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ABSTRACT
Enriching and cleaning datasets are tasks relevant to most large-

scale knowledge graphs, which are known to be noisy and incom-

plete. In this paper, we propose one approach to fix wrong facts

which originate from confusion between entities. This is a common

source of errors in Wikipedia, from which DBpedia and YAGO are

extracted, and in open information extraction systems, e.g. NELL.

Our approach generates candidate subjects and objects to fix triples

by exploiting disambiguation links and approximate string match-

ing. We run our approach on DBpedia and NELL and perform a

manual evaluation of the generated corrections.

CCS CONCEPTS
• Information systems→Data cleaning; •Computingmethod-
ologies → Semantic networks; Statistical relational learn-
ing; Machine learning;

KEYWORDS
Knowledge graphs completion, error detection, data quality

1 INTRODUCTION
Knowledge graphs are known to be both often incomplete and

incorrect. Several link prediction and error detection methods have

been proposed, however, few of them explicitly focus on error

correction or address the problem of choosing which absent facts

should be added to the knowledge graph.

The problem is that the number of possible relation assertions

grows quadratically with the number of instances nc = n
2

inr − nf ,
where ni is the number of instances, nr the number of relations

and nf the number of existing facts in the graph. For large datasets

such as DBpedia, Wikidata and YAGO, computing the confidence

score of all these facts is challenging. While pruning possible facts

which violate ontology constraints, especially domain and range

restrictions of relations, can significantly reduce the search space,

the problem is still very challenging. To illustrate the size of the

search space, in DBpedia (2016-10) nc ≈ 4.4 × 10
17

facts; when

filtering those triples which violate the domain and range restriction

the number is reduced to nc ≈ 2.8 × 1017, which is still too large to

compute confidence for all those candidates.

A promising approach for enriching a KG with some of its miss-

ing facts is the correction of erroneous facts. Some of the wrong

facts which exist in a KG can be corrected. The error originates

from some problem in the knowledge acquisition process, or in the

source data. A good example of the latter are errors in Wikipedia,

which serves as the main source of DBpedia and YAGO. If any
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of the links in the infobox are wrong, the extraction process gen-

erates a wrong fact. NELL, on the other hand, has text as main

source of information and in many cases the source text has correct

information, which cannot be extracted correctly.

In both cases it is common that an instance is confused with an-

other one of a similar name (i.e., label or IRI). For example, the fact

formerTeam( Alan_Ricard, Buffalo_Bill) is an erroneous fact

from DBpedia which originates from a typo in Wikipedia: when

referring to the NFL team Buffalo_Bills, the s was missing, there-

fore, the NFL team was confused with the character Buffalo_Bill.
In NELL the entity insect_raccoon exists because of problems

when extracting the fact that raccoons prey on insects, and is con-

fused with mammal_raccoon.
Some relation assertion error detection approaches, such as PaTy-

BRED [4] and SDValidate [13], rely on type information, and since

erroneous type assertions are also a common problem, that might

result in correct relation assertions with an instance of incorrect or

incomplete types being wrongly identified as erroneous. Therefore,

combining such methods with type prediction [6, 12] is beneficial

to rule out cases where the error is detected rather due to a missing

or incorrect type of the subject or object than due to an erroneous

relation assertion.

Therefore, it is relevant to make a careful analysis of detected

errors, identify the source of each error, and if possible correct

them. In this paper, we propose CoCKG (Correction of Confusions

in Knowledge Graphs), an automatic correction approach which

resolves relation assertion errors caused by instance confusion.

The approach relies on error detection methods as well as type

predictors to asses the confidence of the corrected facts. It uses

approximate string matching and exploits both searching for enti-

ties with similar IRIs as well as Wikipedia disambiguation pages (if

available) to find candidate instances for correcting the facts.

2 RELATEDWORK
In the knowledge graph context, there are mainly error detection

and link prediction approaches. Both are closely related to our

problem: while error detection deletes wrong triples, link prediction

aims at adding new triples. In both cases, the approaches learn a KG

model which is capable of assigning confidence values to triples.

KG embedding models [1, 10, 14] are currently the best perform-

ing approaches in the link prediction task. Other models rely on

directly observed features, e.g., the path ranking algorithm (PRA)

[3]. A more detailed description of link prediction methods can be

found in [9]. It is important to note that none of the link predic-

tion approaches mentioned address the problem of covering the

candidate triples space (of size nc as discussed in the introduction).

Our approach, on the other hand, exploits the assumption that er-

roneous facts often have a corresponding correct fact in order to
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reduce that space. Error detection approaches, such as SDValidate

and PaTyBRED, focus on the detecting of already existing erroneous

triples. It has been shown that state-of-the-art embeddings perform

worse than PaTyBRED in the error detection task [5]. A survey

covering various KG refinement methods can be found in [11].

Rule-based systems, such as AMIE [2], cannot assign scores to

arbitrary triples. However, they could be used to restrict the nc
search space by identifying high confidence soft rules and using

the missing facts from instances where the rule does not hold as

candidates. Combining themwith previously mentioned KGmodels

would be an interesting line of reasearch, however, it is out of the

scope of this paper.

Wang et al. [15] studied the problem of erroneous links inWikipedia,

which is also the source of many errors of DBpedia. They model

the Wikipedia links as a weighted directed mono-relational graph,

and propose the LinkRank algorithm which similar to PageRank,

but instead of ranking the nodes (entities), it ranks the links. They

use LinkRank to generate candidates for the link correction and

use textual features from the description of articles to learn a SVM

classifier that can detect errors and choose the best candidate for

correction. While this is a closely related problem, which can help

mitigate the problem studied in this paper, their method cannot

be directly applied on arbitrary knowledge graphs. Our approach

takes advantage of the multi-relational nature of KGs, entity types,

ontological information and the graph structure.

3 PROPOSED APPROACH
Our approach consists of first running an error detection algorithm

(PaTyBRED in the case of this paper), selecting the top-k facts

most likely to be wrong. In the next step, the error is heuristically

verified to be an actual relation assertion error and not caused

by missing type assertions in the object or subject with a type

predictor tp. In the final step, candidate entities are retrieved, and

if any of the candidates significantly improves the likelihood of

the triple being right, we replace it by that candidate. The function

correct_triple in Algorithm 1 gives an overview of how CoCKG

works. The parameter K is the set of all triples in the knowledge

graph, Terr is the set of triple and confidence pairs generated by

the error detection model (ed), tp is the type predictor,mc is the
minimum confidence threshold, andmcд the minimum confidence

gain threshold, i.e. the ratio of the new and old triple scores. In the

next subsections we discuss the other parts in more details.

3.1 Type Prediction
After selecting the k triples most likely to be wrong, we first check

if their confidence is low because of missing or wrong instance

types (subject or object). In order to do that, we run a type predictor

tp on the subject and object instances. In this paper, we use as tp
a multilabel random forest classifier based on qualified links (i.e.

ingoing links paired with subject type and outgoing links paired

with object type), as described in [6]. If the set of predicted types of

the subject are different from the actual types, we change the type

features used by ed and compute a new confidence for the triple (c.f.

conf_nt). If the new score satisfiesmc andmcд, then we conclude

that the error was in the subject type assertions. The same is done

for the object, and if in neither case the confidence thresholds are

Algorithm 1 Knowledge base correction process

1: function correct_triples(K , Ter r , ed, tp,mc,mcд)
2: Tcorr ← ∅
3: for t, scoret ∈ Ter r do
4: s, p, o ← t
5: stp ← predict_types(tp, s )
6: otp ← predict_types(tp, o)
7: if ¬(conf_nt(ed, t, s, stp ) ∨ conf_nt(ed, t, o, otp )) then
8: scand ← get_candidates(s )
9: ocand ← get_candidates(o)
10: Tcand ← {(si , p, o) |si ∈ scand } ∪ {(s, p, oi ) |oi ∈ ocand }
11: Tcand ← Tcand − K
12: cbest ,maxconf ← nil, conf
13: for c ∈ Tcand do
14: if s ∈ domain (p ) ∧ o ∈ ranдe (p ) then
15: scorec ← conf(ed, c )
16: if scorec ≥ mc ∧ scorec /scoret ≥ mcд then
17: cbest ,maxconf ← c, scorec
18: end if
19: end if
20: end for
21: if cbest , nil then
22: Tcorr ← Tcorr ∪ {(cbest , t ) }
23: end if
24: end if
25: end for
26: return Tcorr
27: end function

satisfied, we proceed to the next part where we try to substitute

the subject and object with their respective lists of candidates.

Combining the type prediction process with the error detection

also has the advantage that the newly predicted types can be vali-

dated on triples containing the instance whose types were predicted.

This can help support, or contradict the type predictor, possibly

detecting types which are wrongly predicted by identifying triples

where the score is lowered with the new types.

3.2 Retrieving Candidates
One simple way to find candidate entities to resolve entity confu-

sions is to use the disambiguation links. Since disambiguation pages

are only available for Wikipedia-based knowledge graphs, and fur-

thermore are not available for each entity (e.g. Ronaldo has no

disambiguation page), and in some cases the disambiguation pages

miss important entities (e.g. the page Bluebird_(disambiguation)
misses the entity Bluebird_(horse), hence, we cannot correct the
fact grandisre(Miss_Potential,Bluebird)), we require an addi-

tional source of candidates.

Since in our experiments we consider DBpedia and NELL, which

have informative IRIs (in the case of DBpedia extracted from the

correspondent Wikipedia’s page), we search for candidate entities

which have similar IRIs. Alternatively, it could also be done with

entity labels. This would be useful in KGswhich have uninformative

IRIs (e.g. Wikidata and Freebase). For simplicity, in this paper, we

refer to the informative part of an IRI as the “name” of the entity.

Retrieving all the instances of similar names can be a complicated

task. This kind of problem is known as approximate stringmatching,

and it has been widely researched [8, 16]. For our method we use

an approximate string matching approach based on [7]. First, we

remove the IRI’s prefix andwork with the suffix as the entity’s name.

We then tokenize the names and construct a deletions dictionary

with all tokens being added with all possible deletions up to a
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maximum edit distance dmax threshold. This dictionary contains

strings as keys and lists with all tokens which can turn into the key

string with up to dmax deletions as values. Only pairs of tokens

which share a common deletion string can have an edit distance

less or equal than dmax . We also have a tokens dictionary which

has tokens as keys and lists of entities which contain a given token

as values. With that, given a token and a dmax we can easily obtain

all the entities which contain that a string approximately similar to

that token up to the maximum edit distance.

When searching for entities similar to a given entity, we perform

queries for every token of the entity’s name and we require that

all tokens are matched. That is, for a certain entity to be consid-

ered similar, it has to contain tokens similar to all the tokens of

the queried entity. A retrieved entity may have more tokens than

the queried entity, but not less. The idea is that in general, when

entering an entities name manually (e.g., in Wikipedia), it is com-

mon to underspecify the entity, but highly unlikely to overspecify

it. E.g., it is more likely that Ronaldo is wrongly used instead of

Cristiano_Ronaldo than the other way around. Furthermore, it

reduces the number of matched entities.

We also perform especial treatment on DBpedia and NELL entity

names because of peculiarities in their IRI structures. In DBpedia

it is common to have between parentheses information to help

disambiguate entities, which we consider unnecessary since the

entity types are used in the error detection method. In NELL the

first token is always the type of the entity, therefore, for similar

reasons, we ignore it.

3.3 Correcting Wrong facts
At this point, for each assertion identified as erroneous, we have

our list of candidate instances for subject and object from the disam-

biguation links and approximate string matching. We then compute

a custom similarity measure s (e1, e2) between an entity e1 and a

candidate e2. Each entity ei consists of a set of its tokens. The mea-

sure we propose consists of two components. The first is the sum

of Levenshtein (dL) distance of all matched tokens, and the second

considers the number of unmatched tokens to capture a difference

in specificity. The set of approximately matched token pairs is rep-

resented by µ (e1, e2) and the constant c is the weight of the second
component. This measure is used to sort the retrieved candidates,

to prune them in case there are too many, and to break ties when

deciding which of the top-scoring candidates should be chosen.

s (e1, e2) =
∑

(t1,t2 )∈µ (e1,e2 )

dL (t1, t2) + c
|e1 | − |µ (e1, e2) |

|e1|
(1)

In case the relation has domain or range restrictions, we remove

the candidates which violate these restrictions. Later, for each of

the candidates, we generate triples by substituting the subject and

object by each of the instances in its candidates lists (first substitute

subject only, then object only). That is, the total number of candidate

triples is the sum of the size of the subject and object candidates list.

We do not create candidate triples by substituting both the subject

and object at the same time because, although possible, we assume
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Figure 1: Manual evaluation on DBpedia and NELL respec-
tively

the simultaneous confusion of both instances to be highly unlikely.
1

This is also done in order to make the number of candidate triples

linear instead of quadratic.

We then remove the candidate triples which are already existent

in the KG. We compute the confidence of all candidate triples and

select that with highest confidence, given that mc and mcд are

satisfied. Our method then outputs a list of triple pairs containing

the wrong triple detected and the corrected triple predicted.

4 EXPERIMENTS
In our experiments we run CoCKG on DBpedia (2016-10) and NELL

(08m-690), then we manually evaluate the triples corrected by our

approach. We run PaTyBRED on both datasets and select top-1%

facts most likely to be errors to be processed by our correction

method. We classify each corrected fact in four different categories:

(1) WC: wrong fact turned into correct

(2) WW: wrong fact turned into another wrong fact

(3) CW: correct fact turned into wrong fact

(4) CC: correct fact turned into another correct fact

Our approach was run with mc = 0.75,mcд = 2 and entity

similarity measure with c = 1.52. That resulted in 24,973 corrections

on DBpedia and 616 correction on NELL. It also detected that 873

(569) errors were caused by wrong types in DBpedia (NELL). Since

manually evaluating all these corrections would be impossible, we

randomly select 100 correction on each to perform the evaluation.

The results of our manual evaluation are shown in Figure 1.

The proportion of facts successfully corrected (case 1) was rather

low. While our approach can potentially improve the results by

tweaking the parameters, and possibly using ensembles of different

type predictors and error detectors, it currently cannot be used as

a fully automatic approach. However, we believe that combining

our approach with active learning is a promising direction which,

with the help of specialists, could significantly improve results.

When evaluating some relations individually, we notice that

some of them achieve good results. E.g., the relations sire, damsire,
grandsire and subsequentWork reaching more than 90% of suc-

cessful corrections (case 1). The results are good for these relations

because horses are often named after other entities and artists often

have albums named after themselves, which makes confusions easy

to happen.

1
For that to happen in the case of DBpedia, a Wikipedia user would have to go to the

wrong article page and insert a wrong link in the infobox.

2
The parameter values were selected based on heuristics and may not be optimal
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One of the problems of our approach is that since it relies on

PaTyBRED, which cannot find many relevant path features on

DBpedia and NELL [5], it is difficult to distinguish between can-

didate entities of same type. For example, in NELL, the entity

person_paul as object of book_writer relation is always corrected
with writer_paul_feval.

The decision to generate candidate triples by corrupting ei-

ther the subject or object seemed to have worked well for DB-

pedia, where we could not find a triple where both subject and

object were wrong. On the other hand, in NELL such case was ob-

served a few times, e.g. ismultipleof(musicinstrument_herd ,

musicinstrument_buffalo) whose object was corrected to mammal-
_buffalo but the subject remained wrong.

Also, our assumption that confusions tend to use a more general

IRI instead of a more specific, requiring all tokens of the queried to

be matched, does not always hold. One example in DBpedia which

contradicts this assumption is language(Paadatha_Thenikkal ,

Tamil_cinema), whose corrected object would be Tamil_language
and could not be retrieved by our approach. While this can be a

problem, dropping this assumption also means that more candi-

dates entities will be retrieved, increasing the number of unrelated

candidates, resulting in more candidate triples which need to be

tested and possibly more occurrences of cases 2 and 3. Further

experiments would have to be conducted in order to evaluate the

effects of such change.

5 CONCLUSION
In this paper we proposed CoCKG, an approach for correcting er-

roneous facts originated from entity confusions. The experiments

show that CoCKG is capable of correcting wrong triples with con-

fused instances, with estimated precision of 21% of the produced

corrections in DBpedia and 14% in NELL. The low precision val-

ues obtained do not allow this process, as of now, to be used for

fully automatic KG enrichment. Nevertheless, it works as a proof

of concept and can be useful, e.g., as suggestions from which a user

would ultimately decide whether to execute.

In the future it would be interesting to adapt this method to

support active learning. Since guaranteeing the quality of the newly

generated facts is crucial, having input from the user to clarify

borderline cases and improve the overall results would be highly

valuable. Furthermore, using an ensemble of different KG models

with different characteristics, e.g. KG embeddings, instead of a

single model may potentially increase the robustness of the system.

Finally, it would be worth adding textual features from entities

descriptions to help determine if a pair of entities is related or not.
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