
cbe

Publisher et al. (Hrsg.): PeMod’18,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Visualizing Regions with a new Split-Screen View
for the Online Tool travis

Benjamin Meis1, Robin Bergenthum2

Abstract: The online tool travis can synthesize a k-bounded Petri net model from a reachability
graph and unfold a k-bounded Petri net to its reachability graph. Synthesis is built on the theory of
regions, but where travis and other existing tools only show the synthesized model, we want to present
the synthesized model as well as the calculated regions after a user has performed the synthesis
procedure. In this paper, we present a new split-screen module of travis which is able to visualize
regions, calculated during the synthesis procedure, as well as markings of places related to single
states of the reachability graph, calculated during the unfolding procedure. Both sets, i.e. regions and
markings, help to really understand the relations between the behavioral and the synthesized models
at hand, as well as the underlying fundamental concepts of state-based synthesis and reachability
analysis. With these new features, travis is tailored to be used in a teaching environment to help
students understand the concepts and notions of state-based synthesis.

Keywords: travis; synthesis; unfolding; Petri net; reachability graph; transition system; teaching;
final state; local state; distributed state

1 Introduction

Complex systems, such as business processes, software systems, or protocols are often
modeled by means of Petri nets [Aa13, Aa98, De01, De98, Pe81, Wo13]. Petri nets have a
formal semantics and an intuitive graphical representation. However, constructing a Petri
net model from a real world process is a costly and error-prone task [Aa13, Aa98, Ma07].
To support the modeling process, there is a big variety of different academic, as well as
commercial tools to support the construction of valid process models. Most tools in that
context feature some sort of synthesis or mining algorithm to automatically generate a
process model from a behavioral specification. The most prominent tools in the area of
synthesis are GENET [Ca09], Petrify [Co97], VipTool [Be08], and APT [Be15]. ProM
[Aa09] is the most prominent framework in the area of process mining and supports a wide
variety of process discovery techniques. The three most prominent commercial process
1 FernUniversität in Hagen, Software Engineering and Theory of Programming, Universitätsstraße 1, 58097

Hagen, Germany benjamin.meis@fernuni-hagen.de
2 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, Universitätsstraße 1, 58097 Hagen,

Germany robin.bergenthum@fernuni-hagen.de

Ina Schaefer, Loek Cleophas, Michael Felderer (Eds.): Workshops at Modellierung 2018,
Petri Nets and Modeling 2018 (PeMod18) 187

https://creativecommons.org/licenses/by-nc/3.0/
benjamin.meis@fernuni-hagen.de
robin.bergenthum@fernuni-hagen.de


12 Benjamin Meis, Robin Bergenthum

mining tools are Celonis3, Minit4, and Disco [WGR12]. These tools have in common that
they leave the relation between the resulting model and its underlying specification (e.g.
an event log or a transition system) implicit, i.e. they only show the result of a synthesis
procedure or a mining algorithm. In the present paper, we introduce a new split-screen
module of travis to make the relation of two models explicit (e.g. a synthesized Petri net and
its underlying behavioral specification or a Petri net and its calculated reachability graph),
by also showing the relation between the input and the output by means of regions.

The focus of travis [Me17] is, on the one hand, to support the synthesis of systems with
final states and, on the other hand, to introduce an easy to access online synthesis tool for
the purpose of teaching theory related to modern synthesis techniques. Therefore, travis can
synthesize a Petri net from a reachability graph and construct a reachability graph of a Petri
net by an unfolding procedure. In all of its algorithms travis is able to handle and respect
final states. travis was originally introduced in [Me17]. The goal of the new split-screen
module is to apply travis in a teaching scenario where a split-screen view supports a learner
during the modeling process by visualizing underlying concepts and intermediate results of
the executed algorithms.

travis is developed in Java, using the Google Web Toolkit (GWT). GWT is an open source
development kit for browser-based applications. The GWT compiler can generate HTML,
CSS and JavaScript from Java code. Thus, travis is pure HTML, CSS and JavaScript. The
travis homepage5 provides a short introduction and the example files used in this paper.

In the current version, travis offers two different kinds of editors: a transition system editor
including an event log loader, and a Petri net editor. A model browser of travis enables the
user to switch between multiple models or to delete models. Figure 1 shows an overview of
the main features of travis where each editor is depicted by a framed box.

Fig. 1: Overview of the main features of travis

3 Celonis: https://www.celonis.com/
4 Minit: https://www.minit.io/
5 Travis Homepage: http://www.fernuni-hagen.de/sttp/forschung/travis.shtml

188 Benjamin Meis, Robin Bergenthum



Visualizing Regions with a new Split-Screen View
for the Online Tool travis 13

The transition system editor of travis allows to load, create, and edit transition systems with
or without final states. Within the editor, the user can toggle any set of states to be final.
Of course, travis supports all standard editing features for states, labels, and transitions,
and includes graph drawing algorithms like a simple spring layout and a tree layout. travis
has a simple interface to import files. The event log loader of travis loads log-files in the
standard XES file format [Ve11]. The user can drag-and-drop a stored file into the event log
loader. To handle transition systems with final states, travis adapts the file format of the
APT framework [Be15].

The Petri net editor of travis allows to load, create, edit, and simulate Petri nets with or
without final markings. Again, travis supports all standard editing features and includes
graph drawing algorithms. travis provides an options window where final markings can be
created, edited, deleted, and highlighted in the Petri net at hand. travis uses the PNML file
format [Ki06] to handle Petri nets and their sets of final markings. Using this format, travis
is able to share Petri net files with analysis tools like VipTool, Charlie [He15] and WoPeD
[Ec08].

In addition to the two main editors, Figure 1 depicts the core features and algorithms
implemented in travis as bold arcs: (A) transformation of an event log into a transition
system with final states, (B) synthesis of a k-bounded Petri net (see [Ca10]) extended by
final states (see [Me16]) from a transition system with final states, (C) construction of the
reachability graph – in terms of a transition system – with final states of a k-bounded Petri
net with final states, and (D) adding a neat place (see [Me16]) to a k-bounded Petri net.

In the current version of travis, execution of either the synthesis (B) or the unfolding
procedure (C) forces travis to switch to the editor related to the produced result i.e. either
the transition system editor or the Petri net editor. Thus, the user loses information about
the related construction process. For example, during the execution of the synthesis method,
travis constructs the set of so-called minimal regions. This set characterizes the exact
relation between the input (i.e. a transition system) and the calculated Petri net. Until now,
travis was not able to visualize this set of regions although this is most valuable when
trying to understand or analyze the processed synthesis procedure. Such a visualization is
even more important when applying travis in a teaching scenario. The same holds for the
unfolding procedure. Although, during the calculation of the reachability graph the set of
all reachable states is computed, this information is lost when closing the Petri net editor
and switching to the transition system editor.

In this paper, we present an obvious but elegant solution to the problem at hand. The actual
version of travis features a new split-screen module which stores the set of minimal regions,
as well as the set of reachable markings during the synthesis and unfolding procedures.
travis is now able to visualize these sets using the new split-screen module by projecting
regions to places of the Petri net and projecting markings to states of the transition system
respectively the reachability graph.

Visualizing Regions with a new Split-Screen View for the Online Tool travis 189



14 Benjamin Meis, Robin Bergenthum

In the next section we will recapitulate the concept of regions, transition systems, and
reachability graphs, before we introduce the new split-screen module in section three.

2 Preliminaries

In this chapter, we will briefly recall the concepts of k-bounded Petri nets, their reachability
graphs in terms of transition systems, and region-based synthesis. We refer the reader to
[Ba15] for a detailed introduction.

Definition 2.1 (k-bounded Place/Transition Net) A marked net is a tuple N =

(P,T,W,m0), where P is a finite set of places, T is a finite set of transitions satisfy-
ing P ∩ T = ∅, W : (P × T) ∪ (T × P) → N is a function defining the flow relation, and
m0 : P→ N is an initial marking.

A transition t ∈ T is enabled at a marking m : P → N, if for all p ∈ P: m(p) ≥ W(p, t)
holds. If t is enabled at m, t can fire. Firing t transforms m to a marking m′. For
every p ∈ P, m′ is defined by the equation m′(p) = m(p) +W(t, p) −W(p, t). We write
m

t−→ m′. We call RS(N) = {m | ∃t1 . . . tn ∈ T∗,m0
t1−→ m1

t2−→ . . . t3−→ mn−1
tn−→ m} the set

of reachable markings. A marked net is k-bounded if ∀m ∈ RS(N)∀p ∈ P : m(p) ≤ k holds.

A reachability graph is a transition system representing the behavior of a k-bounded
place/transition net.

Definition 2.2 (Reachability Graph) A transition system is a tuple TS = (S,T,Θ, s0),
where S is a finite set of states, T is a finite set of events, Θ ⊆ (S × T × S) is the set
of labeled state transitions, and s0 ∈ S is the initial state of TS. Let N = (P,T,W,m0)
be a marked place/transition net. The reachability graph of N is the transition system
RG(N) = (RS(N),T,∆,m0), defined by (m, t,m′) ∈ ∆ if and only if m ∈ RS(N) and m

t−→ m′

holds.

Assuming a transition system modeling the behavior of a system, the synthesis problem
aims at generating a Petri net so that its reachability graph is isomorphic to the specified
transition system, i.e. both graphs with labeled arcs are identical up to the names of states.

Definition 2.3 (Synthesis Problem) Let TS be a transition system. The synthesis problem
is to construct a k-bounded Petri net N such that its reachability graph is isomorphic to TS.

The synthesis problem is tackled using the theory of regions. We briefly recapitulate the
theory of regions for the synthesis of k-bounded nets, but refer the reader to [Co98, Ca08b,
Ca08a, Ca10] for a more detailed introduction.

190 Benjamin Meis, Robin Bergenthum



Visualizing Regions with a new Split-Screen View
for the Online Tool travis 15

Definition 2.4 (Region) Let TS = (S,T,Θ, s0) be a transition system and r be a multiset of
S. The gradient of a transition (s, t, s′) ∈ Θ is defined as ∆r (s, t, s′) = r(s′) − r(s). An event
t has a constant gradient in r if ∀(s, t, s′), (s′′, t, s′′′) ∈ Θ : r(s′) − r(s) = r(s′′′) − r(s′′)
holds. r is a region of TS if all events t ∈ T have a constant gradient in r .

We synthesize k-bounded place/transition nets. Thus, we only consider k-bounded regions.
The power of a multiset r is defined by r� = maxs∈Sr(s). A region is k-bounded if the
power of the related multiset is less or equal to k. Every minimal k-bounded region of a
transition system defines a place in the resulting Petri net solving the synthesis problem.

3 Visualizing Regions

Like already stated in the introduction, travis has two built-in editors: a Petri net editor and
a transition system editor. travis can synthesize a Petri net from a transition system (see
(B) of Figure 1) and travis can calculate the reachability graph of a Petri net (see (C) of
Figure 1) to kind of translate the reachability graph to a Petri net and vice versa. Until now,
the user had access to only one of these editors at a time, i.e. travis either shows a single
transition system or a single Petri net. Thus, it is not possible to see or visualize the direct
relation between both models. In this chapter, we present a new split-screen module to show
the Petri net and the related transition system.

During the synthesis of a Petri net, travis calculates the set of regions of the transition
system at hand. This set is the link between the behavioral model, i.e. the transition system,
and the Petri net model. Every region is a multiset of states with constant gradients for
equally labeled transitions. A region and the gradients directly define a visible one-place
Petri net, which is a possible and valid sub-net of a solution of the synthesis problem. More
precisely, if we merge the set of sub-nets related to the set of minimal regions, we get the
final result of the synthesis procedure for a k-bounded net. Looking at this from the other
direction, for every place of the synthesized Petri net there is exactly one minimal region
responsible for the existence of this place. Thus, really understanding the set of minimal
regions of a transition system helps to understand and grasp the synthesis result.

When calculating the reachability graph of a k-bounded Petri net, travis performs a breadth-
first search on the set of consecutive enabled transitions of the Petri net and keeps track of
the produced markings. Of course, every state of the reachability graph directly relates to a
marking of the Petri net. But again, if we fix a place of the Petri net and project all calculated
markings of all states to this place, we get a region of the reachability graph. So again,
understanding this set of regions, as well as the set of produced markings of the reachability
graph helps to clearly grasp the relation between the Petri net and its reachability graph.

Altogether, the set of regions and the set of reachable markings are two faces of the same
coin. This set clearly pinpoints the relation between the transition system and the Petri
net. We can calculate the set of regions by either performing the synthesis algorithm or

Visualizing Regions with a new Split-Screen View for the Online Tool travis 191



16 Benjamin Meis, Robin Bergenthum

performing the unfolding algorithm of travis. We are able to visualize the set of regions
by selecting one place and depicting the related region in the transition system and we are
able to visualize the set of reachable markings by selecting a state and depicting the related
marking in the Petri net.

To select places and states to visualize markings and regions, the new version of travis
provides a split-screen module. The user simply clicks on the related button on the main
toolbar of one of the editors to open this view. In this view, as depicted in Figure 2a and 2b,
the Petri net editor is at the top and the transition system editor is at the bottom of the screen.
At the upper left corner of each browser window, we see a small toolbar where the user can
exit the split-screen view, can activate the default cursor to select and move elements, or
can activate the token game mode to fire transitions of the Petri net.

(a) Place selected. (b) State selected.
Fig. 2: The split-screen module of travis

As an example, we synthesize a 3-bounded Petri net from a transition system. Figure 2a
shows both models. The transition system consists of 17 states and includes five different
events, a, b, c, d, and e. When the user clicks on place p2 of the synthesized Petri net, the

192 Benjamin Meis, Robin Bergenthum



Visualizing Regions with a new Split-Screen View
for the Online Tool travis 17

transition system editor shows the directly related multiset. The depicted multiset is a region,
because all events have a constant gradient: the transition labeled by a has a gradient of
+3, the transition labeled by b has a gradient of +2, transitions labeled by c have a gradient
of −1, transitions labeled by d have a gradient of −1, and the transition labeled by e has a
gradient of 0. The arc-weights of p2 directly relate to the gradient of each event.

Whenever the user clicks on a place in the Petri net, the related minimal region of this place
is depicted in the transition system. A region is a multiset of states of the transition system.
Every state, which multiplicity is greater than zero is surrounded by a number of gray circles
whereby the number of circles is equal to the multiplicity. For example, in Figure 2a, the
state s7 in the region related to place p2 has three gray circles, i.e. in state s7, there are
three tokens on place p2. The other way around, whenever the user clicks on a state of the
transition system, travis shows the marking related to this state in the Petri net. Regarding
regions, when a state of the transition system is selected, markings of the places in the Petri
net are shown, whose regions have a multiplicity greater than zero in the selected state. For
example, in Figure 2b, state s7 is selected and only the regions of places p2 and p3 include
state s7 with a multiplicity greater than zero. Thus, there are tokens on places p2 and p3.

The actual version of travis supports a state-based synthesis, calculating regions of a
transition system. Thus, the split-screen module is limited to the visualization of regions
in transition systems. Of course, it is possible to transfer the concept of the split-screen
module to other notions of regions and synthesis algorithms provided that such an algorithm
produces intermediate results – like state-based regions – which can be depicted within the
model editor.

As one possible use case, we used travis with its split-screen view at our chair. We conducted
a seminar on the topic Modeling Languages in Software Engineering with 13 of our students
where one of the students talks was about Petri net synthesis. After his talk, we attached a
short practical phase where all students had the chance to use travis and the split-screen
view. With travis they modeled an exemplary transition system and synthesized a Petri net
model.

To gain more insight into the synthesis algorithm presented by the student and to better
understand the relations between places and regions, the students used the split-screen view
of travis, where they could click on a place to display the related region in the transition
system. We got the feedback, that the split-screen view is quite intuitive to use and that the
visualization of both models at the same time helps to analyze the relation between the
input and the output model, especially because when switching the focus between the two
models, there is no visual interruption, like there would be when only one editor could be
shown at a time.

The new split-screen module of travis is suitable for many use cases. The use case mentioned
above refers to a small group of students where each student starts a synthesis procedure
for a given transition system and has to analyze the relation between places and regions

Visualizing Regions with a new Split-Screen View for the Online Tool travis 193



18 Benjamin Meis, Robin Bergenthum

to gain more insights about how a Petri net is being synthesized. Another use case is the
solving of a modeling task. Imagine a student who has to model a system by means of a
Petri net. System modeling can be a faulty task. With travis and its split-screen view the
student can calculate a reachability graph of the modeled Petri net and analyze the existing
markings and regions by clicking on states and places. First, there is a direct visualization
of local states in the transition system and distributed states in the Petri net, and second the
visualization of regions helps the student to recognize modeling mistakes. Subsequently,
the student can use an iterative approach, i.e. add, edit or delete places, transitions and arcs,
recalculate the reachability graph and use the split-screen view to analyze and compare both
models, until the Petri net model has the intended behavior.

As mentioned in the introduction, travis is an online tool which is executed in the browser
and there is no need for any installation. Therefore, students and teachers within a learning
environment have easy access to travis as a tool to support teaching scenarios, concerning
the modeling of systems, especially with Petri nets.

4 Conclusion and Future Work

This paper presents the new split-screen module for the online tool travis. travis can be
executed simply in a browser and is free from any registration. Within travis, one can
synthesize a Petri net from a transition system or unfold a Petri net by calculating its
reachability graph. In an educational context, the new split-screen module of travis can
further support teaching scenarios by visualizing the relations between Petri nets and
transition systems and reachability graphs respectively in terms of regions. For future work,
we will extend the split-screen module such that the user gains more detailed insights into the
synthesis and unfolding procedures and gets more information about intermediate results.

References
[Aa98] Aalst, W. M. P. van der: The Application of Petri Nets to Workflow Management. Journal

of Circuits, Systems and Computers, 08(01):21–66, 1998.

[Aa09] Aalst, W. M. P. van der; Dongen, B. F. van; W. Günther, C.; Rozinat, A.; Verbeek, E.;
Weijters, A.: , ProM: The Process Mining Toolkit, 2009.

[Aa13] Aalst, W. M. P. van der; Dongen, B. F. van: Discovering Petri Nets from Event Logs. In:
ToPNoC VII, LNCS 7480, pp. 372–422. Springer, 2013.

[Ba15] Badouel, E.; Bernardinello, L.; Darondeau P.: Petri Net Synthesis. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2015.

[Be08] Bergenthum, R.; Desel, J.; Lorenz R.; Mauser S.: Synthesis of Petri Nets from Scenarios
with VipTool. In: Applications and Theory of Petri nets, LNCS 5062, pp. 388–398.
Springer, 2008.

194 Benjamin Meis, Robin Bergenthum



Visualizing Regions with a new Split-Screen View
for the Online Tool travis 19

[Be15] Best, E.; Schlachter, U.: Analysis of Petri Nets and Transition Systems. Electronic
Proceedings in Theoretical Computer Science, 189:53–67, 2015.

[Ca08a] Carmona, J.; Cortadella, J.; Kishinevsky M.: A Region-Based Algorithm for Discovering
Petri Nets from Event Logs. In: BPM 2008, LNCS 5240, pp. 358–373. Springer, 2008.

[Ca08b] Carmona, J.; Cortadella, J.; Kishinevsky M.; Kondratyev A.; Lavagno L.; Yakovlev A.: A
Symbolic Algorithm for the Synthesis of Bounded Petri Nets. In: Applications and Theory
of Petri nets, LNCS 5062, pp. 92–111. Springer, 2008.

[Ca09] Carmona, J.; Cortadella, J.; Kishinevsky M.: Genet: A Tool for the Synthesis and Mining
of Petri Nets. In: ACSD ’09. IEEE, pp. 181–185, 2009.

[Ca10] Carmona, J.; Cortadella, J.; Kishinevsky M.: New Region-Based Algorithms for Deriving
Bounded Petri Nets. IEEE Transactions on Computers, 59(3):371–384, 2010.

[Co97] Cortadella, J.; Kishinevsky, M.; Kondratyev A.; Lavagno L.; Yakovlev A.: Petrify: A Tool
for Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers.
IEICE Transactions on Information and Systems, E80-D(3):315–325, 1997.

[Co98] Cortadella, J.; Kishinevsky, M.; Lavagno, L.; Yakovlev, A.: Deriving Petri Nets from Finite
Transition Systems. IEEE Transactions on Computers, 47(8):859–882, 1998.

[De98] Desel, J.; Reisig, W.: Place/Transition Petri Nets. In: LNCS 1491, pp. 122–173. Springer,
1998.

[De01] Desel, J.; Juhás, G.: “What Is a Petri Net?” Informal Answers for the Informed Reader. In:
Unifying Petri Nets, LNCS 2128, pp. 1–25. Springer, 2001.

[Ec08] Eckleder, A.; Freytag, T.: WoPeD - A Tool for Teaching, Analyzing and Visualizing
Workflow Nets. 75:3–8, 2008.

[He15] Heiner, M.; Schwarick, M.; Wegener J.-T.: Charlie – An Extensible Petri Net Analysis
Tool. In: LNCS 9115, pp. 200–211. Springer, 2015.

[Ki06] Kindler, E.: PNML: Concept, Status and Future Directions. 9:35–55, 2006.

[Ma07] Mayr, H.; Kop, C.; Esberger D.: Business Process Modeling and Requirements Modeling.
In: First International Conference on the Digital Society (ICDS’07). IEEE, p. 8, 2007.

[Me16] Meis, B.; Bergenthum, R.; Desel J.: Synthesis of Elemenary Net Systems with Final
Configurations, ATAED 2016. In: CEUR 1592, pp. 47–57. 2016.

[Me17] Meis, B.; Bergenthum, R.; Desel J.: travis - An Online Tool for the Synthesis and Analysis
of Petri Nets with Final States. LNCS 10258, pp. 101–111. Springer, 2017.

[Pe81] Peterson, J. L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs N.J., 1981.

[Ve11] Verbeek, H. M. W.; Buijs, J. C. A. M.; Dongen B. F. van; Aalst W. M. P. van der: XES,
XESame, and ProM 6. In: LNBIP 72, pp. 60–75. 2011.

[WGR12] W. Günther, C.; Rozinat, A.: Disco: Discover Your Processes on Business Process
Management (BPM 2012), Tallinn, Estonia, September 4, 2012. In: Proceedings of the
Demonstration Track of BPM 2012. CEUR 940, pp. 40–44, 2012.

[Wo13] Wolfgang, R.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013.

Visualizing Regions with a new Split-Screen View for the Online Tool travis 195


