
Automatic Deployment of Semantic Wikis: a Prototype

Angelo Di Iorio1, Marco Fabbri1, Valentina Presutti1, Fabio Vitali1

1 Department of Computer Science, University of Bologna, Italy
{diiorio, mfabbri, presutti,vitali}@cs.unibo.it

Abstract. Semantic wikis simplify the creation, searching and management of
content in a specific domain of interest. Although very powerful solutions exist
for adding semantics to wikis, the authoring process of domain-oriented con-
tent still remains a manual and quite consuming task. We propose a different
approach to deploy semantic wikis: the automatic delivery of a customized wiki
for a given domain, taking as input an ontological description of that domain.
WikiFactory is an application that takes these ideas to implementation, based
on a strong distinction between the ontology designer, the content author and
the graphic designer. Moreover WikiFactory is designed to be independent for a
specific wiki clone and commit an abstract description of pages onto a wide set
of wiki platforms. In this paper we present the early implementation of Wiki-
Factory that automatically generates pages for MediaWiki.

1. Introduction

Wikis[2] are increasingly gaining importance among the web authoring tools, either
as personal web sites, or as well-featured information systems supporting schools,
universities and firms[16]. Among wiki clones, a leading role is played by semantic
wikis, which combine the success of the wiki model, with the power of Semantic Web
technologies. A Semantic Wiki[17] is a wiki enhanced in order to encode more knowl-
edge than just structured text and hyperlinks, and to make that knowledge readable by
machines too. They make it easy to manage, search and retrieve information among
the wiki pages and entities. Several examples of semantic wikis can be cited:
RDFWiki[12] provides users with a simple text-based interface to edit content and
metadata and stores all data as RDF statements; SemanticMediaWiki[10] is an exten-
sion of MediaWiki (the wiki platform used by the WikiPedia community[18]) that
allows users to add metadata understandable by automatic processes too; Rhy-
zome[14] allows users to express RDF statements through a simplified syntax called
ZML, and many other projects were proposed by researchers in order to merge wikis
with semantic web technologies.

A different point of contact between these research efforts can be also figured out:
using semantic information in order to generate wikis, apart from annotating them. In
particular, we propose to generate content for a wiki, taking in input an ontological
description of the domain where that wiki will be used. Each domain, in fact, suggests
a natural structure of a related wiki, describing clusters of pages, navigation paths but
also templates for each page, or dynamic behaviors and so on. For instance, a wiki for

a university is supposed to have pages for courses, classes, professors, rooms, events,
exams, and so on; each page is expected to express some information organized ac-
cording to a given template. Moreover, a lot of repeated pages, repeated structures and
repeated templates can be found. What usually happens is that a university employee
writes the content of those pages one by one, filling them with the proper data,
through an error-prone and time-consuming process.

In [5] we describe WikiFactory, a framework designed for the automatic generation
of wikis from ontological descriptions. WikiFactory centres on an OWL description of
a domain, written by different users with different skills and processed by an engine
that translates such description into actual wiki pages. A first advantage of such ap-
proach is clear: it makes automatic, fast and easy the manual process described so far.
But another aspect is equally important: WikiFactory does not produce only wikis but
even a sort of semantic wikis. All pages are natively decorated with metadata, directly
derivable from the input ontology: relations among entities in the domain can be easily
mapped in relations among the wiki pages, as well as objects’ properties can be trans-
formed in metadata about those pages. The current implementation of the system does
not store metadata yet, but it will be simple to include them into the final wiki, moving
off the pool of semantic data behind the generation process.

More details about WikiFactory can be found in [5], where we discussed the ra-
tionale behind the system, the overall architecture and the goal of our model. In this
paper we present a very early prototype of WikiFactory and discuss how the abstract
model has been instantiated and implemented in a running application. The rest of the
paper is structured as follows: section 2 gives a brief overview of the WikiFactory
publishing model; section 3 illustrates how the current prototype works through a
simple case study; section 4 discusses the internal architecture of the system and the
conclusions depict possible evolutions of the overall project.

2. WikiFactory: a prototype for semantic wikis generation

WikiFactory prototype is a Java application aiming at demonstrating the feasibility
and the potential of the WikiFactory's model. Although WikiFactory is designed to
generate content for different wiki clones, the current prototype works on Me-
diaWiki[11] and generates pages for that specific clone only. It is a very first imple-
mentation of a more complex architecture, which cover many issues about domain-
oriented and reliable wikis.

The publishing model behind WikiFactory changes the classic wiki publishing ap-
proach since the creation of pages becomes an automatic effect of describing a do-
main, rather than a direct authoring process. The lifecycle of a common wiki is quite
simple and straightforward: an administrator sets up a wiki software and its dependen-
cies (as a web server or an external database), and later many users add content manu-
ally by creating and editing topics. Semantic wikis add a new dimension to this work-
flow, since users can also add metadata to the pages, during the editing phase.

The simplicity and speeding of such approach gave a great contribution to the in-
tensive and widespread diffusion of wikis among Internet communities, companies

and organizations. On the other hand, it is still limited in terms of automation, since
most of the authoring work still remains completely manual. Fig. 1 shows such a sim-
ple scenario:

Fig. 1. The wiki publishing model

WikiFactory adds an intermediate phase to this process in order to automate the

production of repeated pages and structures, by exploiting ontologies. Such improved
version of the wiki publishing model is depicted in fig. 2.

Fig. 2. The WikiFactory publishing model

The installation and editing steps do not change (although the automatic installation
of the wiki environment is a requirement – with no high priority - of WikiFactory),
while a new intermediary step shows users writing (or importing) an ontology and
WikiFactory populating the final wiki with content extracted from this ontology. The
core of the application is just the ontological description we name WikiFactory
(based) Ontology, that describes everything needed by the WikiFactory engine in
order to populate the final wiki.

��������

������ ��������

Three main sub-components can be identified within such ontology:
• WikiFactory Basic: a core ontology supplying rules, constructs and objects

used by the designers to define the rest of the ontology. Note that it is differ-
ent from the whole assembled ontology, whose name is quite similar.

• Domain Description: a representation of the domain describing the entities
and relations of the domain, and the data to be filled in the wiki.

• Structure Description: the actual description of the domain-oriented wiki, a
model of topics’ structures and templates.

The assembled ontology indicates how to populate the final wiki, by inserting the
data provided by a domain-expert, and modelled by an ontology-expert. Two more
actors, in fact, exist in that scenario:

• a domain expert, we name Bianca, i.e., an inexperienced user who adds con-
tent and uses the final wiki every day for carrying out her tasks;

• an ontology expert, we name Andrea, who adapts the requirements of the
domain experts and actually produce the final ontology.

In order to explain the role played by these two experts and to discuss the structure
of the ontology with more details, as well as the internal functioning of the system, we
present a case study in the following section.

3. WikiFactory workflow: a simple case study

Consider a wiki used by a Computer Science Department of a University (CSD),
say the University of Bologna. Such a wiki (CSD wiki) is supposed to have pages
about professors, courses, classrooms, staff and so on. WikiFactory prototype is an
early application, not yet mature to produce the whole CSD wiki, but it already pro-
vides the most relevant constructs in a flexible and extensible framework.

In the rest of the section we describe how the WikiFactory prototype can be used to
produce a CSD wiki simply composed by a department home page linked to the list of
the affiliated professors and, for each of them, a home page with some information
and a list of courses he/she teaches. This example allows us to discuss two relevant
goal of the application: (i) describing and committing a set of pages linked each other
and (ii) describing and producing a single wiki page. As discussed in [5], the whole
design is completed by an automatic deployment of scripts that support dynamic be-
havior, but that feature is not still supported in the current prototype.

3.1. Setting up a wiki target platform

According to the above mentioned schema, the first step consists of a common in-
stallation of a wiki platform: a system administrator from the University's technical
staff receives a request for a wiki, say MediaWiki, to be installed on a department
machine. He installs all required components and a new installation of MediaWiki is
now available, with no content yet (apart from content already provided in the in-
staller). It has to be noticed that among the requirements of the WikiFactory platform

there is also the automatic configuration and installation of the desire environment, i.e.
the wiki clone. Nevertheless, such requirement now has less priority than others.

3.2. Describing a domain-oriented wiki

The second step of the process consists of producing the WikiFactory (based) On-
tology collecting all data required to populate the final wiki. As discussed before dif-
ferent actors are involved in creating different parts of such ontology (actually the
basic ontology is a built-in feature of WikiFactory).

3.2.1. What a domain expert does
Bianca is an employee of the Computer Science Department in charge of supplying

information about professors and courses of the department. Such information has to
be encoded in RDF statements saying that “a course named ‘Web Technologies’ exists
and it’s taught by Fabio Vitali” or “Fabio Vitali is a professor”, or “You can contact
Fabio Vitali by email at fabio@cs.unibo.it or by phone at 0512094872”.

Obviously we cannot expect that Bianca fills manually such RDF document, but we
need an automatic process that produces such document. Currently WikiFactory pro-
vides her a very simple interface shown in fig. 3. The study of the Graphical User
Interface (GUI) is a sensitive aspect, an important requirement of WikiFactory. Never-
theless, its definition has not been approached deeply and comprehensively yet be-
cause it depends on the definition of all functionalities WikiFactory is intended to
support.

Fig. 3. The WikiFactory Interface for Bianca

The relevant aspect is that Bianca perceives such task as a raw insertion of data, but
she is actually populating the ontology (i.e, completing the domain description). A
clarification is needed at this point: even such description could be further divided in
two sub-components, the generic description of a domain, and specific description of
an instance of that domain. Consider the CSD case study: a generic description says
that a computer science department has a set of professors and each of them can be
described by a set of personal information, including a list of courses he teaches; a

specific description says that the computer science of the University of Bologna has a
specific list of professors, including Fabio Vitali, that teaches “Web Technologies”
and can be reached by a specific email address or phone number.

One of main important activities we are planning for WikiFactory is just studying
the automatic production of the above mentioned interface, from a generic domain
description: the interface shown in fig. 3 has been created manually, but it could have
been automatically created from a pre-existing ontology about the university domain.

3.2.2. What an ontology expert does
Andrea is an ontology expert in charge of producing the Structure Description of

the CSD wiki. He works with specific tools such as Protégé[13] and actually writes
RDF statements listing the pages of the wiki, describing their connections with the
domain entities and their internal structure. Another requirement of WikiFactory is
interoperability with Protégé.

The main element provided by the WikiFactory Basic Ontology is called TreeOf-
Topic. A TreeOfTopic represents a set of wiki pages (or a single one) and, as ex-
pected, will be instantiated into corresponding page(s) in the final wiki. In turn, a
TreeOfTopic is composed by one or more optional Iterator(s) and a TopicTemplate.

The element Iterator is a very general purpose structure indicating a class of indi-
viduals within the domain description: it can be used to tell WikiFactory to generate a
page for every instance of that class, and to link that page to the current one. Andrea
creates an instance of TreeOfTopic named Professors, containing a Professor Iterator;
this Iterator has a specific property pointing to the instances of professors within the
domain description. At the end of the process, for each professor included in the list
filled by Bianca, a new link will be added to the Professors page.

The element TopicTemplate is used to declare the fragments composing a page.
The basic assumption is that a small set of components can be identified, able to cap-
ture the internal structure of any wiki page, regardless of the wiki platform or the
subject of the page. In [4] few patterns are identified able to express the content of any
web page too: (classified) paragraphs, headings, tables, records and few other things.
What Andrea does is simply describing which components are included in a given
page and which text each component is made of. At the end of the process, these ele-
ments will be re-flowed and formatted according to the layout of the final wiki. Actu-
ally, the current prototype of WikiFactory allows Andrea to specify only the title and
the whole body of a page, but we are working on more sophisticated templating lan-
guages and solutions.

A very simple rule is used within the WikiFactory prototype: each instance of a
word preceded by the character ‘$’ will be automatically replaced by the value of the
matching property defined in the Domain Description. Then, the following text frag-
ment “This is $resource_title personal home page. You can contact him/her by phone
calling $telephone_number or by sending an email to $email” will be filled with the
right data, calculated by the Iterator, and previously inserted by Bianca. Obviously,
such a simple templating language cannot be enough for all the real-world scenarios
(consider for instance multiple phone numbers or emails), so that we are investigating
more complex solutions: particularly interesting are some Java templating engines that
could be easily integrated in WikiFactory, such as FreeMarker[6] or Velocity [1].

3.3. Instantiating a wiki

The final step of the process shows the WikiFactory engine translating the ontology
created by Bianca and Andrea into an actual wiki. According to the semantics of the
Iterators and Templating operators, the engine collects all data inserted by Bianca and
put them into wiki pages. Fig. 4 shows how the information about a professor are
presented in MediaWiki.

Fig. 4. A simple page on MediaWiki created by WikiFactory

4. A modular java application

The WikiFactory prototype is a java application composed by different modules
that work together in order to deploy content on MediaWiki, taking in input the Wiki-
Factory Ontology described so far. Fig 5 summarizes the architecture of the system:

Fig. 5. The architecture of WikiFactory Application

Two main components can be identified:
• the Ontology Analyzer: that parses the input ontology and collect data

about what and how is being published.

• the Wiki Writer: that commits the changes reported by the Ontology Ana-
lyzer on the target MediaWiki installation.

The Ontology Analyzer includes external libraries to handle OWL documents, in
particular the Jena Parser[8], a Java library developed by HP for the access and man-
agement of Semantic Web documents. While retrieving information, the analyzer
notifies them to the WikiWriter in order to actually produce pages. As expected, the
Wiki Writer exports method for: (i) creating wiki-pages according to a given structure
(that is, writing the body text indicated in the ontology) and (ii) iterating such creation
for all the elements pointed by the Iterator construct. At the end of the process, a
commit operation stores information on the wiki clone.

Actually the Wiki Writer is an abstract component, that is a Java interface imple-
mented by every specific wiki clone Writer. The WikiFactory MediaWiki Writer
exploits a MediaWiki extension that allows a batch creation of pages, by submitting a
text file to a PHP script by Jonathan Cutrer[3]. According to the output of the Ana-
lyzer such a file (which even collects many pages together) is written and sent to the
MediaWiki target installation through an HTTP connection.

Different solutions can be implemented by different writers, such as writing directly
on files, or posting data as a common page editing, or writing a DB or anything else:
users can deploy the same wiki from the same ontology on different platforms, since
the complexity is hidden within the system. Particularly interesting in this context are
the standard Wiki XML-RPC [9] APIs, a set of interfaces based on XML-RPC tech-
nologies that allow any client to interact with a wiki, regardless of its internal imple-
mentation. We plan to further investigate these libraries in order to standardize the
communication and to make WikiFactory completely independent from the target wiki
platform.

5. Conclusions

The WikiFactory prototype has shown how a simple wiki can be deployed, taking
in input an ontological description of its domain of interest. The system relies on a
strong distinction between the roles of the users: a domain-expert has to simply insert
data, without dealing with their actual formatting into a wiki page, while an ontology-
expert has to describe structures, without dealing with the data filling. Most of the
routine work is performed by the engine behind the scenes, so that the whole process
is simple and automatic.

The prototype presented in this paper is still very much in its initial phases, but we
plan many activities towards a complete maturation. First of all, we are working to
improve the WikiFactory Ontology and, subsequently, the OntologyAnalyzer: apart
from issues about parameterization, configuration and performances, we are working
on a more complex set of objects (including tables, records and other fragments) use-
ful to create complex pages, to support more wiki features and to handle dynamic
behaviour. As expected, we also plan to code new Wiki Writers, producing content for
many other wiki platforms e.g., TWiki[15] or many semantic wiki.

Another important issue raised while working on the prototype is supporting modu-
lar deployment. We think that it is a prior and important requirement of WikiFactory
to allow users to deploy wiki modules. In fact, it is desirable to add new elements
(e.g., structures, templates, topics) to a domain-oriented wiki already deployed without
affecting the existing content.

Issues about the interface for non-expert users are being investigated too: ontolo-
gies could be also exploited to dynamically create user interfaces (such as web forms,
stand-alone applications or anything else), flexible and not hard-coded within the
system.

Finally, we plan to focus on a tricky issue never discussed so far: what does it hap-
pen on a wiki deployed by WikiFactory after its installation? The current prototype
does not face such problem yet, since the editing phase is completely disconnected
from the wiki deployment but a lot of interesting issues can be raised by studying the
consistency between the ontological view of a wiki and its actual pages, as well as the
techniques used to update both of these views. What we want to do is either propagat-
ing changes from the ontology into the wiki or, the opposite, updating the ontology
according to the modifications on wiki content. This is a very difficult task and we
haven’t yet found a good solution but we consider it the most important development
track of our research.

However, WikiFactory is a lively project, whose preliminary implementation has
been described in this paper. More detailed and up-to-date information can be found
in its wiki site, at the address http://swe.web.cs.unibo.it/WikiFactory/.

6. References

1. Apache Jakarta Project, “The Velocity Template Engine”,
http://jakarta.apache.org/velocity/.

2. Cunningham, W. & Leuf B.The Wiki way. New York: Addison-Wesley, 2001.
3. Cutrer J. “Mediawiki bulkpage Page Creator”,

http://meta.wikimedia.org/wiki/MediaWiki_Bulk_Page_Creator.
4. Di Iorio A., Gubellini D., Vitali F. "Design patterns for document substructures". In the

Proceedings of Extreme Markup Conference 2005, August 1-5, 2005, Montreal, Canada.
5. Di Iorio A., Presutti V., Vitali F. "WikiFactory: an ontology-based application to deploy

domain-oriented wikis". To appear in the Proceedings of the European Semantic Web
Conference 2006, June, 2006, Budva, Montenegro.

6. FreeMarker, “FreeMarker templating engine”, http://freemarker.sourceforge.net/index.html
7. Guzdial, M. Rick, J. and Kehoe, C.: “Beyond Adoption to Invention: Teacher-Created

Collaborative Activities in Higher Education”, Journal of the Learning Sciences, 2001,
Vol. 10, No. 3, 265-279.

8. HP Labs, “Jena – A Semantic Web Framework for Java”, http://jena.sourceforge.net/.
9. Jspwiki.org, WikiRPCInterface, http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface
10. Krotzch Markus, Denny Vrandecic, and Max Volkel. “Wikipedia and the Semantic Web

The Missing Links”. In Proceedings of Wikimania 2005, Frankfurt, Germany, August
2005.

11. MediaWiki.org, “MediaWiki”, http://www.mediawiki.org/wiki/MediaWiki.
12. Palmer Sean B. “RDFwiki”. http://infomesh.net/2001/rdfwiki/.

13. Protégé, “The Protégé Ontology Editor and Knowledge Acquisition System”.
http://protege.stanford.edu.

14. Souzis A. “Rhizome position paper”. In Proceedings of the 1st Workshop on Friend of a
Friend, Social Networking and the Semantic Web, September 2004.

15. Thoeny P. TWiki: Enterprise Collaboration Platform. http://twiki.org.
16. Thoeny P., “TWiki Success Stories”, http://twiki.org/cgi-

bin/view/Main/TWikiSuccessStories.
17. Wikipedia.org, “Semantic Wikis”, http://en.wikipedia.org/wiki/Semantic_Wiki.
18. Wikipedia.org. Wikipedia Home Page. http://www.wikipedia.org.

