
Quality Indicators for Automotive
Test Case Specifications

Katharina Juhnke
Daimler AG

Group Research & MBC Development
Ulm, Germany

Email: katharina.juhnke@daimler.com

Matthias Tichy
Ulm University

Institute of Software Engineering
and Programming Languages

Ulm, Germany
Email: matthias.tichy@uni-ulm.de

Frank Houdek
Daimler AG

Group Research & MBC Development
Ulm, Germany

Email: frank.houdek@daimler.com

Abstract—Testing is an important quality assurance activity

during development of automotive software. Automotive OEMs

and suppliers use test case specifications to specify, mostly infor-

mal, test cases as well as supporting information like traces to re-

quirements. While the quality of the test case specifications has a

high influence on the quality of the subsequent testing, quality of

informal automotive test case specifications have not been investi-

gated yet. In this paper, we present 7 potential quality indicators,

ranging from requirement coverage to contents of a test step. The

quality indicators have been identified in a case study of 816 cur-

rent test case specifications specified by an OEM and suppliers.

Index Terms—Automotive software testing, test case specifica-

tion, quality indicators

I. INTRODUCTION

A lot of innovation in the automotive domain is nowadays
addressed by software and electronic systems. Solid testing
processes are an integral part of the development process
to verify that the implemented software works as expected.
Standards like ISO 26262 [1] or Automotive SPICE [4] require
a consistent test documentation. An essential part of the test
documentation is the test case specification, which is defined
by the software testing standard ISO 29119 [2]. The test case
specification contains a set of test cases derived from the test
basis for a particular test object [3]

Failures and misinterpretation of the test case specification
shall be avoided at any time. While techniques like mutation
testing can be used to assess the quality of automated tests
[8], automated approaches to assess the quality of informal
test case specifications are scarce [5] or restricted to domain-
specific test languages, i.e. for Testing and Test Control
Notation (TTCN-3) [6], [7]. In order to identify potential areas
of improvement for automotive test case specifications, the aim
of this paper is to examine how the quality can be evaluated
using a given test case specification template.

The analysis is based on data extracted from the test case
specifications suitable as indicators for quality assessment
of test case specifications. The analysis provides insights
into the specification of automotive test cases and identifies
whether there is sufficient formalization within these test case
specifications to enable an automated evaluation of the quality.

As data source, a total of 816 test case specifications from
a total of 16 diverse projects have been collected from an
automotive OEM. The included test case specification were
either created in-house or by suppliers.

In Section II, we give an overview about test case specifica-
tions including an example. Section IV contains a description
of potential quality indicators resulting from the analysis
including quantitative data on selected test case specifications.
Thereafter, we conclude and present some outlook on future
work in Section V.

II. AUTOMOTIVE TEST CASE SPECIFICATION

Test case specifications are a central part of the test docu-
mentation [2] in the automotive environment. They are used
to document the test cases to be performed. A test case
specification contains a set of test cases that are necessary to
adequately test a particular test object according to defined test
objectives. A test case is basically characterized by a unique
identifier, pre- and postconditions, inputs, expected results,
priority for the test execution and traceability information (e.g.
references to the associated requirements) [2]. In addition to
these test case basic attributes, other domain or company
specific test case attributes are often specified such as status,
test objective, author, model series or test platforms. These
attributes are called test case meta data.

Test case meta data and basic attributes are relevant for a test
case and can be defined in a test case specification template.
An example of an automotive test case and the application
of a test case specification template is shown in Figure 1.
The test case of a wiper and wash system is described by its
basic attributes and automotive specific test case meta data
(e.g. vehicle family, test platform). The test case attributes are
represented by the columns and the rows are used to define
different object types such as text, headlines, test cases or test
steps. Not all attributes are relevant for each object type, so
some cells shall be empty (dark gray cells in Fig. 1). Different
object types have a hierarchical relationship to each other. For
instance test steps must be assigned to a test case.

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 96



(a) Test case basic attributes

(b) Test case meta data attributes (dashed border)

Fig. 1. Example of an automotive test case definition using a test case specification template

III. DATA COLLECTION

We collected data from a IBM Rational DOORS database
of an automotive OEM and identified a total of 2435 test case
specifications. Thereafter, obsolete test case specifications have
been excluded reducing the number of test case specifications
to 972. Obsolete test case specifications are those not based
on the current test case specification template or whose last
modification date is before 2015. Furthermore, duplicates,
backups, or test case specifications marked as obsolete by
name have not been included resulting in a further reduction to
816 test case specifications from a total of 16 diverse projects.
Projects are related to vehicle domains such as powertrain,
chassis or comfort systems.

The identified test case specifications based on a test case
specification template as shown in Figure 1. The test cases
are derived from natural language requirements and there-
fore the relevant test case attributes are also specified by
using natural language.

We analyzed the collected data quantitatively based on in-
formation that can be determined programmatically. Therefore,
we used the DOORS Extensible Language (DXL) to extract
quantitative data from the identified test case specifications.

IV. POTENTIAL QUALITY INDICATORS

The results of the analysis are presented in detail based on a
representative project. The selected project includes a total of
12 test case specifications from the powertrain domain that are
representative for automotive test case specifications. Figures
2 - 5 show the analysis results for this project. In the following,

the identified quality indicators are discussed on the basis of
the various criteria examined.

A. Criterion 1: Size of the test case specification with respect
to requirement specification.

The average number of test cases in a test case specification
is 511 (cf. number of test cases in Fig. 2). However, very
large test case specifications contain more than 2200, small
ones can contain only 31 test cases (cf. Fig. 2). However,
the size of the test case specification is not very meaningful
and does not make any statement about the correctness of the
test case. Therefore, they must be considered in correlation
to the testable requirements specified in the corresponding re-
quirement specification. For instance, a test case specifications
with 856 test cases (cf. Fig. 2, TCS 12) can be classified
as large. The requirement specification associated with test
case specification 12 contains 2462 testable requirements. It
is recommended that one requirement shall be tested by at least
one test case. Therefore, it is obvious that there should be more
test cases to verify 2462 related requirements. However, the
relationship between the size of the test case specification and
the number of testable requirements can only be an indicator
of the completeness of the test case specification. Reference
values for an appropriate size of a test case specification can
be determined by previous test case specifications of a system.

B. Criterion 2: Distribution of contained object types.
Test case specifications contain a large number of test cases

and test steps, as shown in Figure 2 by the green bars. Objects
of type base scenario indicate reusable preconditions that can

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 97



Fig. 2. Number of test cases (dark green) and other contained object types per test case specification

be referenced by several test cases. The analysis revealed that
there is often only a very small number of base scenarios in
the test case specifications or that base scenarios are not used
at all. Instead, preconditions are often copied from test case
to test case instead of reusable constructs being stored and
referenced in base scenarios. This is particularly noticeable
in large test case specifications. By using base scenarios,
duplicates could be reduced and the reuse of established
constructs can be increased. Reduction of duplicates also
minimizes the amount of time and effort needed to make
changes in the reused parts, since the changes can then be
made centrally. Test case specifications also contain undefined
objects to which no object type is assigned (e.g. TCS 11, Fig.
2). A small number of test case specifications contain object
types that are individual and not predefined by the template.
This is a violation of the template, which can have an effect
on export to downstream tools.

C. Criterion 3: Size of test cases.
The average size of a test case, measured in terms of

the number of test steps to be performed, is 3,83 test steps.
However, test cases with up to 76 test steps (see TCS 8, Fig. 3)
could also be identified in the representative project. Large test
cases are more error-prone in the later test execution and make
debugging more difficult. For instance, it is time-consuming to
execute 76 test steps manually in order to reproduce a failed
step. In addition, an excessive number of test steps can be
an indicator that several test cases have been combined into
one large test step. Hence, it makes sense to split them up in
several test cases.

D. Criterion 4: Type of test case specification.
Test cases usually have test steps that structure the test case

flow. This has the advantage that very large, extensive and co-

herent test procedure descriptions are avoided. It also supports
the assignment of documented expected results to a clearly
defined set of inputs and actions. For very small test cases, the
template used for the analyzed test case specifications allows
the definition of actions and expected results without using
test steps. The analysis revealed that test case specifications
exist when test steps are omitted completely (see TCS 3, Fig.
3). In such cases, it can often be observed that the inputs and
expected results are overloaded. Several pairs of inputs and
expected results are combined in one test step. That means that
it is no longer possible to unambiguously correlate the inputs
to the expected results. This is also the case when test case
specifications use both approaches. In most cases, a mixture of
both approaches is found within a test case specification (e.g.
9 of 12, Fig. 3). This form is more error-prone and makes it
difficult to understand.

E. Criterion 5: Type of linked object types.

The analysis of the linked object types revealed links
between test cases and artifacts. The table in Figure 5 shows
a linkage scheme with allowed linkages. In general, these are
external links (e.g. artifacts are requirements whose correct
implementation shall be verified, see TCS 8 in Fig. 4) or
internal links, i.e artifacts such as base scenarios which are
referenced by a test case, see TCS 11 in Fig. 4). In some cases
no requirements have been linked (cf. TCS 5, 6 and 7 in Fig.
4). In such cases, there is an insufficient requirement coverage.
The link analysis can also be used as quality indicator to detect
errors in the documented requirements, i.e. if the object type
is not set for a requirement (undefined links, e.g. TCS 6, 7 and
11 in Fig. 4) or the requirement specification is not based on a
standard template (unknown links, e.g. TCS 5 in Fig. 4). In the
case of the considered test case specifications and the linked

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 98



Fig. 3. Number of test steps per test case and type of test case specification

Fig. 4. Number of links according to the object types of the targets for each
test case specification

requirement specifications, the object type requirement must
be set for requirements. Furthermore, non template compliant
and incorrect links can be detected (see black bars in Fig.
4). This includes links to headings, information or process
requirements that cannot be considered as testable in the
context of a requirements-based testing approach.

F. Criterion 6: Number of linked object types.

A test case is linked to an average of 1,68 requirements. This
also corresponds to the premise that each requirement should
be checked by at least one test case. However, there are also
enormous deviations where a test case with 121 requirements
is linked. Such a high number of linked requirements can be
seen as an indicator to check such a test case, either because
it is too large and could be divided into several test cases or

Fig. 5. Detailed evaluation of all links from test case objects (rows) to target
objects (columns) according to the linkage scheme (table). The cells contain
the total number of all links summarized from all test case specifications.

because it seems rather unlikely that a single test case can
cover that many requirements. According to our experience,
more than 20 linked requirements can be considered critical.

G. Criterion 7: Template conformity.

The analysis revealed several violations of the template
guidelines. These have a significant negative effect on the fur-
ther processing of the test case specification (e. g. automated
verification mechanisms are not applicable or the export to
downstream tools fails). For example, customizing the chapter
structure (adding or renaming chapters) means that test cases
are not included in the export or the export fails. Furthermore,
it can be an indicator for the quality of a test case speci-
fication if certain mandatory attributes have not been filled
(e. g. inputs, expected results, test platform, model series).

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 99



V. CONCLUSION

Our investigations show that test case specifications are not
completely documented in accordance with the guidelines of
the used test case specification template. Therefore, the root
cause needs to be investigated further. Adequate formalization
is required for an automated quality assessment of the test case
specifications. Due to the highly individualized attribute sets
of the test case specifications, a structural evaluation based
on the template does not appear to be feasible for all test
case specifications. It is also difficult to evaluate the content
of the test cases and compare them with the contents of the
requirements and the test concept programmatically, since the
test cases are usually written in prose. In order to perform
automated quality assessments, test cases must be formalized
and template guidelines must be fulfilled. Furthermore, it
should be noted that contents from the test concept and the
underlying requirements play an important role in the quality
assessment of a test case specification. Since this information
is not available in the same data format (e.g. requirements,
test cases in DOORS and test concepts in Word) an automated
evaluation of compliance with the guidelines is not possible.

The analysis shows that there exist criteria which can
be used as quality indicators for a first quality assessment
with regard to a examination of the structure of a test case
specification. This includes in particular the test case size
with respect to the requirement specification, number of linked

requirements, adherence to a given linking scheme or the
implementation of the test objectives and test platforms defined
in the test concept. These criteria can be used to gain a first
impression of the quality of the test case specification. This
could be a condition for whether a more detailed examination
is reasonable at the given time.

Our future work will focus on the qualitative analysis of test
case descriptions, which are mostly based on natural language.
Mechanisms are required to support and accelerate reviews of
test case specifications.

REFERENCES

[1] ISO 26262, Road Vehicles - Functional Safety, 2011.
[2] ISO 29119, Software and Systems Engineering - Software Testing, 2013.
[3] ISTQB, Glossary of Testing Terms, 2015.
[4] VDA QMC Working Group / Automotive SIG. “Automotive SPICe:

Process Reference Model Process Assessment Model”, 3rd ed, 2016.
[5] R. Lachmann and I. Schaefer, “Towards Efficient and Effective Testing in

Automotive Software Development”, GI-Jahrestagung, 2014, pp. 2181–
2192.

[6] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen and J. Grabowski
“Applying the ISO 9126 Quality Model to Test Specifications - Exem-
plified for TTCN-3 Test Specifications”, Software Engineering GI, vol.
15 (6), pp. 231–242, 2007.

[7] H. Neukirchen, B. Zeiss and J. Grabowski “An Approach to Quality
Engineering of TTCN-3 Test Specifications”, International Journal on
Software Tools for Technology Transfer, vol. 10 (4), pp. 309–326, 2008.

[8] Y. Jia and M. Harman, “An Analysis and Survey of the Development
of Mutation Testing”, IEEE Transactions on Software Engineering, vol.
37 (5), pp. 649–678, 2011.

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 100


