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ABSTRACT
The Immune Epitope Database (IEDB) indexes and organizes pub-
lished information pertaining to the molecular targets of adaptive
immune responses to support epitope discovery efforts. The IEDB is
an exemplary systemwith awell-designed repository, a commercial-
grade user interface and a large user community. It is expressly
‘built-for-purpose’, with a specialized Entity-Relation (ER) schema
designed specifically to describe experimental findings (in this case,
outcomes from assays relevant to immune epitope studies). Like
many biomedical databases, this use of a specialized ER model im-
pacts the process of indexing and organizing available scientific
information. Biocuration staff and end-users must be trained specif-
ically in the details of the representation to populate and use the
system. The extent of system interoperability is generally limited
to the use of standard terminology. We apply a knowledge engi-
neering modeling methodology called “Knowledge Engineering
from Experiment Design" (KEfED) that uses a workflow-like con-
struct to model studies that had been curated into the IEDB. This
methodology generates a semantic model for experimental data
from dependency relations between experimental variables based
on an experiment’s protocol. We also applied the Karma mapping
system to build a linked data representation of IEDB content across
the whole database as a potential methodology for exporting IEDB
content to a linked data format. This work demonstrates the fea-
sibility of using KEfED modeling to represent previously-curated
data in existing systems and then mapping that existing dataset
to a linked data model. This may offer a graceful method for the
evolution of existing, well-established databases.

CCS CONCEPTS
• Information systems→ Network data models; Information in-
tegration;

KEYWORDS
Immune Epitopes, Knowledge Engineering, Biocuration

K-CAP2017 Workshops and Tutorials Proceedings,
© Copyright held by the owner/author(s).

ACM Reference Format:
Gully A Burns, Randi Vita, James Overton, Ward Fleri, and Bjoern Peters.
2018. Semantic Modeling for Accelerated Immune Epitope Database (IEDB)
Biocuration. In . ACM, New York, NY, USA, 6 pages. https://doi.org/

1 INTRODUCTION
As a scientific discipline, biomedicine is complex, multidisciplinary,
continuously evolving and increasingly data-driven. This has lead
to the development of literally thousands of biomedical databases
across a large number of domains. In the field of molecular bi-
ology, the journal “Nucleic Acids Research" publishes an annual
review of active molecular biology databases [6] with articles that
describe each system and a managed online catalog of active sys-
tems1. This list includes several large-scale, international infor-
matics projects. In particular, the 2017 review presents a “golden
set” of 110 databases that have “consistently served as authorita-
tive, comprehensive, and convenient data resources widely used by
the community”. In this paper, we describe preliminary modeling
work within one of these database systems (the Immune Epitope
Database, IEDB), to improve curation processes and permit a more
standardized representation of experiment observations. Ultimately,
we anticipate this work to permit graceful evolution of the systems’
underlying data schema and biocuration model.

This work is a principled approach to data modeling using “meta-
data propagation” through experimental workflows describing the
physical processes in a laboratory experiment. Metadata propaga-
tion is a concept developed for e-Science workflow systems [7], but
was repurposed as the driving principle of a flexible data modeling
methodology for experimental data called “Knowledge Engineering
from Experimental Design" (KEfED) [11].

The Ontology of Biomedical Investigations (“OBI”) provides a
mechanism for describing experimental protocols within the con-
text of a well-defined upper ontology [2]). We previously developed
an approach to modeling experimental variables [3] that we are
currently integrating into OBI in order to apply KEfED modeling
to data in the IEDB.

In this paper, we model a specific article that had been previ-
ously curated into the IEDB to act as a proof-of-concept of using the

1http://www.oxfordjournals.org/nar/database/a/
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Figure 1: A KEfED model based on Richardson et. al. 1998. The red line shows dependency relations between measurements
of ‘response frequency’ from a ‘protection from challenge assay’ and parameters set previously in the protocol.

KEfED methodology. We also describe use of the Karma data inte-
gration tool2 as a way of automatically populating a KEfED-driven
linked data representation.

2 METHODS
KEfED modeling work was performed with the “kefed.io” toolset3.
We downloaded the latest versions of IEDB4 and evaluated the
IEDB schema and content in consultation with curation staff. We
referenced IEDB’s use of OBI ontology terms for assays in this
modeling effort, whilst developing and proposing extensions to
OBI for data item and value specification classes in order to provide
adequate coverage for appropriate variables and associated values
within the KEfED models under development.

An intermediate target for this modeling work was to provide a
KEfED-based design pattern that could be used to convert IEDB data
to linked data using ISI’s Karma information integration tool [8].
We queried the B-Cell table from the IEDB for data from “protection
from challenge” assays and then mapped columns from that data set
onto the values of variables generated from our manually-curated
KEfED model for the same class of experiments. This provided
a viable procedure to migrate existing data from IEDB to linked
data generated under a KEfED-based model. All modeling work
was performed by hand and this effort was executed as a proof of
concept for subsequent development.

3 RESULTS
Under development since 2004, the IEDB has undergone three large
scale iterations to provide coverage of >95% of the relevant exper-
imental biomedical literature. At present (November 30th 2017),
it lists records from 18,902 journal articles focused on infectious
diseases, allergy, autoimmunity and transplantation. HIV-derived
and cancer epitopes are considered out of scope for this system as
2http://karma.isi.edu
3https://github.com/SciKnowEngine/kefed.io
4available from http://www.iedb.org/database_export_v3.php

they are managed elsewhere5. Our goal in this work was to explore
the feasibility of developing semantic models within the KEfED
modeling formalism that could reconstruct the logic of the data that
the IEDB currently contains.

As an advanced scientific database, the IEDB is based on complex,
domain-specific knowledge. A key structural design concept that
permits the capture of data from a wide number of different types of
immunological experiments is the IEDB’s use of well-defined assay
types6. These are experimental processes that generate specific
types of measurements with well-defined meanings that serve as
the basic building blocks of immunological studies. The IEDB’s set
of assay types is also documented as classes in OBI7 providing a
well-defined base vocabulary to build upon.

3.1 Richardson et al. 1998: A Worked Example
We focus on one study in particular: Richard et al. 1998 [10]. A
KEfED model that illustrates the assays used in this study is shown
in Figure 1. This study uses peptidergic epitopes derived from pro-
teins found in envelope proteins of Feline Immunodeficiency Virus
(FIV) as immunogens (i.e. to trigger an immune response). Animals
that had been immunized with these epitopes were subsequently
investigated with four assays that measured (A) whether the im-
munization process provides protection from the effects of a sub-
sequent immune challenge; (B+C) the degree of antigen-antibody
binding occurring after the immunization step, measured either by
(B) immunoprecipitation or (C) an ELISA step; finally (D) whether
antibodies generated from experimental subjects were themselves
capable of neutralizing FIV in a test environment.

Structurally, when viewed at this level, the design is simple. The
host animal is immunized and a blood sample is drawn and pro-
cessed with biological activity and binding assays. In addition, the
same immunized host is subjected to a “protection from challenge

5https://www.hiv.lanl.gov/content/immunology/
6https://help.iedb.org/hc/en-us/articles/114094147271-IEDB-Assay-Types-IEDB-3-0-
7http://obi-ontology.org/

https://github.com/SciKnowEngine/kefed.io
http://www.iedb.org/database_export_v3.php
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assay” to assess how well the immunization process protects the
animal from FIV infection. The primary technical challenge of this
work arises from the definition of variables that are relevant to the
IEDB curation process.

In Figure 1, we provided variables with simple names (“host-
parameters”, “administration-details”, etc.) to denote composite data
structures that mirrored the relevant substructure of data pertaining
to IEDB-relevant data. An example of this substructure is shown in
Table 1 for the parameter “epitope” denoted in Figure 1 as an input
to the “in-vitro immunization administration” process. Note that
this substructure exactly corresponds to the data provided by the
IEDB in their assay pages (for example: http://www.iedb.org/assay/
1508651). By capturing the data structure used in IEDB directly into
parameters, we are able to match the KEfED modeling approach
precisely to the data described in IEDB. This effort is intended to
supplement existing biocuration efforts at IEDB [5] and so will be
evaluated within their framework for quality control.

Table 1: Substructure of ‘epitope’ variable

Sub-Parameter Type Example Value
epitope-type category linear peptide

linear-sequence string RAISSWKQRNRWEWRPD
start-position integer 387
end-position integer 403
source-name string Envelope glycoprotein gp150

source-accession URI ncbi-protein:Q05312.1
source-organism URI ncbi-taxon:45409
source-org-name string FIV (isolate wo)

3.2 Representing KEfED Models using OBI
elements

Within the scope of established ontologies describing experimen-
tal methodology in the biomedical community, OBI is likely the
most mature and well-supported [2]. Despite being linked to and
incorporated in several other projects within the community (see
https://bioportal.bioontology.org/ontologies/OBI), there is no single
recommended methodology of how to use OBI terms to describe an
experimental workflow. We therefore developed a schema for OBI-
like elements that could capture the crucial elements of a KEfED
model. Figure 2 shows this schema formatted as a UML2.0 class
diagram. The purpose of this schema is to provide a framework for
developing KEfED models that could act as templates made up of
OBI-compatible terminology.

Consistent with OBI’s extension of the Basic Formal Ontology
(‘BFO’) [1], this schema extends the Continuant class to define
Material Entity and Data Item classes. These elements are en-
tities within the workflow that have continued existence over time.
We also define Planned_Process elements that map directly to
OBI’sMaterial Processing, Assay, and Data_Processing classes.
These elements denote key KEfED elements to describe the work-
flow. Less-well defined is the way in which the values of each data
item is defined. Here, consistent with ongoing discussions within
the OBI community, we extend the Value_Specification class

to support data of a variety of different types including ordinal,
categorical and structured data. This corresponds to distinctions
we previously defined in the ‘Ontology of Experimental Variables
and Value’ (OoEVV) [3].

A key extension for KEfED is a representation of a data-driven
context for each measurement made within the experiment. Within
this design, this function is provided by the Metadata_Context
class which simply links measurement and parameter values to-
gether via parameterizes and has_context properties.

3.3 Mapping data from ‘Protection From
Challenge’ Experiments with Karma

The Karma system provides a methodology for rapidly mapping
data sources to an OWL ontology acting as a schema for linked
data [8]. We executed a native SQL query over several IEDB ta-
bles (article, bcell, object, and assay_type) to retrieve data
pertaining to “Protection from Challenge” assays across the whole
database. This query retrieved 2,000 rows of data that specified
“in vivo assay measuring B cell epitope specific protection from
challenge” (term URI: http://purl.obolibrary.org/obo/OBI_0001710)
or its subtypes as their assay type. We extended OBI with OWL
classes corresponding to missing elements shown in Figure 2 and
constructed a Karma model that mapped the extracted data to this
extended KEfED/OBI ontology. Figure 3 provides a screenshot of
a subset of the Karma model showing a portion of the mapping.
The Karma interface uses the term URI as the primary label on the
model display but will also show the label of the term if the user
mouses over the term’s node in the user interface. Modeling work
was performed on a 2.5 GHz Intel Core i7 Macbook Pro with 16 GB
RAM.

3.4 The Granularity of Processes: Expanding
the “Protection from Challenge" Assay

Finally, we consider that descriptions of experimental processes
have an inherent granularity based on the degree of detail that is
required. We highlight this question by considering the ‘Protection
from Challenge’ assay shown in Figure 1. A detailed reading of
the paper, reveals that the assay as described in IEDB is actually
made up of a number of individual steps that included (a) an im-
mune challenge, (b) extraction of tissue and blood from the host, (c)
RNA extraction and (d) subsequent competitive PCR to establish
measures of viremia. This is significant since these intermediate
steps involve data sets that form the main evidence presented by
the paper’s authors (measures of viremia in blood and spleen) that
themselves must be evaluated to generate the final data item to be
curated into the IEDB: “response frequency”.

This is illustrated in detail in Figure 4 showing how, in this paper,
the assay has quite a complex substructure at this intermediate
level. It is also worth noting that many of these processes would
themselves have detailed substructure that may of significance
to a researcher maintaining their own laboratory-based record
of experimental work with a very level of detail. We model this
structure by permitting Planned_Process class instances to have
has_part relations with other Planned_Process instances. This
would permit multiple levels of sub-processes to be described in
modeling of experimental protocols.

http://www.iedb.org/assay/1508651
http://www.iedb.org/assay/1508651
https://bioportal.bioontology.org/ontologies/OBI
http://purl.obolibrary.org/obo/OBI_0001710
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label (String)
ontologyId: URI
diagramXML (XML)

Study_Design

Experiment

has_part

label: String
ontologyId: URI

Continuant

label:String
process_type: enum[M,A,D, E]
ontologyId: URI

Planned_Process

has_
specified_

input

has_
specified_

output

has_first_
part

has_part
[1...*]

is_part_of
[1...*]

is_specified_
input_of

is_specified_
output_of

receives_input
_from

provides_input
_to

Material_Entity

variable_type: enum[D, I, C]
Data_Item

Nominal_VS

label: String
ontologyId: URI
unit_label: String
units: URI
has_specified_value: URI

Value_Specification

has_value_
specification

is_value_spec
ification_of

is_about: URI
OntologicalTerm_VS

precision: enum[int, float, double]
max: Number
min: Number

Scalar_VS
language: enum[en,de,...]

NaturalLanguage_VS

category_labels: String[]
Categorical_VS

type_label: String

StructuredObject_VS

max_rank: int
rank_labels: String[]

Ordinal_VS

M = Material Processing
A = Assay
D = Data Transformation
E = Whole Experiment

has_part
[1 ... *]

D= Dependent
I = Independent
C = Constant

parameterizes

parameterizes

...

Metadata_Context

has_context
is_context_for

parameterizes
[0...*]

label (String)
ontologyId: URI

Investigation

has_part

has_participant
[1...*]

participates_in
[1...*]

label (String)
ontologyId: URI

Study_Design_Execution

has_part

has_part

Figure 2: A data schema for representing KEfED models and data.

4 RELATEDWORK
The IEDB uses OBI to support query formation within its user
interface [14]. There are other ontological representations of pro-
tocols that complement this work. The Bioassay ontology (BAO)
provides a representation of chemical biology screening assays [13].
The Evidence Ontology (ECO) provides a high-level ontological
representation of different types of evidence used by biologists to
draw conclusions that ties closely to OBI [4]. The latest version of
the Experiment Action Ontology (EXACT2) incorporates OBI and
constructs and focuses on representing the most granular actions
(incubate, heat, etc) [12]. SMART Protocols provides a methodology
originally derived from models of provenance8. STAR Methods is
a publisher-initiated attempt to standardize terminology describ-
ing methodological resources used in biology [9]. None of these

8https://smartprotocols.github.io/

representations deal with the structure of claims at the level of the
low-level variables that form the core of the KEfED representation.

5 DISCUSSION
This paper describes a simple proof-of-concept analysis of using
the KEfED modeling approach as a possible methodology for im-
proving the accuracy and speed of biocuration for an established
biomedical database. Though far from definitive, this early work
provides support to the notion that KEfED methods may effectively
provide a general method of capturing scientific knowledge from
published experimental studies at a level of granularity that matches
established databases such as the IEDB.

A possible area of difficulty in applying KEfED to experimental
findings in the literature is that there are typically a wide variety of
experiments performed in any given subdomain. A database such
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Figure 3: A screenshot taken from the Karmamodel showing the mapping between the OBI-derived KEfED ontology and data
from the IEDB.

as the IEDB manages to circumvent this complexity through the
expertise of trained biocurators, who map research findings into the
database schema. By using KEfED, we match our representation as
closely as possible to the experimental design reported in the paper
by using a more flexible data structure as a target of biocuration. It
is this semantic flexibility that provides a target that closely mirrors
the existing schema of the IEDB to enable this methodology to be
used in data curation. It remains an open question as to how much
of the experimental idiosyncrasies of each study design should
be modeled. The rule of thumb we apply is to use the minimum
information needed to recreate the structured conclusions of the
study. Interestingly, using KEfED to model existing biomedical
databases’ capabilities provides a possible evaluation methodology
for future work. This would require a quantitative comparison of
KEfED-based methods to existing database capabilities based on
(A) schema verification / validation, (B) system performance, and
(C) usability.

A key future aspect of this process of knowledge capture is to
develop methods of machine reading capable of identifying and
populating KEfEDmodels automatically. This remains an important
and difficult challenge problem.
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