
Improving Publication and Reproducibility of Computational

Experiments through Workflow Abstractions

Yolanda Gil
Information Sciences Institute

University of Southern California

USA

gil@isi.edu

Daniel Garijo
Information Sciences Institute

University of Southern California

USA

dgarijo@isi.edu

Margaret Knoblock
Information Sciences Institute

University of Southern California

USA

mrk022@bucknell.edu

Alyssa Deng
Information Sciences Institute

University of Southern California

USA

shipingd@andrew.cmu.edu

Ravali Adusumilli
School of Medicine

Stanford University

USA

ravali@stanford.edu

Varun Ratnakar
Information Sciences Institute

University of Southern California

USA

varunr@isi.edu

Parag Mallick

School of Medicine

Stanford University

USA

paragm@stanford.edu

ABSTRACT

The current practice of publishing articles solely containing

textual descriptions of methods is error prone and incomplete.

Even when a reproducible workflow or notebook is linked to an

article, the text of the article is not well integrated with those

computational components, and the workflow and notebook are

focused mostly on implementation details that are disconnected

from the scientific approach described in the text of the article.

Through an analysis of three multi-omics articles, we illustrate

why this makes it difficult to understand, reproduce, compare, and

reuse computational methods. We propose workflow abstractions

that that capture different concepts and perspectives that are

important to scientists. These abstractions connect the text of an

article to the corresponding workflow, and provide a framework

to improve the publication and reproducibility of computational

experiments.

CCS CONCEPTS

• Information systems → Artificial intelligence; Knowledge

representation and reasoning

KEYWORDS

Reproducibility, semantic workflows, semantic science

1 INTRODUCTION

The reproducibility crisis in science has received

significant attention. Reproducibility requires that methods

are described with enough details to repeat the experiment

in an independent lab or setting. For computational

experiments, studies show that published papers often

provide insufficient information about the data, protocols,

software, and overall method used to obtain the new results

[Van Noorden 2015]. A major barrier to reproducibility

can be traced to the traditional, unstructured format of

publications “materials and methods” sections. The

ambiguity, imprecision, and linearity of text make natural

language descriptions of computational analyses inadequate

for reproducible research [Steehouder et al 2000; Garijo et

al 2013; Gil 2015; Groth and Gil 2009]. A major problem

is that there is no guidance or methodology to describe

computational methods in articles. It is unclear what the

intent of the descriptions in methods sections is. Is the goal

to provide a step-by-step account of the procedures taken,

parameters employed, and data provenance such that a

study might be reproduced? Alternately, is the goal to

provide a high-level intuition for the steps that were

performed? Both are valuable but are incompatible

objectives in current text-based descriptions, leading to

neither an intuitive reading experience nor a reproducible

description.

K-CAP2017 Workshops and Tutorials Proceedings,

© Copyright held by the owner/author(s)

K-CAP’17 SciKnow, December 2017, Austin, TX, USA Y. Gil et al.

2

 Computational workflows and notebooks can be used to

organize and record computational methods, and are often

linked to publications. Workflows capture the dataflow

among computations, so the different steps of the method

are explicitly represented and linked. Notebooks are

composed of cells that contain either text or code that can

be easily re-run. Workflows and notebooks facilitate the

documentation of the software and the structure of a

computational method. But even when workflows and

notebooks are used, the text for those publications is always

manually generated by the authors and often inadequately

captures the full complexity of an analysis, leading to poor

reproducibility. In prior work, we developed an approach

to automatically create descriptions of computational

methods by generating text from workflows [Gil and Garijo

2017], where the text accurately represents what was done

and can be presented from different perspectives. The text,

however, can only be as good as the workflows that it was

generated from. This motivates the need for a workflow

design methodology that leads to workflow representations

that support the automated generation of explanations as

text that can be used in publications.

 This paper proposes abstractions designed to improve

the publication of computational methods to facilitate

reproducibility. This methodology extends our prior work

on representing and publishing workflow abstractions using

community standards for workflows and provenance

[Garijo et al 2017].

 The paper begins with an overview of related work on

reproducibility and publication of computational methods.

We then present an analysis of the computational methods

described in three seminal papers in cancer omics. We

introduce the abstractions proposed, and discuss their

merits in improving the descriptions of computational

methods in scientific publications.

2 PUBLICATION AND

REPRODUCIBILITY OF

COMPUTATIONAL METHODS

Textual descriptions of methods in articles may be

incomplete (e.g., [Ioannidis et al 2009; Donoho et al

2009]). Authors focus on conveying the major

contributions of the work and describe the methods in that

light, omitting details that may be important for

transparency and reproducibility. For example, [Garijo et al

2013] describes our work to reproduce an article for which

the authors had provided the data, software, and results to

facilitate reproducibility. We created reproducibility maps,

that showed different categories of users could figure out

from the text of the paper how the work was done. The

reproducibility maps showed that only researchers with the

same level of expertise in the subject as the authors were

able to figure out how to fully reproduce the work. There

are many similar results in the literature, some mentioning

the lack of publication of data [Ioannidis et al 2009] and

others the lack of details in the description of methods

leading to “exercises in ‘forensic bioinformatics’ where

aspects of raw data and reported results are used to infer

what methods must have been employed” [Baggerly and

Coombes 2009]. There are several reasons why text

descriptions of methods are riddled with problems. First,

articles often have space limitations, so authors tend to omit

anything that seems not important. Second, they are

manually written without any particular guidance, it is easy

for authors to provide imprecise descriptions. Finally,

computational methods are often complex procedures with

non-linear structures that are hard to describe with the

sequential nature of text [Gil 2015]. Even when authors

endeavor to describe enough details, textual descriptions

are often ambiguous. A study reported in [Ince et al 2012]

looked at writing software from scratch based on the

textual descriptions reported in geophysics papers and

found radical differences in the implementations. The

papers were found to be ambiguous at the lexical, syntactic,

and semantic level, and not necessarily because the authors

were not rigorous but because natural language is

inherently ambiguous. We also find that the methods

sections of articles mix general methods with specific

details of the executions carried out [Gil and Garijo 2017].

Although there are many tools and recommendations of

best practices for authors [Stodden et al 2016], it is still up

to them to figure out what to include in an article and its

methods section. In summary, textual descriptions of

methods in articles are far from ideal, since the text tends to

be: 1) Incomplete, omitting important details about the

computations performed; 2) Ambiguous, having several

interpretations of how the computations were actually

done; 3) Mingled, interspersing general overviews with

execution details.

 Workflows capture unambiguously a computational

analysis as a dataflow among steps [Taylor et al 2006]. In

prior work, we found that workflow reusability is a major

drive for users [Garijo et al 2014a]. Workflow repositories

provide mechanisms to publish and search workflows,

particularly to improve reproducibility and sharing of

computational experiments. However, the descriptions of

workflows are manually generated and therefore are as

incomplete as those in scientific articles. In prior work we

A Workflow Design Methodology to Improve Reproducibility K-CAP’17 SciKnow, December 2017, Austin, TX, USA

 3

analyzed the textual descriptions of workflows from one of

these repositories [Groth and Gil 2009]. We found

significant differences between what was included in the

textual descriptions and the actual formal specification of

the workflows. A major limitation of workflow

representations is that they mix major method steps with

ancillary steps that do for example minor data reformatting.

Also in previous work, we analyzed workflows to identify

by hand general categories of steps (motifs) that make such

distinctions [Garijo et al 2014b]. But workflows in

themselves have no explicit mention of the relative

importance of steps and all steps are treated equally. In

summary, although workflows provide a formal

computational representation of methods, the workflows

themselves are: 1) Incomplete, because workflow

representations do not express important semantic

properties of steps; 2) Flat, with abstractions often absent

from the workflow structure; and 3) Undifferentiated, as

there is no explicit distinction between important steps and

ancillary steps.

 A recent popular trend is electronic notebooks, such as

Jupyter Notebook and Apache Zeppelin, where the

advantage is that the text is intermixed with data and code

so it is easier to follow step by step how the method

actually works. This approach is akin to executable papers

which have been around for some time, such as Sweave

and knitr which combine Latex and R [Xie 2015].

However, a reader cannot easily compare two notebooks,

since that requires comparing the code line by line, and

cannot easily reuse parts of one to create another since the

code in notebook cells is not necessarily modular. In

addition, although notebooks are easily published and

shared they have not replaced published papers, possibly

due to their idiosyncratic formats which do not yet offer the

persistence and archival guarantees required by publishers.

 In summary, in order to understand a published article,

and assess its validity, reproduce the work, or to compare

its method to another article, a reader must do a significant

amount of work. Even when authors capture computational

methods as workflows, there is no guidance on how to

facilitate reproducibility and reuse. The next section

analyzes specific articles in detail as motivating scenarios,

and extracts desiderata for workflow design.

3 AN ANALYSIS OF MULTI-OMICS

METHODS

This section motivates our work in the context of three

seminal articles in multi-omics: [Zhang et al 2014], which

is the first publication of a large-scale multi-omics analysis,

[TCGA 2008] and [Imielinski et al 2012] which describe

work on genomics that Zhang and colleagues built upon. A

detailed analysis of all three articles is provided in

[Knoblock 2017].

3.1 Method Descriptions

The methods section of a scientific article describes,

together with the supplementary materials, the data and

computational steps used for data analysis. We illustrate

how methods are typically described using excerpts from

[TCGA 2008] for variant calling from resequencing data,

where SNPs and indels were screened against dbSNP for

position/allele match. First, “Putative variants were

identified using Polyphred 6.1, Polyscan 3.0, SNPdetector

3, and SNP Compare. SNPs and indels were screened

against dbSNP for position/allele match”. This excerpt

describes the software, although it refers to entire packages

and not how they are used in the method. Then,

“Boundaries of insertion, deletion and complex

rearrangements [were] annotated”, and the detailed

annotation guidelines are outlined in the article. That

excerpt focuses on the science method. Next, “The first

step in analysis of the mutation data was to combine the

.maf files from all centers into a .mut file containing at

most one record for each site-sample pair. In the process of

combining the files, care was taken to detect and resolve

conflicts between multiple records for the same site-

sample”. This excerpt is focused on low level

implementation aspects such as file formats and handling

duplicate entries. And finally, “As part of our sequencing

pipeline, non-synonymous mutations were subjected to an

orthogonal validation or re-sequencing (verification) step

to decrease the prevalence of false positives. In our

analysis we considered only those mutations that were

confirmed by validation or verification to be actual somatic

mutations”. This excerpt focuses on the science aspects of

the analysis, but it does not specify how each step of the

method are implemented by the software packages

mentioned earlier.

 This is a common approach to describing methods.

Method descriptions in scientific articles mix mentions

of software, data formats, and scientific descriptions of

the experiment.

 Figure 1 shows a workflow that a biologist created

based on the method description in the article. Not

surprisingly, the workflow steps are also mixture of science

concepts and software implementation and data formats.

Note that this makes it hard for another scientist to

understand and therefore reuse the workflow.

K-CAP’17 SciKnow, December 2017, Austin, TX, USA Y. Gil et al.

4

Figure 1: Computational workflow to annotate variant

calling for resequencing data, based on [TCGA 2008].

Each workflow step (square boxes) is described as the

software that implements the step.

 A scientist may not be familiar with the different

software packages (there are hundreds of packages that are

available for this kind of analysis), and therefore would not

understand the function of each step. Therefore, the design

of workflows should accommodate the separation between

the conceptual description of the experiment and the

implementation of the experiment in software.

3.2 Software Descriptions

Each step in a method can be described at a conceptual

level in terms of the function that it performs, and at an

implementation level as the software used for the step. For

the articles we analyzed, these descriptions are as follows:

 Base caller (Phred software): Assembling genome

for genomic alignment/features.

 Genome assembly (Consed software): Calling

genomic bases from input files.

 SNP caller (Polyphred software): Calling SNPs

from the input genomic file (variant calling).

 Indel and SNP caller: (PolyScan software):

Calling both indels and SNPs (variant calling).

 Variant annotation (Annotate_ MAFFormat

software): Annotating variants based on reference

genomes.

 Join data files (mutipleFilesToOne software):

Appending multiple text files.

 Filter data files (filt_MAF_file software): Variant

filtering based on input parameters.

 We make a few observations about how the software is

presented in the article and used in the computational

method.

 Paper descriptions of conceptual steps contain very

limited information about how they map to software.

Given the capabilities of the software used, conceptual

steps may be mapped to several implemented steps, and

vice versa. For example, Polyphred and Polyscan are two

separate steps, both implement variant calling but the

former does SNP calling only and the latter implements

indel and SNP calling steps. Therefore, a requirement in

designing a workflow is that it must make clear how each

step is implemented in software.

 Paper descriptions of software contain limited

information about what conceptual steps they

implement. For example [TCGA 2008] says: “Putative

variants were identified using Polyphred 6.1, Polyscan 3.0,

SNPdetector 3, and SNP Compare.” Four pieces of

software are mentioned, but there are no details that specify

what types of variants are detected by each of them.

Therefore, in designing a workflow, the mapping of

conceptual steps to software must be clearly stated.

 A given function can be implemented by many

software packages. There are many software packages that

provide a desired functionality. As a result, identical

functions in different methods may be implemented by

different software, making it hard for a scientist to compare

workflows. For example, in the workflow in Figure 1 the

Consed software is used to perform the genome assembly

step. In [Zhang et al 2014], Tophat2 performs this genome

assembly step. Therefore, a requirement is that the software

steps be described according to their functionality, so that

the methods for several papers can be more easily

compared by a scientist. Functions should be specified for

A Workflow Design Methodology to Improve Reproducibility K-CAP’17 SciKnow, December 2017, Austin, TX, USA

 5

each method step so that the correspondences across

different software implementations for the same conceptual

step will be explicit.

 A given software package has many functions. In

comparing software to the workflows built from them, we

found that many scientific software packages have a large

number of functions. Though it is useful for scientists to

have multiple functions in one software package, in

research papers it can be difficult to tell what software

packages are being used for what functions. Sometimes the

functionality of a software package is quite broad. For

example, the SAMtools software package, used in [Zhang

et al 2014], can be used for Variant Calling and Variant

Filtering but the article does not explicitly indicate for what

function it is used. Therefore, when specifying what

software is used to implement a step in a method, it is vital

to indicate the specific function of that software to make it

unambiguous what conceptual function the software is

implementing.

 A computational step may perform a data

reformatting, conversion, or other minor step that is not

conceptually important and therefore is not mentioned

in the article. Without a description of these steps, it may

not be possible to interpret the results appropriately or to

reproduce the method.

 In summary, the descriptions of method steps and their

implementation in software that are typically found in

scientific articles are very ambiguous and incomplete.

Computational workflows can eliminate this ambiguity, but

they must be intentionally designed to be unambiguous and

complete.

3.3 Data Descriptions

Like software, data is described in scientific papers with a

mixture of high-level concepts and low-level format

references.

 Data is often described based on its format rather

than its contents. We saw examples of this in the earlier

article excerpts. Therefore, a requirement in the design of

workflows is that data abstractions should be used to

complement step abstractions.

 Data formats are sometimes used when data is

generated in idiosyncratic formats by specific software

used. This can be seen in Figure 1. The Phred software

generates output in a format called phd, and as a result the

workflow indicates phd_File which is specific to Phred.

Thus, a user of the workflow unfamiliar with Phred would

find it hard to understand that format. Therefore, a

requirement in describing software steps and data in a

workflow is to represent explicitly what formats are

imposed by the use of specific software packages.

 Data of the same type can play very different roles

in a method. In the workflow in Figure 1, the

varAnnotParams input is an annotated variant parameter

file but this type is not represented explicitly. Moreover, it

is also not the only annotated file that is input to this

method, but is the only one with a name that mentions

annotation. Therefore, a requirement is to describe data

conceptually according to the type of data contained, and

that different data used or generated in the workflow be

related by those types.

 Data results of the same type may be combined,

filtered, or sorted in ways that are not considered

important to mention in the paper. Readers must

hypothesize these data manipulations.

3.4 Discussion

Through examples we have illustrated that the text

descriptions of methods sections of articles makes them

hard to reconstruct and replicate into an unambiguous and

complete workflow. This is because papers describe

methods in a mix of high-level conceptual terms together

with mentions of specific software and formats. This

makes it hard to understand and compare methods.

Another observation is that different readers might be

interested in different descriptions of the methods, some

more abstract and some more specific. For example, a

developer would be interested in data formats and software

versions, while a biologist would be more interested in the

overall statistical approach used.

 Ideally, method descriptions would make clear

distinctions between high-level conceptual terminology and

implementation terms, both for software and for data. In

addition, method descriptions would make it clear what

function each step performs, and whether a given function

is implemented by a single step or by a set of steps. These

desiderata lead us to propose workflow abstractions for

describing computational experiments in a paper.

4 WORKFLOW ABSTRACTIONS

A computational method is typically described in terms of

the specific software, data, and formats used. However,

there are many ways to describe a method

conceptually. This section describes different ways to

design workflow abstractions that would be useful to make

methods more understandable and comparable. Table 1

summarizes the issues identified earlier and the

corresponding proposed abstractions to address them.

K-CAP’17 SciKnow, December 2017, Austin, TX, USA Y. Gil et al.

6

Table 1. An overview of the issues identified in the papers

analyzed and abstractions proposed to address them.

Issue identified Abstraction

approach

1) Method descriptions in scientific articles

mix mentions of software, data formats, and

scientific descriptions of the experiment

Step

abstractions

2) Paper descriptions of conceptual steps

contain very limited information about how

they map to software

Sub-

workflow

and step

abstractions

3) Paper descriptions of software contain

limited information about what conceptual

steps they implement

Sub-

workflow

and step

abstractions

4) A given function can be implemented by

many software packages

Step

abstractions

5) A given software package has many

functions

Step

abstractions

6) A computational step may perform a data

reformatting, conversion, or other minor

step that is not conceptually important

Criticality

abstractions

7) Data is often described based on its

format rather than its contents

Data

abstractions

8) Data formats are sometimes used when

data is generated in idiosyncratic formats by

the specific software used

Data

abstractions

9) Data of the same type can play very

different roles in a method

Data

abstractions

10) Data results of the same type may be

combined, filtered, or sorted in ways that

are not considered important to mention in

the paper

Criticality

abstractions

4.1 Step Abstractions

A computational workflow can be described at a conceptual

level in terms of the functions that each step carries out.

Figure 2 describes the same workflow introduced in Figure

1. While Figure 1 describes the software implementation

of each step, Figure 2 characterizes the function of each

step.

Figure 2: A computational workflow that corresponds to

the workflow in Figure 1 but where each step is described

conceptually.

At the same time, the software steps in Figure 1 and the

conceptual steps of Figure 2 should be mapped to one

another. This can be done through a hierarchy of

component functions, which defines many conceptual

functions at different levels of detail. The hierarchy

bottoms out with mentions of software that implements the

parent function. Note that there may be several software

implementations of the same abstract function.

A Workflow Design Methodology to Improve Reproducibility K-CAP’17 SciKnow, December 2017, Austin, TX, USA

 7

Figure 3: A hierarchy of component functions to describe

method steps. The software steps in Figure 1 are shown in

dark blue, and the abstract steps in Figure 2 are shown in

green, both from [TCGA 2008]. Additional steps in

[Imielinski et al 2012] are shown in purple, and those in

[Zhang et al 2014] are shown in light blue.

 Figure 3 shows a hierarchy of component functions for

the steps in Figures 1 and 2. The function in a given node

represents a more specific function than the function of its

parent node. It also includes steps for the other two articles

that we analyzed. Using this hierarchy, it becomes possible

to relate the method steps of the three articles.

 When designing a workflow, two distinct types of

workflows should be created. One type of workflow is an

abstract workflow, with abstract components that

correspond to the more general functions in the hierarchy.

These abstract workflows capture the general functionality

of methods, and they would be independent of the software

used to implement it. A second type of workflow would be

a grounded workflow, which would specify what software

is used to implement each step.

 We find that in practice it is hard to create a complete

hierarchy of component functions before creating the

workflows. We recommend an iterative process, where an

initial hierarchy is created and then refined as the

workflows are fleshed out.

 Depending on the depth of the hierarchy of component

functions there could be several abstract workflows that

could have different levels of detail and generality. Each

abstract workflow may be useful to a different reader,

depending on the level of detail that they are looking to

find. At the same time, if the workflow contains

descriptions of the steps that are too general, it may not be

very helpful to a reader. Workflow designers should design

appropriate conceptual levels.

 A hierarchy of component functions becomes a

powerful enabler for automation. Given a concrete

workflow, the hierarchy could be used to generate abstract

workflows automatically. Conversely, given an abstract

workflow, the hierarchy could be used to specialize it and

create a concrete workflow. [Gil et al 2011] describe

algorithms to do this kind of automation.

4.2 Sub-Workflows

Several components may implement different aspects of the

same function. For example, in the workflow of Figures 1

and 2 the Polyphred software and the Polyscan software

implement SNP calling and indel calling respectively,

which are two aspects of variant calling. The software

Annotate_MafFormat annotates the resulting variants with

respect to reference genomes. All three steps could be

considered as a sub-workflow, with an overarching abstract

function of detecting and annotating variants.

 A knowledge base of sub-workflows would capture these

functional decompositions. A sub-workflow would consist

of a root abstract component, which indicates the

overarching abstract function, and a workflow fragment that

decomposes that function into a set of components at a

lower level of abstraction and the dataflow among them.

Data abstractions should be taken into account as well as

the sub-workflows express functions of different

abstraction levels. We discuss data abstractions below.

 When designing a workflow, steps that are functionally

related should be organized as sub-workflows. There may

be alternative ways to group steps in a workflow.

Workflow designers should make decisions based on the

expected use of the sub-workflow decompositions by

readers. The knowledge base of sub-workflows could be

dynamically extended based on a growing corpus of

workflows created by users. [Garijo et al 2014c] describe

techniques to detect workflow fragments automatically.

4.3 Criticality

Some steps in a workflow perform functions that are

critical to the overall computational method, while other

steps carry out minor format conversions and other

ancillary functions. For example, the workflow in Figures

1 and 2 has a step to merge several files. Other workflows

have reformatting steps, unit conversion steps, and other

functions that manage the details of how the data is

implemented. When describing a method in a paper, these

ancillary functions are rarely mentioned. There may be

K-CAP’17 SciKnow, December 2017, Austin, TX, USA Y. Gil et al.

8

different degrees of criticality, depending on how much

detail each reader is interested in seeing.

 This kind of abstraction could be captured in a hierarchy

of criticality levels. This hierarchy would identify the

importance of including a step in a scientific description of

a method. [Garijo et al 2014b] describe an approach to

identifying criticality based on a library of workflow motifs

that include data pre-processing, visualization, and format

conversion. Criticality levels are highly dependent on the

specific domain, but a broad methodology to design those

categories could be more generally designed.

4.4 Data Abstractions

Data type abstractions should be included in all three

hierarchies above. The data type in a node would represent

data that is of a more specific type than its parent node, for

example because it is of a subtype or has more specific

metadata properties. In the hierarchy of component

functions, each abstract component function should specify

inputs and outputs in terms of those general types. At the

bottom of the hierarchy, a component is specified with a

specific software invocation, including the exact command

line call to invoke the software and all the input data types

and formats that the software expects. In the hierarchy of

sub-workflows, the root component may refer to data types

that are more abstract than those of the workflow fragment.

 Data abstractions depend on the domain. In multi-

omics, there are many aspects of data that can be described

in very specific terms but can be abstracted away when

describing an experiment in scientific terms.

Characteristics of a dataset that can lead to useful data

abstractions include: 1) type of sequence, such as RNA,

DNA, etc.; 2) annotations on those sequences, such as

indels, CNVs, SNPs, etc.; 3) formats that are often imposed

by how software works, such as FASTA, MAF, phd, etc.;

4) level of detail or accuracy on the sequences, for example

sequences obtained with next-generation sequencing

machines are more accurate; 5) the role of a dataset for a

specific component, for example a sequence can be a

patient sequence or a reference sequence.

 Workflow designers should create a taxonomy of data

abstractions that facilitate the abstractions needed for the

three hierarchies discussed earlier. In our work, we have

found that a proliferation of data types makes the creation

of workflows more complex. Instead, we create properties

for describing the different characteristics of data.

5 CONCLUSIONS

This paper motivates the need for capturing abstractions in

the design scientific workflows. These abstractions are

based on our analysis of published articles and the

workflows created to reconstruct their methods. The

proposed abstractions are captured in hierarchies of

component functions and criticality as well as knowledge

bases of sub-workflows, and need to be supported by data

abstractions. Using these abstractions, different workflows

can be created to describe the same computation for readers

with different interests. In future work, we plan to develop

these abstractions for a target domain and associated

publications, in order to demonstrate their benefits.

Acknowledgements. We gratefully acknowledge support

from the Defense Advanced Research Projects Agency

through the SIMPLEX program with award W911NF-15-1-

0555, the National Institutes of Health with awards

1U01CA196387 and 1R01GM117097, and the Canary

Foundation.

REFERENCES

[Baggerly and Coombes 2009] Baggerly KA, and KR

Coombes. “Deriving Chemosensitivity from Cell Lines:

Forensic Bioinformatics and Reproducible Research in

High-Throughput Biology.” Annals of Applied Statistics 3

(4), 2009.

[Donoho et al 2009] Donoho DL, Maleki A, Rahman IU,

Shahram M, and V Stodden. “Reproducible Research in

Computational Harmonic Analysis.” Computing in Science

& Engineering 11 (1): 8–18, 2009.

[Garijo et al 2013] Garijo D, Kinnings S, Xie L, Xie L,

Zhang Y, Bourne PE, and Y Gil. “Quantifying

Reproducibility in Computational Biology: The Case of the

Tuberculosis Drugome.” PLoS ONE 8 (11), 2013.

[Garijo et al 2014a] Garijo D, Corcho O, Gil Y, Braskie

MN, Hibar D, Hua X, Jahanshad N, Thompson P, and Toga

AW. “Workflow Reuse in Practice: A Study of

Neuroimaging Pipeline Users.” Proceedings of the 10th

IEEE International Conference on e-Science, 2014.

[Garijo et al 2014b] Garijo D, Alper P, Belhajjame K,

Corcho O, Gil Y, and C Goble. “Common Motifs in

Scientific Workflows: An Empirical Analysis.” Future

Generation Computer Systems 36, 2014.

[Garijo et al 2014c] Garijo D, Corcho O, Gil Y, Gutman

BA, Dinov ID, Thompson P, and AW Toga. 2014.

“FragFlow: Automated Fragment Detection in Scientific

A Workflow Design Methodology to Improve Reproducibility K-CAP’17 SciKnow, December 2017, Austin, TX, USA

 9

Workflows.” Proceedings of the 10th IEEE International

Conference on e-Science, 2014.

[Garijo et al 2017] Garijo D, Gil Y, and O Corcho.

“Abstract, Link, Publish, Exploit: An End to End

Framework for Workflow Sharing.” Future Generation

Computer Systems, 2017.

[Gil 2015] Gil, Y. “Human Tutorial Instruction in the

Raw.” ACM Transactions on Interactive Intelligent

Systems, 5 (1): 1–29, 2015.

[Gil and Garijo 2017] Gil Y, and D Garijo. “Towards

Automating Data Narratives.” Proceedings of the ACM

Conf. on Intelligent User Interfaces, 2017.

[Gil et al 2011] Gil Y, Gonzalez-Calero PA, Kim J, Moody

J, and V. Ratnakar. “A Semantic Framework for Automatic

Generation of Computational Workflows Using Distributed

Data and Component Catalogs.” Journal of Experimental

and Theoretical Artificial Intelligence, 23(4), 2011.

[Groth and Gil 2009] Groth P and Y Gil. “Analyzing the

Gap between Workflows and Their Natural Language

Descriptions.” Proceedings of the IEEE International

Workshop on Scientific Workflows (SWF), 2009.

[Knoblock 2017] Knoblock M. “Designing Useful

Abstractions for Multi-Omics Data Analysis.” Technical

Report, Information Sciences Institute, University of

Southern California, October 2017.

[Imielinski et al 2012] Imielinski M, Berger AH,

Hammerman PS, Hernandez B, et al. “Mapping the

hallmarks of lung adenocarcinoma with massively parallel

sequencing.” Cell;150(6):1107-20, 2012.

[Ince et al 2012] Ince DC, Hatton L, and J Graham-

Cumming. “The Case for Open Computer Programs.”

Nature, Vol 482, 2012.

[Ioannidis et al 2009] Ioannidis JPA, Allison DB, et al.

“Repeatability of Published Microarray Gene Expression

Analyses.” Nature Genetics 41 (2), 2009.

[TCGA 2008] The Cancer Genome Atlas (TCGA)

collaboration. “Comprehensive Genomic Characterization

Defines Human Glioblastoma Genes and Core Pathways”.

Nature, 455, 1061-1068, 23 October 2008.

[Stodden et al 2016] Stodden V, McNutt M, Bailey DH,

Deelman E, Gil Y, Hanson B, Heroux MA, Ioannidis JP,

and M Taufer. “Enhancing Reproducibility for

Computational Methods.” Science, 354, 2016.

[Steehouder et al 2000] Steehouder, M., Karreman, J. and

Ummelen, N. Making sense of step-by-step procedures.

Proceedings of 2000 Joint IEEE International and 18th

Annual Conference on Computer Documentation

(IPCC/SIGDOC 2000)

[Taylor et al 2006] Taylor IJ, Deelman E, Gannon DB, and

M Shields. “Workflows for e-Science: scientific

workflows for grids.” Springer, 2006.

[Van Noorden 2015] Van Noorden, R. Sluggish data

sharing hampers reproducibility effort. Nature, 2015.

[Xie 2015] Y Xie. “Dynamic Documents with R and

knitr.” CRC Press, 2015.

[Zhang et al 2014] Zhang B, Wang J, Wang X, et al.

“Proteogenomic Characterization of Human Colon and

Rectal Cancer.” Nature 513 (7518): 382–87, 2014.

