
Bringing the “Wiki-Way” to the Semantic Web with

Rhizome

Adam Souzis1

1 Liminal Systems, 4104 24th Street Ste. 422,
San Francisco, CA, USA

asouzis@users.sourceforge.net
http://www.liminalzone.org

Abstract. The Wiki and the Semantic Web can be compared as two different
approaches to capturing knowledge, where the former trades away precise,
explicit, and internally consistent semantics for speed and simplicity. Any
attempt to bridge these two approaches has to either somehow reconcile these
trades-off or make compromises one way or the other. This paper describes
how Rhizome, an open source application framework for developing “Semantic
Wiki” applications, attempts to bridge these approaches. Rhizome includes a
text formatting language called ZML whose syntax is similar to text formatting
languages found in most Wikis but with enhancement to make it easy for users
to express explicit and arbitrary semantics. Rhizome relies on “shredding”, a
flexible framework for specifying rules for characterizing semi-structured
content with RDF and providing an ontology that can precisely describe the
relationship between the source content and the resulting statements.

1 Background

The Wiki and the Semantic Web can be compared as two different approaches to
capturing knowledge, where the former trades away precise, explicit, and internally
consistent semantics for speed and simplicity. Any attempt to bridge these two
approaches has to either somehow reconcile these trades-off or make compromises
one way or the other; for example, by adding complexity and constraints that
undermines Wiki design principles or by limiting the scope where Semantic Web data
can be applied (e.g., limiting it to meta-data associated with traditional wiki pages).
The Wiki has proven to be a remarkably successful tool capturing knowledge in a
collaborative, open fashion. The inventor of the Wiki, Ward Cunningham, has
identified several Wiki design principles, which he refers to as the “Wiki-way”[1]. A
review of his descriptions of some of these principles is suggestive of how they can
be challenging for applications that utilize and create Semantic Web data:
“Mundane – a small number of (irregular) text conventions will provide access to the
most useful page markup”[2] But this approach doesn't easily lend itself to making
precise and controlled statements; indeed Semantic Web scenarios generally assumes
a specialized user interface for a particular application domain.
 “Unified – Page names will be drawn from a flat space.”[2] This principle seems in
accord with the use of universally unique URIs as the basis of names for the Semantic

web; however, the scope of this namespace is so huge it is pragmatically difficult to
treat as a flat space.
“Tolerant – Interpretable (even if undesirable) behavior is preferred to errors.”[2] But
ontologies and ontologies languages generally require some degree of internal
consistency to function properly.
 “Open – any reader can edit [a page] as they see fit.”[2] However, when the content
being created is Semantic Web data which can be readily consumed by -- and alter the
behavior of – applications, security concerns must be addressed.
This paper attempts to conform to the ABCDE format for Semantic Conference
Proceedings[3]; the next section, “Contribution” describes how Rhizome[4], an open
source application framework that makes it easy to develop “Semantic Wiki”
applications, contributes to the challenges outlined above; this is followed by the
Discussion section which describes Rhizome's architecture in more depth.

2. Contribution

Rhizome is an open source application framework that makes it easy to develop
“Semantic Wiki” applications: applications that can create and utilize RDF data and
Semantic Web ontologies while letting users interact with and modify that data in a
Wiki-like fashion. In this section we describe how Rhizome attempts to fulfill the
Wiki design principles discussed above.

2.1 Mundane

What sort of “(irregular) text conventions” should be used for authoring RDF triples?
The simplest approach would be a text format limited to providing a way to explicitly
describe RDF triples. And arguably, existing plain text RDF formats such as N3 and
Turtles already fit this criteria. However, this approach limits its audience to those
with knowledge of RDF and domain-specific ontologies. And even for sufficiently
trained users, writing precise and atomic RDF statements flies in the face of the
Wiki’s goal of being “quick”.
A more ambitious approach would be to design a more traditional Wiki-like text
format whose structure could be easily represented as RDF. However there are several
challenges to creating a mapping to generic RDF or some general purpose ontology
for content. First, current Semantic Web standards, such as OWL, are not yet
powerful enough to inference equivalencies between a representation in a content
ontology and its appropriate domain-specific ontology. Second, the most intuitive
markup structure for a particular application doesn’t always submit to a
straightforward mapping to RDF. Finally, there’s the practical issue that representing
structural elements in free form text as RDF creates a tremendous volume of RDF
statements, especially if order is preserved.
Because of these limitations, Rhizome’s approach is to use a Wiki-like text format
(dubbed ZML) that is flexible enough to express arbitrary structure but doesn’t
specify a particular translation to RDF. Instead, the system determines which
translation rules to apply based on the content of the text.

Unlike other Wiki text formats, all structural elements in ZML can be arbitrarily
nested (relying on whitespace much like the indentation rules found in the Python
programming language) and annotated with attributes. The result of parsing ZML is
an XML document and in fact ZML can used as a simple, concise alternative syntax
for XML. This design enables the user to easily use microformats[5] or domain-
specific XML vocabularies (for example, Rhizome supports vocabularies from the
Apache Forrest and Docbook projects). Another advantage is that this lets arbitrary
HTML or XML be converted to ZML, enabling round-trip conversions. For example,
users can write content in ZML, edit it in a WYSIWYG (X)HTML editor, or process
it with specialized tools that consume XML, and then view it as ZML again.
ZML also has syntactic constructions to make it easy to explicitly express semantic
distinctions that are elided in other Wiki text formats. For example, we must
distinguish between creating a reference to a WikiName (which, in our case,
corresponds to a RDF resource name) and creating a hyperlink, which has explicit
presentational intent and generally implies a relationship between the content and the
link target. Similarly, we must distinguish between anchors and their common use as
a way to name document sections.

Fig. 1. A screenshot of a page being edited in the Rhizome Wiki, with aspects of ZML syntax
highlighted.

ZML doesn't directly translate into RDF; instead it relies on “shredding”, the process
Rhizome uses to bridge implicit and explicit semantics. Shredding is a flexible
framework for specifying rules for characterizing semi-structured content with RDF
and providing an ontology that can precisely describe the relationship between the
source content and the resulting statements.
Rhizome lets users create rules that trigger shredding on the basis of the content's
type. For example, shredding an RDF/XML document would consist of parsing the
RDF; shredding an (X)HTML document could invoke invoking a GRDDL (Gleaning
Resource Descriptions from Dialects of Languages) [6] XSLT stylesheet; and
shredding an MP3 file would consist of extracting the metadata out of the embedded
ID3 tag. Using RxPath's support for RDF named graphs (see below), Rhizome can
retain the relationships between an instance of content and statements extracted from

it, enabling it to know, for example, that the statements might be out of date when
content has changed.
Rhizome also lets users directly view and edit raw RDF in ZML via RxML, an
alternative syntax to RDF with the goal of enabling novices to read and edit RDF
using a metaphor conceptually similar to and only incrementally more complicated
than application properties file formats such as Microsoft Windows' .ini files.
Although RxML can express any set of RDF statements, it presents the RDF in a
constrained, simplified manner: as a list of resource URIs, each of which has a set of
property name-value pairs.

2.2 Unified

Providing a unified namespace for users requires a strategy for mapping WikiNames
to RDF resource URIs. One simple approach would be to treat the WikiNames
themselves as a resource URI, e.g. by introducing a “wiki:” URL scheme. It is
obvious that given the decentralized nature of the Semantic Web this approach could
not scale without name conflicts arising. Alternatively, we could generate a unique
URL from a WikiName; for example by using the actual URL to the web page that
corresponds to the WikiName, or by pre-pending some application specific base URI.
However, this contradicts the principle of a unified namespace by essentially creating
separate namespaces -- users would not be able use to WikiNames to refer to
resources outside the system without some way to refer to those namespaces.
Thus Rhizome assumes that in order to provide a single, flat namespace of
WikiNames that is universally addressable we need to create a level of indirection
between a RDF resource URI and its WikiName, and accept that the determination of
this relationship is dependent on the context it appears in. WikiNames are treated as a
property of a resource, with only slightly stronger semantics than RDF Schema’s
“rdfs:label” property. When a WikiName is referenced in content, it is up to the
shredding process to assert a relation between it and a RDF resource. This is
appropriate because the question of how closely that name should be “bound” to an
RDF resource is dependent on the needs of the specific application and what
assumptions can be made about the context in which it appears.

2.3 Tolerant

The principle of tolerance is harder to achieve with Semantic Web data than the plain
text found in traditional Wikis because Semantic Web data is precise and machine
consumable and so very often requires some degree of validation. Rhizome allows an
application to maximize the tolerance allowable by providing partial, incremental and
ad-hoc of validation of RDF using Schematron. Thus validation can be accomplished
without having to use complex ontology languages such as OWL, which can often
break down in the face of inconsistency. Schematron[7] is a validation language that
uses XPath expressions as assertions about the validitity of a XML document. Using
RxPath (described below), Schematron can be used to validate a RDF model. The
benefits of using Schematron to validate XML also apply to validating RDF:

Schematron allows complex, ad-hoc assertions to be expressed that can't easily be
expressed in other schema languages. For example, because OWL is based open
world model, it can't define constraints that apply against the entire model such as
uniqueness or default values. And compared to languages like OWL, Schematron is
easier to write and understand and requires much less specialized knowledge.

2.4 Open

Like tolerance, it is more difficult to achieve openness in Semantic Web applications
than with traditional Wikis. Rhizome attempts to balance openness with security by
providing an authorization scheme that is powerful yet unobtrusive (one that doesn't
impose an addition work where it is not needed). Rhizome lets the application define
authorization rules for the addition and removal of arbitrary RDF statements using the
notion of access tokens that guard resources. This conceptually simple model can be
used to build fairly complex authorization rules; for example, one that allows a guest
account to create a new user account for herself, but not modify or create other
accounts or objects. However, the RDF model can make it difficult to create these
rules because of the very fine-grained nature of RDF resources (for example, even
very simple types objects can require anonymous resource nodes). Rhizome deals
with this by allowing the application to declare properties that are used to partition an
RDF graph into coarser-grained objects to apply authorization to.

1
 Rhizome also

maintains a revision history of all changes to the system using named graphs to model
transactions. This allows changes to be monitored and inappropriate modifications to
be reverted when necessary.

3. Discussion

This section provides an overview of Rhizome’s architecture.

3.1 Architecture

Figure 2 illustrates the overall architecture of the Rhizome framework. Components
are arranged as a stack in which higher-level components depend on the lower-level
components, but not vice versa. Consider each layer from bottom to top:

1 Not discussed here is ways in which class inferences add complexity when rules based on
class types are allowed.

Fig. 2. Rhizome’s architecture.

3.1.1 RxPath data access
RxPath is an RDF data access engine that provides a deterministic mapping between
the RDF abstract syntax and the XPath data model. This lets users access RDF data
stores as a (virtual) XML DOM (document object model) and query them using
RxPath, a language syntactically identical to XPath 1.0. This approach allows the full
range of XPath-based languages to be used to query and manipulate RDF models --
for example, XSLT for presentation and transformation, XUpdate[8] for modification,
Schematron for validation, and XForms for presentation and modification -- without
having to make any syntactical changes to those languages.

RxPath maps the set of (subject, predicate, object) triples in an RDF model into a
virtual and possibly infinitely recursive tree in which:

• the root has a child node corresponding to each resource in the model,

• each resource node has child nodes for each statement that it is the subject of

• each statement node has a single child node corresponding to the statement's
object.

If the statement’s object is a resource, it might in turn have child nodes that
correspond to the statements that the resource is subject of, and so on. Given such a

tree, an XPath expression such as /foaf:Document/dc:creator/* will select
a set containing all the authors of each document resource in the RDF model.
RxPath also supports “named graphs”[9] (also known as contexts), a common
extension to the RDF model that is used to partition RDF statements into groups.
RxPath uses a unique approach to contexts by treating them not as a one-to-one
mapping with a subgraph of an RDF model, but as a collection of subgraphs
composed through union and difference operators. This enables Rhizome to use

contexts simultaneously and efficiently to model many different concepts, such as
metadata versioning, transactions, provenance, application partitioning, and
personalization (user customizations). For example, Raccoon's transaction log of
changes made to the RDF store is represented as a collection of contexts, each of
which adds or subtracts from the previous context. Using contexts lets Rhizome
capture when, where, how, and by whom a set of statements was made.

3.1.2 Raccoon application server
Raccoon is a simple application server that uses an RDF model for its data store.
Raccoon uses RxPath to translate arbitrary requests — such as HTTP requests or
command line arguments — to RDF resources. Each of these can be associated with
style sheets in RxSLT and RxUpdate languages, which can generate responses or
update the RDF data store.
Raccoon's goal is to present a uniform and purely semantic environment for
applications. This enables the creation of applications that are easily migrated and
distributed and that are resistant to change. Raccoon is designed primarily for
applications that look at the world as a universe of RDF statements, but it also works
with XML-centric applications. Raccoon isn't designed to be a full-featured
application server and in fact will often be embedded in another application server.
Raccoon's job as an application server is a narrow one—to map a request to a
response, possibly modifying the state of the application in the process:

Request Application (Rules + Store) Response

A request is a dictionary of simple values, and an application defines a pipeline of
RxPath expressions that transform the request into the response. Raccoon presents
both the request and the application's state using the RxPath data model. This
approach enables the creation of applications that can be transparently distributed and
aggressively cached. Application code is always executed within the context of a
request. There are external requests, such as HTTP requests, and internal ones, such
as the requests sent when an application starts or stops. Raccoon also provides basic
transaction coordination for managing updates to the RDF store. Using contexts
enables the application to choose an appropriate consistency model for its needs. If
full global atomic consistency isn't needed, Raccoon can cache request responses even
more aggressively and still provide the appropriate levels of cache coherency.

3.1.3 Rhizome Wiki
Running on top of Raccoon is the actual Wiki application, which offers all the basic
functionality found in Wikis, such as letting users create and edit pages on an ad hoc
basis; along with some more advanced content management features such as roles and
groups, release workflow, and basic facet navigation. Almost all of the Wiki's
functionality is implemented in its dynamic pages, which are written in RxSLT,
XSLT, and RxUpdate. Users can edit these like any other pages, making it easy to
incrementally add and change functionality. They can also use RxUpdate to modify
the underlying schema at run-time.This flexibility makes access control very
important—to this end, Rhizome uses a flexible schema for authorizing both
application-level actions and statement-level changes to the RDF store based on the
authorization mechanism described in the previous section.

3.2 Conclusion

This paper has examined some of Rhizome’s approaches to applying Wiki design
principles to the Semantic Web. Despite the challenges of marrying two very different
approaches to capturing knowledge, doing so can help reduce the barriers that often
hinder the adoption of Semantic Web technologies, such as high learning curves for
users, demands for precision and consistency, and the need to develop domain-
specific user interfaces.

References

1. Cunningham, W, Leuf, Bo.: The Wiki Way: Collaboration and Sharing on the Internet
Addison-Wesley Professional (2001)

2. Cunningham, W, et. al. http://c2.com/cgi/wiki?WikiDesignPrinciples
3. http://www.dfki.de/~paulb/ABCDEF/ABCDEF.htm

4. Souzis, A: Building a Semantic Wiki. IEEE Intelligent Systems (Sep/Oct 2005) 87-91
5. http://www.microformats.org
6. Hazael-Massieux, D., Connolly D.: Gleaning Resource Descriptions from Dialects of

Languages (GRDDL), World Wide Web Consortium (W3C) Note (2005)
7. ISO/IEC 19757-3 Document Schema Definition Languages: Part 3 — Rule-based validation

— Schematron (2004)
8. Laux, A., Martin, L.: XUpdate—XML Update Language, XUpdate Working Group

Specification (2000).
9. Carroll, J. et al.: Named Graphs, Provenance and Trust, In: Proc. 14th Int'l Conf. World

Wide Web (WWW 05), ACM Press, (2005), 613–622.

