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ABSTRACT
The Internet of Things promises several exciting opportunities and
added value services in several industrial contexts. Such opportuni-
ties are enabled by the interconnectivity and cooperation between
various things. However, these promises are still facing the inter-
operability challenge. Semantic technology and linked data are
well positioned to tackle the heterogeneity problem. Several efforts
contributed to the development of ontology editors and tools for
storing and querying linked data. However, despite the potential
and the promises, semantic technology remains in the hands of
the few, a minority of experts. In this paper, we propose a model
driven methodology and a software module (OLGA) that completes
existing ontology development libraries and frameworks in order to
accelerate the adoption of ontology-based IoT application develop-
ment. We validated our approach using the ETSI SAREF ontology.
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1 INTRODUCTION
The Internet of Things (IoT) is expected to interconnect, at massive
scale, numerous sensors, devices, gateways, and systems to tackle
many challenges in the industry [15]. Such inter-connectivity will
play an essential part in designing industrial systems with added
value services which are more energy efficient with lower costs
while contributing to a better environment. These promises pro-
moted by the emergence of the industrial Internet of Things (IoT)
have surged the importance of interoperability among the things
to turn this vision into reality.

Designing IoT applications requires a shared understanding of
the exchanged data among those connected things. Semantic tech-
nology, is one of the most promising fields in the knowledge rep-
resentation domain, expected to enable interoperability in the IoT.
The World Wide Web Consortium (W3C) defines a set of standards ,
such as RDF, OWL and SPARQL [11, 38, 42], to represent semantics
and query linked data, offering an ideal ecosystem and opportunity
to tackle the heterogeneity challenge in the IoT. In industrial envi-
ronments and automation domains, semantic technology has been
used to solve data interoperability issues [14, 24] and to provide
context aware applications and services.

In addition to the W3C standardization activities, several ef-
forts contributed to the development of the ontology editors [7],
storage [6], inference engines, as well as graphical tools to repre-
sent, edit, and query linked data. Furthermore, serializers such as
RDF4J[26] andObject RelationalMappers such as RomanticWeb [33]
are available for developers that are not ontology experts.

Despite its potential and promises, semantic technology and
ontology-based IoT applications still remain in the hands of a mi-
nority, the ontology experts, being too difficult to be adopted and
applied by industrial practitioners. We attribute such retention
among other factors to the absence of adequate methodology and
tools involving several major actors participating in the design life-
cycle of an IoT application, who are typically non-ontology experts.
Thus, we propose in this work a model driven methodology along
with a software module approach that aim at removing barriers
for IoT developers and accelerating the adoption of semantic tech-
nologies. Our proposed module is validated based on the SAREF [5]
ontology.

The rest of this paper is organized as follows, first, we depict
some of the existing frameworks for developers in the related work
section. Then, we share our experiences while working on IoT-
based solutions with our internal teams and outline the motivation
behind this work. In sections 4 and 5, we propose our methodology
along with a software module OLGA to accelerate the ontology-
based IoT development. Section 6 provides the implementation and
evaluation of our solution. Finally, we conclude and discuss future
work in section 7.

2 RELATEDWORK
We split the available libraries and frameworks in various program-
ming languages for ontology-based development in two categories,
i.e., serializers and Object Relational Mappers (ORMs).

2.1 Serializers
Serializers provide reading/writing from/to an ontology file, a SPARQL
endpoint, or a persistent RDF store. RDF Serializers are imple-
mented in various programming languages, such as OWL API [25],
RDF4J [26], and Jackson-Jsonld [18] in Java, dotNetRDF [30] in
.Net, Redland [28] in C, and RDFLib [27] in Python. The serializers’
APIs provide low level classes and functions to manipulate con-
cepts directly mapped to the Rdf language without any higher level
abstractions. Therefore, it is required by any IoT developer to be
aware of the technical aspects and theory of the RDF concepts and
principals in order to implement ontology-based IoT applications.

We discuss in the following the serializers offering basic code
generation through a plugin which takes an ontology as an input
and generates some code facilitators or stubs.

The Protégé code generation plugin [34], which can be easily
integrated in Protégé [7] provides generation of Java code based
on the OWL API [25]. However, the code generation is partial
where only the class name and interface are provided along with
an empty constructor. Then, it is up to the developer to complete
the generated code by relying on the OWL API which requires a
learning curve since it is directly mapped to the RDF concepts.



Figure 1: Part of the Ontology Representation [9, 19]

The RDF4J Schema generator [36] extends the RDF4J [26] API
and provides an automatic generation of an RDF schema from an
ontology. The generated output of the ontology is contained in
one java file which contains only the IRI of each concept of the
ontology. In other words, the code generation is flat, there are no
classes, associations, or constraints between the generated elements.
It is up to the developer to implement the association, mapping,
and constraints manually.

AutoRDF [4] extends the Redland [28] library and proposes a
generator which takes an ontology and generates C++ object ori-
ented code to manipulate RDF concepts. The generated code is an
abstraction layer which consists in a set of functions based on the
ontology classes and relations available to be used by developers
to generate ontology instances (A-Box).

2.2 Object Relational Mappers (ORMs)
ORMs are built on top of serializers and provide an object ori-
ented abstraction layer allowing developers to manipulate objects
instead of RDF concepts. Several ORMs are available in various
programming languages, such as KOMMA [23], Empire [17] and
AliBaba [29] in Java, RomanticWeb [33] and TrinityRDF [40] in .Net,
and RDFAlchemy [35] in Python. ORMs rely on the code decoration
where a developer annotates her code with tags referencing IRIs
from the ontology terminology (T-Box). Most of the Java ORM rely
on the Java Persistence API (JPA) [16] while the .Net ORMs rely
on the Entity Framework [8]. During the code implementation of
an application, the developer requests a factory to instantiate the
ontology (A-Box) and can formulate SPARQL queries by relying on
SPARQL query builders or adapters such as the LINQ to SPARQL
in the .Net domain.

We discuss in the following the ORMs providing some code
generation features.

AliBaba [29] offers the three following interesting features for
ontology developers. a) The object server exposes the object factory
through a REST API putting the available objects as resources on
the web for manual annotation. b) The aspect behaviors which
allow each object of the factory to intercept a method call and ex-
ecute a specific behavior. Annotation such as precedes provides
the developer with a better control with the behavior execution
flow. c) SPARQL queries decoration on the getter/setters of objects

which enables dynamic queries execution. In fact, compared to
other ORMs, this feature is similar to invoking SPARQL queries in
the implementation methods. AliBaba highlights a java code gener-
ator which seems to handle simple ontologies, it failed to generate
code when tested with the SAREF ontology [32]. AliBaba provides
interesting concepts for ontology based development, however, it
is clearly targeting ontology and not IoT developers since RDF and
SPARQL are part of its APIs and design.

KOMMA relies on the Eclipse Modeling Framework (EMF) [10]
and is inspired by AliBaba’s design. KOMMA provides a unified
framework with the following three layers: an object mapping per-
sistence layer, visualization tool, and an ontology editor based on
the capabilities of the EMF. KOMMA mentions a code generator
plugin, however, it is not integrated in visualization and editing
layers, therefore, the mapping and implementation of the interfaces
remain manual. KOMMA’s unified approach clearly targets ontol-
ogy developers with the integration of the three layer in a common
framework. A learning curve is expected from an IoT developer for
both the ontology editing and the object mapping which consists
in decorating the code with concepts from the ontology.

In the following, we depict our industrial context, the feedback
from our teams regarding ontology-based development, and the
lessons learned.

3 INDUSTRIAL CONTEXT & LESSONS
LEARNED

This section briefly outlines our industrial context capturing part of
our lessons learned while prototyping with several of our internal
teams applying semantic technologies in several domains such as
the Smart Buildings and Smart Factories.

Schneider Electric is a world leader in Energy Management and
heavily involved in the IoT and the digitization of its various prod-
ucts. The EcoStruxure1 program proposed by Schneider Electric, is
an open, interoperable, IoT-enabled system architecture and plat-
form. EcoStruxure serves our business units which are grouped
according to the following six domains of expertise [2] : Building,
Power, IT, Machine, Plant, and Grid. Our innovation department is
involved in the EcoStruxure program and accompanies any team

1http://www.schneider-electric.com/en/download/document/998-19885906_
GMA-US_ESX/
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Figure 2: Proposed Methodology

from the six domains in their IoT and digitization journey. Part
of our mission is to investigate new technology and apply it to
our industrial context in any of the domains of expertise. Seman-
tic technologies is one the most promising approaches to provide
interoperability in the IoT domain. Therefore, we collaborate with
those internal teams to enable faster IoT interoperable solutions by
applying semantic technologies such as in [9, 19, 21].

Two main factors captured the curiosity and the interest of our
internal teams and communities regarding ontology-based IoT ap-
plications development.

First, the proven technical feasibility of ontology-based vertical
and horizontal solutions in our industrial context. Several ontology-
based proof of concepts have been designed demonstrating the
added value in two operating modes: vertical and horizontal de-
ployments. The vertical silo mode is the classical sensor to gateway
or device/system to cloud combined with a domain specific applica-
tion [20, 21]. The horizontal mode consists of integrating different
silos (verticals) driving cross domains interoperability among sys-
tems and devices. For example, in [9, 19] two industrial systems, a
building management and a power solution systems, are connected
to the cloud. Then, an adaptation layer exposes the two systems
information through an ontology representation to be consumed by
a business intelligence layer to extract advanced buildings insights.
Furthermore, FOrTÉ [9] a cloud based federated query ontology
and timeseries engine is deployed enabling big data queries for
business and machine learning applications.

Second, the emergence of domain specific ontologies in the
industry and standardization bodies. For example, in the Smart
Buildings domain, ontologies such as SAREF [5] and its exten-
sions2, Haystack [3], and Brick [1] have emerged. In addition, efforts

2http://ontoology.linkeddata.es/publish/saref4bldg/

have been proposed regarding energy modeling and access such as
Siemens Work [24], SPITFIRE [12], and the Optique Platform3.

Based on these two factors, we started an internal Ontology
Workshop [37] targeting our teams across business units. The aim
is to demystify the ontology development for our internal prod-
uct owners, architects, and developers by providing a theoretical
presentation and two hands on lab sessions. The first lab session
involves modeling a simple ontology (T-Box) in Protégé [7], similar
to the ontology shown in Fig. 1. The second session handles the in-
stantiation of the model (A-Box) and formulating queries to extract
data, as shown in Fig. 1 (Ontology Instance), by relying on one of
the available RDF development libraries depicted in the previous
section.

We outline the lessons learned from these workshops in relation
to this work:

(1) Learning curve is a luxury: relying on ontologies is powerful
to represent internal systems topology such as the inter-
connectivity between the devices and sensors, their physical
locations, and their functional interactions. However, using a
serializer requires knowing in detail the ontology languages.
The Object Relational Mappers provide a very interesting ab-
straction, however, a mapping is still required through code
decoration. Thus, there is a necessary learning curve to use
the ontologies in the IoT development that most of the teams
do not have. IoT developers would leverage a Just Instantiate
and Link library that they can import into their development
environment, where the concepts and relationships of the
ontology model (T-Box) are provided. Once such library is
imported, they can instantiate the ontology concepts and
link them together (A-Box). Such library can rely on the

3http://optique-project.eu
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existing SDKs and libraries presented in the related works
section.

(2) Programming Languages: the diversity of our business units
and offers translates into the diversity of the skill set of our
teams which rely on different programming languages to
implement IoT-based applications ranging from embedded
devices (c, c++, python), systems (c++, .net, java) to cloud
applications. Therefore, such Just Instantiate and Link library
must support various dependencies to third party libraries
and programming languages.

(3) Query Language: storing and retrieving data on a system
or cloud is considered essential. The IoT development com-
munity is often seen divided regarding the query language
between pro and anti SPARQL. Some developers are familiar
with query languages such as SQL or LINQ and advocate for
their reuse in the IoT ontology-based development. Other de-
velopers embrace the power of SPARQL and the necessity of
evolving the query language since the underlying structure
has also evolved and is no longer tabular. Alternatives such
as simple query languages in SQenIoT [21] or visual query
builders such as in [41] can be proposed to handle queries
or to generate SPARQL through a visual tool and use it in
the IoT development.

In the rest of this paper we propose our approach facilitating the
ontology-based application development focusing on the first two
items depicted earlier.

4 A MODEL DRIVEN METHODOLOGY
Based on the feedback gathered from our internal teams, we pro-
pose the following model driven methodology, shown in Fig. 2, for
ontology-based IoT application development. We identify the three
following major roles involved in the IoT development and leverage
their expertise and strength:

(1) Ontology Expert: is an ontology practitioner. Has experience
in the ontology development tools, languages, and storage
infrastructure. His main tasks consist in assisting the domain
expert in capturing the concepts to be used in an IoT applica-
tion deployed in a specific domain. He creates the ontology
concepts and relations (T-Box), and proposes an ontology.

(2) Domain Expert: is a product owner and/or a technical archi-
tect. Has a global and specific knowledge on how a specific
system is deployed, commissioned, and operated, such as the
Building Management System. She articulates the main con-
cepts and the relations of a system to the Ontology Expert.

(3) IoT Developer: implements an application following the on-
tology model previously defined by the Experts. Imports a
library containing the concepts and possible relations previ-
ously defined to instantiate the model. Her implementation
is integrated in a cloud application or an embedded device.

The methodology shown in Fig. 2 is initiated by both the On-
tology and Domain Experts (Product Owner and Architect). They
first identify and draw the scope of the IoT application based on the
gathered requirements from end clients and users. Then, the main
concepts and relations of the application are extracted, for example,
in a Smart Buildings domain, a Floor and a Room are two different
concepts related to each other with the contains object property

which can be declared as transitive. The experts can reuse or extend
existing ontologies, after several iterations [13], they converge on
a stable model (T-Box).

The Ontological model is then provided to an Ontology Library
GenerAtor (OLGA), detailed in the next section. OLGA takes an
ontology and its imported ontologies along with a selection of the
desired library or framework depicted in section 2. The output of
OLGA is a generated library conforming to the Ontology Model
previously defined and ready to be used by an IoT developer.

The generated library hides all the ontology complexity and en-
ables IoT developers to instantiate and link the ontology classes and
relations previously defined by the Ontology and Domain Experts.
The generated library can depend on a serializer or an object rela-
tion mapper library. It is used by any IoT developer and is embedded
into a device, system, or an IoT cloud application. Once integrated
into an existing system or device, it can have several usage. For
example, in a commissioning software of a Building Management
System [9, 19], it enables to instantiate an ontology model of a
system for a given facility. The ontology instance captures several
aspects of the system as shown in Fig. 1 (A-Box). It can then be
sent along with the model to a cloud storage where a business
application layer or an IoT cloud-based application can query and
extract information about a specific Smart Building to drive better
insights as detailed in [9, 19]. At the cloud level, a developer would
also import a library generated by OLGA supporting his choice of
the programming language and technology. The generated library
conforms to the same ontology defined by the experts and will be
used to interact with the RDF store to load and query instances of
the model to fulfill the cloud application requirements.

This methodology enables the separation of aspects and roles,
and places the complexity in areas where it can be solved by relying
on adequate tools and domain expertise. A domain expert has both
an overall and specific knowledge about a specific system and
domain. An ontology expert is modeling practitioner but lacks
the overall system’s vision and domain knowledge expertise. And
finally, IoT developers can now select the programming language
and the framework of their choice to implement ontology-based IoT
applications by relying on the generated library which conforms
to the ontological model without the complexity of the ontology
languages.

In the following section, we detail the Ontology Library Gener-
Ator (OLGA).

5 OLGA: AN ONTOLOGY LIBRARY
GENERATOR

OLGA is a multi-library code generator, as shown in Fig. 3, it takes
two parameters as input: one or more ontologies since an ontology
can depend on other ontologies and a choice of a library dependency.
In fact, the generated library will depend either on a serializer or a
an object relational mapper. Thus, OLGA completes already existing
libraries and frameworks, those depicted in section 2 by providing
IoT developers with the variety of choice for the development of
ontology-based IoT applications. OLGA enables the possibility for
an IoT developer to choose and reuse existing open source libraries
(serializers or ORMs) while offering an abstraction and a simpler
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Figure 3: OLGA’s Architecture

library to use which conforms to an ontology model previously
specified by the experts.

<#if consolidatedImports??>
<#list consolidatedImports as import>

using ${import};
</#list>

</#if>

namespace ${Zclass.getPackageName()}
{
[Class("${Zclass.Iri()}")]
public interface I${Zclass.ClassName()}
<#if Zclass.SuperZClassList()??>
<#if Zclass.SuperZClassList()?has_content> :
<#list Zclass.SuperZClassList() as

SuperZClassCurrentElementOfList>
I${SuperZClassCurrentElementOfList.ClassName()}<#sep> ,

</#list>
<#else>: IEntity
</#if>

</#if>
{
<#if listDataProperties??>
<#list listDataProperties as DataPropertyList>
[Property("${DataPropertyList.DataProperty()}")]
${DataPropertyList.RangeXSDType()}
${DataPropertyList

.DataPropertyShortForm()?capitalize}{ get; set; }

</#list>
</#if>
}

<#if listObjectProperties??>
...
</#if>

}

Listing 1: Part of the template used by OLGA to generate
RomanticWeb-based C# code

OLGA consists of the following modules:
Importer: loads intomemory one ormore ontologies andmerges

them into one ontology easier to visit.
Visitor: traverses all the elements of a given ontology provided

by the Importer. The visitor crosses the following elements: Classes,
ObjectProperties, DataProperties, Individuals, Literals, and the var-
ious axioms to populate the internal model shown in Fig. 4.

Model: allows capturing the ontology information (T-Box) inde-
pendent of any targeted library or programming language. Sepa-
rating the model from any targeted implementation offers OLGA
a huge flexibility making the support for an additional language
or a dependent library simply a matter of adding templates. The
model is populated by the visitor, consists of a representation layer
which captures all the elements of an ontology, it is inspired by the
work of Kalyanpur et al. [22]. The model is shown in Fig. 4. All the
elements inherit from the super class Node which is identified by
an IRI and a name parameter.

Each Class can have none (owl:Thing) or multiple super classes
populated by the visitor based on the owl:SubClassOf. The names-
pace, packageName, and className are extracted based on the Class
IRI for the code generator .

A Class may have none or several ObjectProperties, as shown
in Fig 4. The visitor populates the following parameters for each
ObjectProperty: a restriction type (owl:AllValuesFrom), an op-
tional restriction cardinality (owl:minCardinality), a restriction
number associated with the cardinality, a possible one or more
characteristic of the property (owl:TransitiveProperty), and an
optional expression (owl:UnionOf). An ObjectProperty associates
the following concepts:

• Class-to-Class(es): one or several range classes depending
on the restriction type and the expression. For example, a
Building contains Some Floor.

• Class-to-Individual(s): one or several range individuals de-
pending on the restriction type and the Expression. For exam-
ple, a TemperatureMeasure Class hasUnit Degree_Celsius
Individual.

• Individual-to-Individual: the restriction type, cardinality, ex-
pression, and characteristic are not populated by the visitor
when an individual is associated to another individual. For
example, a Building1 contains Floor1. Only the name pa-
rameter is used in the ObjectProperty for the code genera-
tion.

An Individual is an instance of a class. The visitor fills the names-
pace and the packageName for the code generator based on its
IRI.

When a DataProperty is associated with an Individual, the visitor
populates only the range (Literal). However, when the DataProp-
erty is associated with a class, the visitor populates in addition to
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Figure 4: OLGA Internal Model - UML Object Diagram

the previous parameters, the restriction type and the restriction
cardinality.

Templates: are arranged by library dependency, a serializer
(Jackson-Jsonld [18], RDF4J [26]) or ORM (RomanticWeb [33], RD-
FAlchemy [35]). As shown in listing 1, each template contains a
code snippet written according to a programming language syntax
(Java, C#, Python, or others) and holds several information awaiting
to be filled from the model such as the imports declaration of pack-
ages related to the dependent library, name of the class/interface
to be generated. In addition, each of the data and object property
will be transformed into a parameter with getter/setter functions.
These templates will be loaded in memory by the Generator and
the code snippets will be completed according to the information
populated in the model.

Generator: based on the selected library dependency, adequate
templates are loaded into memory to initiate the code generation
from the populated model. The Generator injects the information
from the model into the templates. The separation between the
model and the templates provides flexibility and makes supporting
an additional library a matter of templates extension.

In the case of a selected ORM dependency, each Class and Indi-
vidual of the ontology will be generated into an interface. In fact, an
ORM library provides a factory allowing developers to instantiate
the interfaces into objects. OLGA handles multiple inheritance and
composition by generating interfaces extending other interfaces.
This makes the code generation simpler since only the interfaces
need to be generated. Developers will rely on the factory to instan-
tiate their objects based on the generated interfaces, therefore, the
ORM’s factory will handle multiple extensions of the interfaces and
their declared functions.

In the case of a selected serializer dependency, interfaces and
their implementations are generated since a serializer do not pro-
vide a factory to instantiate/implement a class. OLGA handles mul-
tiple inheritance and composition by propagating the functions’
implementations from the extended interfaces into the implemented
classes and by relying on the Override annotation in Java (or simi-
lar) annotations in other programming languages.

Compiler & Packager: once the code is injected into the tem-
plates, the generator creates files containing the expected code.
Then, the compilation and packaging phase can start. According
to the selected library and its programming language a compiler is
loaded. Once the compilation ends successfully, the packaging is
triggered to prepare the adequate format (.jar, .dll, .whl, or others).

Once the generated library is packaged, it can be imported and
ready to be used by any IoT developer. An example of a SAREF
generated library is provided in Listing. 2, where an IoT developer
can Just Instantiate and Link, an Idegree_Celsius is refereed to, then
an indoor measurement is created and linked to a specific instance
of a Temperature Sensor.

The code implemented by the IoT developer can be deployed on a
cloud connected device or gateway such as in [20, 21]. However, on
systems with more abundant resources such as a Building Manage-
ment Server, a generated library dependent on an object relational
mapper can be used since such systems can host local applications
which can interact with a local RDF store such as in [19].

6 IMPLEMENTATION & EVALUATION
OLGA is implemented in Java 8 and relies on the OWL API [25]
to import and merge one or more interdependent ontologies. The
visitor module relies on the OWLAPI as well to traverse the merged
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Lib/Time Overall Code Gen. Compile (ms)
RomanticWeb 14 sec 201 ms 516 ms 05 sec 317 ms

RDF4J 45 sec 109 ms 680 ms 39 sec 59 ms
Jackson-Jsonld 24 sec 187 ms 639 ms 19 sec 05 ms
RdfAlchemy 16 sec 544 ms 526 ms 9 sec 122 ms

Table 1: Code Generation Evaluation for SAREF by OLGA

ontology and populate the model shown in Fig. 4. The Generator
depends on the FreeMarker [39] Template Engine and the templates
are written in the FreeMarker Template Language. FreeMarker
offers a powerful and flexible mechanism to inject parameters from
our model into the templates to generate code files. The Compiler
and Packager module relies on three Maven plugins depending on
the selected programming language, .Net4, Java5, and Python6. In
fact, OLGA generates the adequate pom.xml file which is then used
with the correspondent Maven plugin to compile and package.

The list of supported dependent libraries is expected to grow
with time based on the adoption and requests from our internal
teams. So far, OLGA supports the java-based serializer Jackson-
Jsonld [18], RDF4J [26], and the ORMs RomanticWeb [33] and RD-
FAlchemy [35].

The Smart Appliances REFerence ontology (SAREF) [5] was
selected to validate the generated libraries. SAREF imports the Time
Ontology7. The two ontologies are loaded andmerged byOLGA, the
merged ontology contains 117 classes, 63 Object Properties, 31 Data
Properties, and 55 Individuals. Four libraries are generated based on
SAREF with a dependency to Jackson-Jsonld, RDF4J, RDFAlchemy,
and RomanticWeb. For each of the generated library, the following
is provided on the external github [31]:

(1) Packaged generated library in .dll and .jar formats.
(2) Generated source code in C#, Java, and Python.
(3) Generated ontology instance (A-Box) of an instantiation

SAREF example.
(4) An instantiation and usage examples for each of the gener-

ated SAREF libraries (Jackson-Jsonld, RDF4J, RDFAlchemy,
and RomanticWeb). The examples demonstrate how any IoT
developer can import the generated packages and use them
in his development without any knowledge regarding on-
tologies. The provided examples show the instantiation of
a SAREF temperature sensor8 with a measurement temper-
ature in degree Celsius, and other information such as the
manufacturer and the model number, as shown in listing. 2.

OLGA is deployed on a 64 bit windows machine with an I7 Code
and 32 GB of RAM with a JVM of 512MB of maximum heap size.
Table 1 depicts the code generation evaluation for SAREF with a
dependency on RomanticWeb, RDFAlchemy, RDF4J, and on Jackson-
Jsonld where the values represent an average of 10 executions.
The table depicts the overall generation time from import until
packaging. It also details the code generation, compilation, and
packaging time. The overall time for a serializer is longer than an

4github.com/kaspersorensen/dotnet-maven-plugin
5maven-compiler-plugin on mvnrepository.com
6http://www.mojohaus.org/exec-maven-plugin
7www.w3.org/TR/owl-time
8ontoloдy .tno .nl/saref /sarefT emperatureSensor .html

public static void Create_SAREF_Topology()
{

string clientURI = "http://www.saref.instance/example";

//refer to the unit
Idegree_Celsius degreeCelius = context
.Create<Idegree_Celsius>(new Uri(clientURI + "#1"));

//Create a measurement from the factory
IMeasurement indoorTemperature = context
.Create<IMeasurement>(new Uri(clientURI + "#2"));

indoorTemperature.AddIsmeasuredin_Only_UnitOfMeasure
.Add(degreeCelius);

indoorTemperature.Hasvalue = 32;
indoorTemperature.Hastimestamp = DateTime.UtcNow;

//Link it to Temperature
ITemperature temperature = context
.Create<ITemperature>(new Uri(clientURI + "#3"));

temperature.AddRelatestomeasurement_Only_Measurement
.Add(indoorTemperature);

//Create a Temperature Sensor
ITemperatureSensor temperatureSensor = context
.Create<ITemperatureSensor>(new Uri(clientURI + "#4"));

temperatureSensor.Hasmanufacturer = "CompanyA";
temperatureSensor.Hasmodel = "M321";
temperatureSensor
.Hasdescription = "Low range Zigee temperature sensor";

//add its measurement
temperatureSensor.AddMakesmeasurement_Only_Measurement
.Add(indoorTemperature);

// commit data to factory
context.Commit();

}

Listing 2: Example of SAREF instantiation code [31] in C#
by an IoT developer

ORM since for a serializer OLGA generates interfaces and their
implementation classes while for an ORM only the interfaces are
needed, the instantiation goes through the factory. In the case of
the RDF4J, the compilation and packaging phase takes longer since
it pulls several RDF4J dependencies. Package optimization will be
part of our future work.

7 CONCLUSION
In this paper, we presented a model driven methodology which
relies on the separation of concern between two aspects. The first
aspect is the model creation and its instantiation. The second aspect
is the distinction between the three different actors and their skills
set in the IoT development. We proposed a methodology which
highlights and leverages the expertise of each actor and places it in
its adequate posture in order to accelerate the ontology-based IoT
application developments.

In addition, based on the requirements gathered from our indus-
trial context and internal development teams, we propose OLGA,
an Ontology Library Generator which completes existing libraries
and frameworks in the ontology development arena. OLGA is an en-
abler and a facilitator for the adoption of libraries and frameworks
depicted in the related work section. It complements and does not
competes with the effort put by the ontology community regarding
the software tools suite. OLGA leverages this such software suite
by automatically providing a bridge towards its usage in an abstract
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and more adequate manner for IoT developers. OLGA takes an
ontology previously defined by the domain and ontology experts
and generates a library hiding all the complexity of ontology based
development. We validated OLGA by relying on the existing Smart
Appliances REFerence Ontology [5], the generated libraries depend
on four existing libraries in three different programming languages
and paradigms. Such flexibility and easy of extensions is possible
thanks to OLGA’s internal model which captures the ontology in-
formation independent of any targeted library or programming
language. Separating the model from any implementation offers
OLGA a huge flexibility making supporting another language or
library a matter of adding templates.

For now, OLGA is in its minimum viable product and will evolve
over time based on our internal teams requirements. In our future
work, we intend to extend the list of the dependent libraries to
support the diversity of our internal teams’ technical choices and
environments. In addition, the query formulation part depicted ear-
lier, might be partially solved by LINQ for .Net developers, however,
it still needs to be tackled for other programming environments.
More over, constraints handling from the ontology model to the
generated code will be part of our next steps.
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