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ABSTRACT 

The current practice of publishing articles solely containing 

textual descriptions of methods is error prone and incomplete. 

Even when a reproducible workflow or notebook is linked to an 

article, the text of the article is not well integrated with those 

computational components, and the workflow and notebook are 

focused mostly on implementation details that are disconnected 

from the scientific approach described in the text of the article.   

Through an analysis of three multi-omics articles, we illustrate 

why this makes it difficult to understand, reproduce, compare, and 

reuse computational methods.  We propose workflow abstractions 

that that capture different concepts and perspectives that are 

important to scientists.  These abstractions connect the text of an 

article to the corresponding workflow, and provide a framework 

to improve the publication and reproducibility of computational 

experiments. 

CCS CONCEPTS 

• Information systems → Artificial intelligence; Knowledge 

representation and reasoning 

KEYWORDS 

Reproducibility, semantic workflows, semantic science 

1 INTRODUCTION 

The reproducibility crisis in science has received 

significant attention.  Reproducibility requires that methods 

are described with enough details to repeat the experiment 

in an independent lab or setting.  For computational 

experiments, studies show that published papers often 

provide insufficient information about the data, protocols, 

software, and overall method used to obtain the new results 

[Van Noorden 2015].  A major barrier to reproducibility 

can be traced to the traditional, unstructured format of 

publications “materials and methods” sections.  The 

ambiguity, imprecision, and linearity of text make natural 

language descriptions of computational analyses inadequate 

for reproducible research [Steehouder et al 2000; Garijo et 

al 2013; Gil 2015; Groth and Gil 2009].  A major problem 

is that there is no guidance or methodology to describe 

computational methods in articles.  It is unclear what the 

intent of the descriptions in methods sections is.  Is the goal 

to provide a step-by-step account of the procedures taken, 

parameters employed, and data provenance such that a 

study might be reproduced?  Alternately, is the goal to 

provide a high-level intuition for the steps that were 

performed?  Both are valuable but are incompatible 

objectives in current text-based descriptions, leading to 

neither an intuitive reading experience nor a reproducible 

description. 
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      Computational workflows and notebooks can be used to 

organize and record computational methods, and are often 

linked to publications.  Workflows capture the dataflow 

among computations, so the different steps of the method 

are explicitly represented and linked.  Notebooks are 

composed of cells that contain either text or code that can 

be easily re-run. Workflows and notebooks facilitate the 

documentation of the software and the structure of a 

computational method.  But even when workflows and 

notebooks are used, the text for those publications is always 

manually generated by the authors and often inadequately 

captures the full complexity of an analysis, leading to poor 

reproducibility.  In prior work, we developed an approach 

to automatically create descriptions of computational 

methods by generating text from workflows [Gil and Garijo 

2017], where the text accurately represents what was done 

and can be presented from different perspectives.  The text, 

however, can only be as good as the workflows that it was 

generated from.   This motivates the need for a workflow 

design methodology that leads to workflow representations 

that support the automated generation of explanations as 

text that can be used in publications. 

     This paper proposes abstractions designed to improve 

the publication of computational methods to facilitate  

reproducibility.  This methodology extends our prior work 

on representing and publishing workflow abstractions using 

community standards for workflows and provenance 

[Garijo et al 2017]. 

    The paper begins with an overview of related work on 

reproducibility and publication of computational methods.  

We then present an analysis of the computational methods 

described in three seminal papers in cancer omics.  We 

introduce the abstractions proposed, and discuss their 

merits in improving the descriptions of computational 

methods in scientific publications. 

2 PUBLICATION AND 

REPRODUCIBILITY  OF 

COMPUTATIONAL METHODS 

Textual descriptions of methods in articles may be 

incomplete (e.g., [Ioannidis et al 2009; Donoho et al 

2009]). Authors focus on conveying the major 

contributions of the work and describe the methods in that 

light, omitting details that may be important for 

transparency and reproducibility. For example, [Garijo et al 

2013] describes our work to reproduce an article for which 

the authors had provided the data, software, and results to 

facilitate reproducibility. We created reproducibility maps, 

that showed different categories of users could figure out 

from the text of the paper how the work was done. The 

reproducibility maps showed that only researchers with the 

same level of expertise in the subject as the authors were 

able to figure out how to fully reproduce the work. There 

are many similar results in the literature, some mentioning 

the lack of publication of data [Ioannidis et al 2009] and 

others the lack of details in the description of methods 

leading to “exercises in ‘forensic bioinformatics’ where 

aspects of raw data and reported results are used to infer 

what methods must have been employed” [Baggerly and 

Coombes 2009].  There are several reasons why text 

descriptions of methods are riddled with problems. First, 

articles often have space limitations, so authors tend to omit 

anything that seems not important. Second, they are 

manually written without any particular guidance, it is easy 

for authors to provide imprecise descriptions. Finally, 

computational methods are often complex procedures with 

non-linear structures that are hard to describe with the 

sequential nature of text [Gil 2015].  Even when authors 

endeavor to describe enough details, textual descriptions 

are often ambiguous. A study reported in [Ince et al 2012] 

looked at writing software from scratch based on the 

textual descriptions reported in geophysics papers and 

found radical differences in the implementations.  The 

papers were found to be ambiguous at the lexical, syntactic, 

and semantic level, and not necessarily because the authors 

were not rigorous but because natural language is 

inherently ambiguous. We also find that the methods 

sections of articles mix general methods with specific 

details of the executions carried out [Gil and Garijo 2017]. 

Although there are many tools and recommendations of 

best practices for authors [Stodden et al 2016], it is still up 

to them to figure out what to include in an article and its 

methods section.  In summary, textual descriptions of 

methods in articles are far from ideal, since the text tends to 

be: 1) Incomplete, omitting important details about the 

computations performed; 2) Ambiguous, having several 

interpretations of how the computations were actually 

done; 3) Mingled, interspersing general overviews with 

execution details.   

     Workflows capture unambiguously a computational 

analysis as a dataflow among steps [Taylor et al 2006]. In 

prior work, we found that workflow reusability is a major 

drive for users [Garijo et al 2014a].  Workflow repositories 

provide mechanisms to publish and search workflows, 

particularly to improve reproducibility and sharing of 

computational experiments. However, the descriptions of 

workflows are manually generated and therefore are as 

incomplete as those in scientific articles. In prior work we 
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analyzed the textual descriptions of workflows from one of 

these repositories [Groth and Gil 2009]. We found 

significant differences between what was included in the 

textual descriptions and the actual formal specification of 

the workflows. A major limitation of workflow 

representations is that they mix major method steps with 

ancillary steps that do for example minor data reformatting. 

Also in previous work, we analyzed workflows to identify 

by hand general categories of steps (motifs) that make such 

distinctions [Garijo et al 2014b]. But workflows in 

themselves have no explicit mention of the relative 

importance of steps and all steps are treated equally. In 

summary, although workflows provide a formal 

computational representation of methods, the workflows 

themselves are: 1) Incomplete, because workflow 

representations do not express important semantic 

properties of steps; 2) Flat, with abstractions often absent 

from the workflow structure; and 3) Undifferentiated, as 

there is no explicit distinction between important steps and 

ancillary steps. 

      A recent popular trend is electronic notebooks, such as 

Jupyter Notebook and Apache Zeppelin, where the 

advantage is that the text is intermixed with data and code 

so it is easier to follow step by step how the method 

actually works.  This approach is akin to executable papers 

which have been around for some time, such as Sweave 

and knitr which combine Latex and R [Xie 2015].  

However, a reader cannot easily compare two notebooks, 

since that requires comparing the code line by line, and 

cannot easily reuse parts of one to create another since the 

code in notebook cells is not necessarily modular.  In 

addition, although notebooks are easily published and 

shared they have not replaced published papers, possibly 

due to their idiosyncratic formats which do not yet offer the 

persistence and archival guarantees required by publishers. 

     In summary, in order to understand a published article, 

and assess its validity, reproduce the work, or to compare 

its method to another article, a reader must do a significant 

amount of work.  Even when authors capture computational 

methods as workflows, there is no guidance on how to 

facilitate reproducibility and reuse.  The next section 

analyzes specific articles in detail as motivating scenarios, 

and extracts desiderata for workflow design. 

3  AN ANALYSIS OF MULTI-OMICS 

METHODS 

This section motivates our work in the context of three 

seminal articles in multi-omics: [Zhang et al 2014], which 

is the first publication of a large-scale multi-omics analysis, 

[TCGA 2008] and [Imielinski et al 2012] which describe 

work on genomics that Zhang and colleagues built upon. A 

detailed analysis of all three articles is provided in 

[Knoblock 2017]. 

 

3.1 Method Descriptions 

The methods section of a scientific article describes, 

together with the supplementary materials, the data and 

computational steps used for data analysis.  We illustrate 

how methods are typically described using excerpts from 

[TCGA 2008] for variant calling from resequencing data, 

where SNPs and indels were screened against dbSNP for 

position/allele match.  First, “Putative variants were 

identified using Polyphred 6.1, Polyscan 3.0, SNPdetector 

3, and SNP Compare. SNPs and indels were screened 

against dbSNP for position/allele match”. This excerpt 

describes the software, although it refers to entire packages 

and not how they are used in the method. Then, 

“Boundaries of insertion, deletion and complex 

rearrangements [were] annotated”, and the detailed 

annotation guidelines are outlined in the article. That 

excerpt focuses on the science method.  Next, “The first 

step in analysis of the mutation data was to combine the 

.maf files from all centers into a .mut file containing at 

most one record for each site-sample pair. In the process of 

combining the files, care was taken to detect and resolve 

conflicts between multiple records for the same site-

sample”. This excerpt is focused on low level 

implementation aspects such as file formats and handling 

duplicate entries.  And finally, “As part of our sequencing 

pipeline, non-synonymous mutations were subjected to an 

orthogonal validation or re-sequencing (verification) step 

to decrease the prevalence of false positives. In our 

analysis we considered only those mutations that were 

confirmed by validation or verification to be actual somatic 

mutations”.  This excerpt focuses on the science aspects of 

the analysis, but it does not specify how each step of the 

method are implemented by the software packages 

mentioned earlier. 

     This is a common approach to describing methods.  

Method descriptions in scientific articles mix mentions 

of software, data formats, and scientific descriptions of 

the experiment.   

     Figure 1 shows a workflow that a biologist created 

based on the method description in the article.  Not 

surprisingly, the workflow steps are also mixture of science 

concepts and software implementation and data formats.  

Note that this makes it hard for another scientist to 

understand and therefore reuse the workflow.  



K-CAP’17 SciKnow, December 2017, Austin, TX, USA Y. Gil et al. 

 

4 

 

 
Figure 1: Computational workflow to annotate variant 

calling for resequencing data, based on [TCGA 2008].  

Each workflow step (square boxes) is described as the 

software that implements the step.    

   

     A scientist may not be familiar with the different 

software packages (there are hundreds of packages that are 

available for this kind of analysis), and therefore would not 

understand the function of each step.  Therefore, the design 

of workflows should accommodate the separation between 

the conceptual description of the experiment and the 

implementation of the experiment in software. 

 

3.2 Software Descriptions  

Each step in a method can be described at a conceptual 

level in terms of the function that it performs, and at an 

implementation level as the software used for the step.  For 

the articles we analyzed, these descriptions are as follows: 

 Base caller (Phred software): Assembling genome 

for genomic alignment/features. 

 Genome assembly (Consed software): Calling 

genomic bases from input files. 

 SNP caller (Polyphred software): Calling SNPs 

from the input genomic file (variant calling). 

 Indel and SNP caller: (PolyScan software): 

Calling both indels and SNPs (variant calling). 

 Variant annotation (Annotate_ MAFFormat 

software):  Annotating variants based on reference 

genomes. 

 Join data files (mutipleFilesToOne software): 

Appending multiple text files. 

 Filter data files (filt_MAF_file software): Variant 

filtering based on input parameters. 

      We make a few observations about how the software is 

presented in the article and used in the computational 

method. 

      Paper descriptions of conceptual steps contain very 

limited information about how they map to software. 

Given the capabilities of the software used, conceptual 

steps may be mapped to several implemented steps, and 

vice versa. For example, Polyphred and Polyscan are two 

separate steps, both implement variant calling but the 

former does SNP calling only and the latter implements 

indel and SNP calling steps. Therefore, a requirement in 

designing a workflow is that it must make clear how each 

step is implemented in software. 

      Paper descriptions of software contain limited 

information about what conceptual steps they 

implement. For example [TCGA 2008] says: “Putative 

variants were identified using Polyphred 6.1, Polyscan 3.0, 

SNPdetector 3, and SNP Compare.”  Four pieces of 

software are mentioned, but there are no details that specify 

what types of variants are detected by each of them.  

Therefore, in designing a workflow, the mapping of 

conceptual steps to software must be clearly stated. 

      A given function can be implemented by many 

software packages. There are many software packages that 

provide a desired functionality. As a result, identical 

functions in different methods may be implemented by 

different software, making it hard for a scientist to compare 

workflows. For example, in the workflow in Figure 1 the 

Consed software is used to perform the genome assembly 

step. In [Zhang et al 2014], Tophat2 performs this genome 

assembly step. Therefore, a requirement is that the software 

steps be described according to their functionality, so that 

the methods for several papers can be more easily 

compared by a scientist.  Functions should be specified for 
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each method step so that the correspondences across 

different software implementations for the same conceptual 

step will be explicit. 

      A given software package has many functions. In 

comparing software to the workflows built from them, we 

found that many scientific software packages have a large 

number of functions. Though it is useful for scientists to 

have multiple functions in one software package, in 

research papers it can be difficult to tell what software 

packages are being used for what functions. Sometimes the 

functionality of a software package is quite broad. For 

example, the SAMtools software package, used in [Zhang 

et al 2014], can be used for Variant Calling and Variant 

Filtering but the article does not explicitly indicate for what 

function it is used. Therefore, when specifying what 

software is used to implement a step in a method, it is vital 

to indicate the specific function of that software to make it 

unambiguous what conceptual function the software is 

implementing.   

     A computational step may perform a data 

reformatting, conversion, or other minor step that is not 

conceptually important and therefore is not mentioned 

in the article.  Without a description of these steps, it may 

not be possible to interpret the results appropriately or to 

reproduce the method. 

    In summary, the descriptions of method steps and their 

implementation in software that are typically found in 

scientific articles are very ambiguous and incomplete. 

Computational workflows can eliminate this ambiguity, but 

they must be intentionally designed to be unambiguous and 

complete. 

 

3.3 Data Descriptions 

Like software, data is described in scientific papers with a 

mixture of high-level concepts and low-level format 

references.   

     Data is often described based on its format rather 

than its contents. We saw examples of this in the earlier 

article excerpts.  Therefore, a requirement in the design of 

workflows is that data abstractions should be used to 

complement step abstractions.  

     Data formats are sometimes used when data is 

generated in idiosyncratic formats by specific software 

used. This can be seen in Figure 1. The Phred software 

generates output in a format called phd, and as a result the 

workflow indicates phd_File which is specific to Phred. 

Thus, a user of the workflow unfamiliar with Phred would 

find it hard to understand that format.  Therefore, a 

requirement in describing software steps and data in a 

workflow is to represent explicitly what formats are 

imposed by the use of specific software packages. 

      Data of the same type can play very different roles 

in a method.  In the workflow in Figure 1, the 

varAnnotParams input is an annotated variant parameter 

file but this type is not represented explicitly. Moreover, it 

is also not the only annotated file that is input to this 

method, but is the only one with a name that mentions 

annotation. Therefore, a requirement is to describe data 

conceptually according to the type of data contained, and 

that different data used or generated in the workflow be 

related by those types. 

     Data results of the same type may be combined, 

filtered, or sorted in ways that are not considered 

important to mention in the paper. Readers must 

hypothesize these data manipulations. 

 

3.4 Discussion 

Through examples we have illustrated that the text 

descriptions of methods sections of articles makes them 

hard to reconstruct and replicate into an unambiguous and 

complete workflow.  This is because papers describe 

methods in a mix of high-level conceptual terms together 

with mentions of specific software and formats.  This 

makes it hard to understand and compare methods.  

Another observation is that different readers might be 

interested in different descriptions of the methods, some 

more abstract and some more specific.  For example, a 

developer would be interested in data formats and software 

versions, while a biologist would be more interested in the 

overall statistical approach used.   

       Ideally, method descriptions would make clear 

distinctions between high-level conceptual terminology and 

implementation terms, both for software and for data.  In 

addition, method descriptions would make it clear what 

function each step performs, and whether a given function 

is implemented by a single step or by a set of steps.  These 

desiderata lead us to propose workflow abstractions for 

describing computational experiments in a paper.   

4  WORKFLOW ABSTRACTIONS 

A computational method is typically described in terms of 

the specific software, data, and formats used.  However, 

there are many ways to describe a method 

conceptually.  This section describes different ways to 

design workflow abstractions that would be useful to make 

methods more understandable and comparable.  Table 1 

summarizes the issues identified earlier and the 

corresponding proposed abstractions to address them. 
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Table 1. An overview of the issues identified in the papers 

analyzed and abstractions proposed to address them. 

Issue identified Abstraction 

approach 

1) Method descriptions in scientific articles 

mix mentions of software, data formats, and 

scientific descriptions of the experiment 

Step 

abstractions 

2) Paper descriptions of conceptual steps 

contain very limited information about how 

they map to software 

Sub-

workflow 

and step 

abstractions 

3) Paper descriptions of software contain 

limited information about what conceptual 

steps they implement 

Sub-

workflow 

and step 

abstractions 

4) A given function can be implemented by 

many software packages 

Step 

abstractions 

5) A given software package has many 

functions 

Step 

abstractions 

6) A computational step may perform a data 

reformatting, conversion, or other minor 

step that is not conceptually important  

Criticality 

abstractions 

7) Data is often described based on its 

format rather than its contents 

Data 

abstractions 

8) Data formats are sometimes used when 

data is generated in idiosyncratic formats by 

the specific software used 

Data 

abstractions 

9) Data of the same type can play very 

different roles in a method 

Data 

abstractions 

10) Data results of the same type may be 

combined, filtered, or sorted in ways that 

are not considered important to mention in 

the paper 

Criticality 

abstractions 

 

4.1 Step Abstractions 

A computational workflow can be described at a conceptual 

level in terms of the functions that each step carries out.  

Figure 2 describes the same workflow introduced in Figure 

1.  While Figure 1 describes the software implementation 

of each step, Figure 2 characterizes the function of each 

step. 

 

 

 
Figure 2: A computational workflow that corresponds to 

the workflow in Figure 1 but where each step is described 

conceptually.   

 

At the same time, the software steps in Figure 1 and the 

conceptual steps of Figure 2 should be mapped to one 

another. This can be done through a hierarchy of 

component functions, which defines many conceptual 

functions at different levels of detail.  The hierarchy 

bottoms out with mentions of software that implements the 

parent function.  Note that there may be several software 

implementations of the same abstract function. 
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Figure 3: A hierarchy of component functions to describe 

method steps.  The software steps in Figure 1 are shown in 

dark blue, and the abstract steps in Figure 2 are shown in 

green, both from [TCGA 2008].  Additional steps in 

[Imielinski et al 2012] are shown in purple, and those in 

[Zhang et al 2014] are shown in light blue. 

 

     Figure 3 shows a hierarchy of component functions for 

the steps in Figures 1 and 2. The function in a given node 

represents a more specific function than the function of its 

parent node.  It also includes steps for the other two articles 

that we analyzed.  Using this hierarchy, it becomes possible 

to relate the method steps of the three articles.   

     When designing a workflow, two distinct types of 

workflows should be created.  One type of workflow is an 

abstract workflow, with abstract components that 

correspond to the more general functions in the hierarchy. 

These abstract workflows capture the general functionality 

of methods, and they would be independent of the software 

used to implement it. A second type of workflow would be 

a grounded workflow, which would specify what software 

is used to implement each step.   

     We find that in practice it is hard to create a complete 

hierarchy of component functions before creating the 

workflows.  We recommend an iterative process, where an 

initial hierarchy is created and then refined as the 

workflows are fleshed out. 

     Depending on the depth of the hierarchy of component 

functions there could be several abstract workflows that 

could have different levels of detail and generality.  Each 

abstract workflow may be useful to a different reader, 

depending on the level of detail that they are looking to 

find.  At the same time, if the workflow contains 

descriptions of the steps that are too general, it may not be 

very helpful to a reader.  Workflow designers should design 

appropriate conceptual levels.   

     A hierarchy of component functions becomes a 

powerful enabler for automation.  Given a concrete 

workflow, the hierarchy could be used to generate abstract 

workflows automatically.  Conversely, given an abstract 

workflow, the hierarchy could be used to specialize it and 

create a concrete workflow.  [Gil et al 2011] describe 

algorithms to do this kind of automation. 

 

4.2 Sub-Workflows 

Several components may implement different aspects of the 

same function.  For example, in the workflow of Figures 1 

and 2 the Polyphred software and the Polyscan software 

implement SNP calling and indel calling respectively, 

which are two aspects of variant calling.  The software 

Annotate_MafFormat annotates the resulting variants with 

respect to reference genomes.  All three steps could be 

considered as a sub-workflow, with an overarching abstract 

function of detecting and annotating variants.   

     A knowledge base of sub-workflows would capture these 

functional decompositions.  A sub-workflow would consist 

of a root abstract component, which indicates the 

overarching abstract function, and a workflow fragment that 

decomposes that function into a set of components at a 

lower level of abstraction and the dataflow among them.  

Data abstractions should be taken into account as well as 

the sub-workflows express functions of different 

abstraction levels.  We discuss data abstractions below. 

     When designing a workflow, steps that are functionally 

related should be organized as sub-workflows.  There may 

be alternative ways to group steps in a workflow.  

Workflow designers should make decisions based on the 

expected use of the sub-workflow decompositions by 

readers.  The knowledge base of sub-workflows could be 

dynamically extended based on a growing corpus of 

workflows created by users.  [Garijo et al 2014c] describe 

techniques to detect workflow fragments automatically. 

 

4.3 Criticality 

Some steps in a workflow perform functions that are 

critical to the overall computational method, while other 

steps carry out minor format conversions and other 

ancillary functions.  For example, the workflow in Figures 

1 and 2 has a step to merge several files.  Other workflows 

have reformatting steps, unit conversion steps, and other 

functions that manage the details of how the data is 

implemented. When describing a method in a paper, these 

ancillary functions are rarely mentioned.  There may be 
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different degrees of criticality, depending on how much 

detail each reader is interested in seeing. 

     This kind of abstraction could be captured in a hierarchy 

of criticality levels.  This hierarchy would identify the 

importance of including a step in a scientific description of 

a method.  [Garijo et al 2014b] describe an approach to 

identifying criticality based on a library of workflow motifs 

that include data pre-processing, visualization, and format 

conversion.  Criticality levels are highly dependent on the 

specific domain, but a broad methodology to design those 

categories could be more generally designed. 

 

4.4 Data Abstractions 

Data type abstractions should be included in all three 

hierarchies above.  The data type in a node would represent 

data that is of a more specific type than its parent node, for 

example because it is of a subtype or has more specific 

metadata properties. In the hierarchy of component 

functions, each abstract component function should specify 

inputs and outputs in terms of those general types.  At the 

bottom of the hierarchy, a component is specified with a 

specific software invocation, including the exact command 

line call to invoke the software and all the input data types 

and formats that the software expects. In the hierarchy of 

sub-workflows, the root component may refer to data types 

that are more abstract than those of the workflow fragment.   

     Data abstractions depend on the domain.  In multi-

omics, there are many aspects of data that can be described 

in very specific terms but can be abstracted away when 

describing an experiment in scientific terms.  

Characteristics of a dataset that can lead to useful data 

abstractions include: 1) type of sequence, such as RNA, 

DNA, etc.; 2) annotations on those sequences, such as 

indels, CNVs, SNPs, etc.; 3) formats that are often imposed 

by how software works, such as FASTA, MAF, phd, etc.; 

4) level of detail or accuracy on the sequences, for example 

sequences obtained with next-generation sequencing 

machines are more accurate; 5) the role of a dataset for a 

specific component, for example a sequence can be a 

patient sequence or a reference sequence. 

     Workflow designers should create a taxonomy of data 

abstractions that facilitate the abstractions needed for the 

three hierarchies discussed earlier.  In our work, we have 

found that a proliferation of data types makes the creation 

of workflows more complex.  Instead, we create properties 

for describing the different characteristics of data.   

 

 

5  CONCLUSIONS 

This paper motivates the need for capturing abstractions in 

the design scientific workflows.  These abstractions are 

based on our analysis of published articles and the 

workflows created to reconstruct their methods.  The 

proposed abstractions are captured in hierarchies of 

component functions and criticality as well as knowledge 

bases of sub-workflows, and need to be supported by data 

abstractions.  Using these abstractions, different workflows 

can be created to describe the same computation for readers 

with different interests.  In future work, we plan to develop 

these abstractions for a target domain and associated 

publications, in order to demonstrate their benefits. 
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