 Clustering module

After creating a compact signature for documents and hashing them in hash tables, a way to
efficiently compute a similarity measure for constructing clusters of homogeneous documents,
has now to be found. More formally, given a set of hash items X = xz; .. x, and given a query
item ¢ in ¢q; .. ¢, the goal is to find the closest points to q in X as candidates for building
up clusters. As similarity measure between hash items, we use the Hamming distance. Given
a set of items hash X, we define the Hamming distance between two items x1, x2 to be the
number of components in which they differ. As an example in a cluster C containing (x; =
00011001, z2 = 00010011), the Hamming distance H(x1,22) = 2 because the bit-hash differs
in the 5th and 7th positions. While fingerprinting allows to computer quickly and efficiently
the resemblance of two documents, it does not solve the computational issue of considering all
possible pairs. However, the locality sensitive property of LSH implies that similar items have
a larger probability to be mapped to the same bucket than dissimilar items, so for a query
instance x, it can be used for a first approximation the instances stored in buckets containing
x. From each of the hash buckets we randomly choose an item as query item qi for a similarity
search. This search can be executed efficiently as search of all fingerprints that differ from a
given fingerprint in at most k bit positions, where k is a small integer (Manku, 2007). The
results are then aggregated using an agglomerative clustering technique where elements are
merged into the cluster until the similarity condition is respected.



4 Experimental setups

The computer used for the experiments is an IMac, with 3.4 GHz intel Core 17 with 16 GB of
ram. The Data Corpus has been generated from the daily list of registered .com domains in
the month of September 2017. The daily list contains an average of 100K domains a day with
peaks during the working days and cusps during weekend. For the purposes of this research,
we oriented on potential counterfeiting domains by using a bag of words of interest containing
both fashion brands and transactional terms as it follows:

Bag of words = louboutin, iceberg, armani, gucci, hogan, iceberg, vuitton, prada, tods, mon-
cler, nike, adidas, sales, outlet, ferragamo.

Then the newly registered domains were filtered on the base of the bag of words and a
daily monitoring of resulting domains were executed for a period of three weeks. Globally 4000
domains have been monitored.

5 Results and observations

A simhash fingerprints dimension of 64 bits was used for the experiment. For the corresponding
value of k, the tolerated bit positions range between similar fingerprint, we evaluated a range
from 1 to 5. It is clear that boosting the value of k implies an increasing tolerance of differences
between fingerprints and the gathering of items structurally more different. The value of k
is directly proportional to the number of multi-item clusters (2 or more items) and inversely
proportional to the number of clusters containing one unique item (fig. 3). Subsequently a
reduced number of clusters are generated and it is altered the distribution of items within a
cluster.
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Figure 3: Value of k and cluster single-item, multi-item distribution

For choosing the correct value of k, we computed two internal measures: cohesion (how
closely related are the items in a cluster) and separation (the distinctiveness of a cluster from
the others) using the fingerprint with a higher similarity with all the other fingerprints within
the cluster, as the centroid of a cluster. Results indicate a reasonable value of k=3 as already
evidenced in other studies [20].

To compute the appropriateness of data partitions we manually inspected the clusters by
visual analysis and source code inspection. Two experts labeled the true positives(tp),the
decision assigns two similar documents to the same cluster, and false positives(fp), the decision
to assigns two dissimilar documents to the same cluster. Two misleading results were noticed.
Firstly, some javascript injected pages were not processed correctly, as in the case of specific
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web pages building platforms as vix.com or leadpages.net, and it led to the creation of few high-
density clusters. For maintaining a reasonable computational time we did not further investigate
domains sharing those fingerprints as it would require a much higher scraping time. We either
noticed that in case of sites not yet published, due the freshness of newly registered domains,
the framework analyzed and clustered the corresponding parking pages (the placeholder for a
newly registered domain before a website is ready for launching) for services as godaddy.com,
aZhosting and so on.

We then calculated the measure of precision, the percent of positive predictions, as it follows:

tp
tp+ fp

From this measure(Table 2), it appears that the proposed framework performs well, in the
case of traditional web pages.

Precision =

Typology Precision
Parking pages 0,940066593
Javascript injected pages 0,916666667
Traditional web pages 0,847250509

Table 2: Cluster precision by page typology

The fingerprints of parking pages and javascript injected pages, corresponding to nearly the
55% of the total clusters, were inserted in a stoplist and removed at the successive clustering
phase. In fig. 4 the clusters occurrence by cluster size.

Occurencies

5 10 15 20 r) 30 35 40
Cluster dimension

Figure 4: Cluster size and occurrence

We then switched to corresponding domains url to investigate the distribution of terms
within the clusters. By the comparison of terms from our bag of words and the domains urls,
we then proceeded to separate clusters related to one term i.e. single-term cluster from clus-
ters related to more than one term i.e. multi-term clusters. A single-term cluster contains
fingerprints of domains related to only one term of the bag of words as loveinnike.com, hot-
nike.com, uknike.com with nike as term. A multi-term cluster contain fingerprints of domains
related to two or more term from the bag of words as pradashoes.com, nikempire.com, mon-
cletcoat2019.com with nike, prada, moncler as terms. It results, with such segmentation, a
partition of 109 multi-item single-term clusters and 73 multi-item multi-term clusters.

The results of single-term cluster analysis reinforce the traditional brand domain monitoring
analysis, which works mainly on lexical similarity, offering both a measure of a lexical and
structural similarity (fig. 5).
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The results of multi-terms cluster analysis leads to the discovery of not obvious connections
between domains based on the usage of similar structured templates. In fig. 6 an example of
two domains registered on the same day without any lexical url similarity, promoting different
products using different keywords, were clustered together due the usage of a nearly similar
structural layer.

@ m e

pradahandbagscheap.com

nikeshoesbestshop.com

Figure 6: Items from a multi-terms cluster

Domain name

Created on

Updated on

hotthingsales.com
worthitsales.com
bringbestsales.com
doopensales.com
keepcoolsales.com
sotrainedsales.com
bestsalesspot.com
bestsalesstand.com

2017-09-18T06:42:58Z
2017-09-18T06:43:02Z
2017-09-18T06:43:03Z
2017-09-18T06:43:047Z
2017-09-18T06:43:15Z
2017-08-29T09:14:127
2017-08-29T09:14:217
2017-08-29T09:14:43Z

2017-09-18T07:11:46Z
2017-09-18T07:11:51Z
2017-09-18T07:11:45Z
2017-09-18T07:11:38Z2
2017-09-18T07:11:45Z
2017-08-30T00:57:47Z
2017-08-30T00:57:42Z
2017-08-30T00:57:42Z

Table 3: Registering time frame for a single-term cluster of domains

We then reassessed clusters results taking in account the time variable. For each domain
the time of registration and update was extracted using a whois service. A correlation both
on structural similarities and domain registration timing could be a direct indication of the
usage of automated bulk publishing tools and an indirect confirmation of the affiliation to a
moniker domains network. Preliminary results confirm this correlation and indicate the usage
of bulk registering tools. Table 3 shows as domains of the single-term cluster (fig. 5) have been
generated in very specific time span.

A block of five domains was registered in a time frame of 17 seconds and updated within



Domain name Created on Updated on
pradahandbagscheap.com  2017-09-07T02:29:487Z  2017-09-07T02:33:147
nikeshoesbestshop.com 2017-09-07T02:29:487  2017-09-07T02:36:17Z

Table 4: Registering time frame for a multi-term cluster of domains

6 seconds. Another block of four domains was registered in a time frame of 21 seconds and
updated within 4 seconds. Same correlation between structural layer similarities and domain
registering time frame was found in multi-terms clusters (fig. 6) as shown in Table 4.

6 Conclusion

In this paper a framework for identifying potentially malicious domains on the basis of recog-
nition of recurrent structural patterns in a restricted registering time frame is proposed. The
framework has been tested on a corpus of 4000 domains, filtered from newly registered .com
domains, for a period of three weeks, on the basis of a bag of words of terms of interest. The
results reveal unusual aggregations of domains sharing a similar, nearly identical template struc-
ture suggesting the potential use of management systems or content generators for pursuing
malicious activities. These findings suggest a possible strategy for enhancing domain name
monitoring by integrating, in addition to lexical analysis, the fingerprint analysis of website
structure. Furthermore, we reassessed the obtained results with OSINT data, as the domain
registration and update time. A correlation both on structural similarities and OSINT data
emerges validating the hypothesis of usage of bulk publishing tools and confirming the existence
of huge networks of potentially malicious domains added on the Internet on each day. It clearly
emerges the necessity of enhancing traditional domains name monitoring from an individual
domain analysis to domains networks analysis. We leave the further investigation of an efficient
methodology to outline malicious networks of domains, for future research.
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